
Activation of Oxidative Stress-Regulated Bcl-3
Suppresses CTCF in Corneal Epithelial Cells
Yumei Wang, Luo Lu*

Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, California, United States of America

Abstract

Epigenetic factor CTCF (CCCTC binding factor) plays important roles in genetic controls of the cell fate. Previous studies
found in corneal epithelial cells that CTCF is regulated by epidermal growth factor (EGF) through activation of NF-kB p65/
p50. It also found that CTCF is suppressed in ultraviolet (UV) stress-induced corneal epithelial cells. However, it is still
unknown how UV stress down-regulates CTCF affecting the cell fate. In the present study, we report that regulation of CTCF
by extracellular stress signals is dependent upon activations of an oxidative stress-regulated protein Bcl-3. We found that
activated Bcl-3 was able to bind to the kB sites identified in the CTCF promoter region. Bcl-3 was activated by UV irradiation
to interact with NF-kB p50 by forming a Bcl-3/p50 heterodimer complex. The Bcl-3/p50 complex suppressed CTCF promoter
activity to down-regulate CTCF transcription. Unlike the effect of EGF, UV stress-induced Bcl-3 activation suppressed CTCF
activity without involving the IkBa and p65 pathway. Thus, results of the study reveal a novel mechanism for regulatory
control of CTCF in UV stress-induced human corneal epithelial cells, which requires activation and formation of Bcl-3/p50
complex through a noncanonical NF-kB pathway.
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Introduction

Corneal epithelial layer plays an important role in the vision

function to form the front barrier that defends eye structures

behind from damages of physical, chemical and biological insults.

Normal wound healing process is particularly important for

maintaining the corneal epithelial function [1,2,3,4,5,6]. Corneal

epithelial wound healing is facilitated by growth factors and

delayed by stimulation of environmental stressors [7,8,9,10,11]. In

corneal epithelial cells, growth factors and environmental stressors

regulate activities of early response genes and other important

transcription factors, including CCCTC binding factor, CTCF.

CTCF functions as an epigenetic regulator and transcription

factor to control expressions of downstream genes. CTCF is a

highly conserved zinc-finger protein and plays multifunctional

roles in epigenetic regulations of gene expression, including DNA

methylation-sensitive gene insulation, enhancer-promoter block-

ade, DNA imprinting, and X chromosome inactivation [12,13,14].

In corneal epithelial cells, CTCF is significantly activated or

suppressed dependent on stimuli to affecting the cell fates [15].

CTCF interacts with multiple genes through recognitions of

different DNA targets by variable combinational usage of its 11

zinc fingers within the M domain of CTCF. In epidermal growth

factor (EGF)-stimulated cells, CTCF is up-regulated to mediate

growth factor-induced proliferation by suppression of Pax6, an eye

and corneal epithelial specific gene [15]. The recent study

demonstrates that EGF stimulation activates NF-kB p65 and

p50 subtypes to form heterodimer complex to directly up-regulate

CTCF, ultimately leading to corneal epithelial cell proliferation. In

contrast, UV stress induces a suppression of CTCF activity in

these cells [15]. However, it is still unknown how stresses induce

the inhibitory effect on CTCF, which subsequently results in

altering corneal epithelial cell fate.

Bcl-3 is an oxidative stress-regulated protein associated with

activations of NF-kB p50 and p52 subtypes in the noncanonical NF-

kB pathway [16,17,18]. Bcl-3 is a member of the ankyrin-repeat-

containing IkB family of the NF-kB inhibitors, but it is different from

other IkBs. Bcl-3 can be localized in the nuclear compartment in

various cell types and is apparently unique containing transactivation

domains. Bcl-3 contains two trans-activation domains upstream and

downstream from the ankyrin repeats and is able to form dimeric

complexes with p50 and p52 subtypes and to regulate gene

transcription activities in chronic lymphocytic leukemia cells

[19,20]. In contrast to cytoplasmic IkBs that are degraded in

response to many stimulatory signals, Bcl-3 does not undergo

regulatory proteolysis. However, the role of Bcl-3 in modulating NF-

kB activity has been controversial [21,22,23,24,25,26,27,28]. It is

suggested that overexpression of Bcl-3 can cause dysregulation of

genes normally regulated by NF-kB transcription factors to affect cell

proliferation, differentiation and apoptosis [20]. In the present study,

we demonstrate that Bcl-3 activity was induced by UV stress, but not

by EGF stimulation. UV stress-activated Bcl-3 suppressed CTCF by

forming heterodimeric complex with active p50. Bcl-3/p50 complex

bound to the kB sites identified in the promoter region of CTCF

gene. Interaction of Bcl-3 and CTCF gene resulted in suppressing

CTCF expression in corneal epithelial cells.
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Results

Effects of EGF and UV stress on IkBa and NF-kB subtypes
It has shown that phosphorylation of IkBa results in increases in

ubiquitination and degradation of the protein, and subsequently

releases NF-kB p65 and p50 subtypes that further trans-locate in

to the nucleus [29]. We first examined whether EGF and UV

stress were able to change the phosphorylation of IkBa. In HCE

cells, EGF induced a significant increase in phosphorylation of

IkBa following a time course (Fig. 1A). EGF-induced phosphor-

ylation of IkBa started at 15 min and reached the peak level at

120 min. There was a marked decrease in total levels of the

cellular IkBa in EGF-induced cells from 15 to 120 min tested

period, indicating that EGF-induced phosphorylation triggered

degradation of the IkBa protein (Fig. 1B). In contrast, IkBa
phosphorylation was not affected by UV irradiation (Fig. 1C). UV

irradiation had no effects on the total amount of IkBa either at the

indicated time points (Fig. 1D). In agreement with the effect of

EGF on promoting IkBa phosphorylation and degradation, EGF

stimulated p65 and p50 activation, but had no effect on Bcl-3

activity following a time course of 120 min (Fig. 1E). In contrast,

UV stress stimulated Bcl-3 and p50 activation without activating

either IkBa or p60 following a time course of 120 min (Fig. 1F).

The Results indicate that there are different in effects of EGF and

UV irradiation on activation of IkBa and Bcl-3 in growth factor

and stress stimulated cells, respectively. The results also indicate

that EGF stimulation increased both p65 and p50 levels, while UV

stress activated p50 and Bcl-3 in stimulated cells.

Effect of Bcl-3 activation on CTCF expression
Previous studies revealed that UV stress induces suppression of

CTCF activity in HCE cells. Next question is whether Bcl-3 is an

important element that mediates the effect of UV stress on

suppression of CTCF. We found that UV stress induced an increase

in the Bcl-3 level within the testing period of 30 to 120 min. In the

same time, expression of CTCF was significantly suppressed in

response to UV irradiation (Fig. 2A). Further experiments were done

to measure UV stress-induced changes of the CTCF mRNA level.

CTCF mRNA expressions were significantly suppressed in UV

stress-induced cells measured by reverse-transcription and quanti-

tative real-time PCR (Fig. 2B). EGF stimulation induced increases in

CTCF expression, but it failed to activate Bcl-3 in EGF-stimulated

cells (Fig. 2C). In agreement with the Western analysis, CTCF

mRNA was also significantly increased in EGF-induced cells

measured by quantitative real-time PCR (Fig. 2D). Results of

measuring UV stress-induced Bcl-3 activation and CTCF suppres-

sion suggest that the expression level of CTCF was closely correlated

to the altered Bcl-3 activity in UV stress-induced cells.

Previous studies indicate that the CTCF promoter region

contains NF-kB binding motifs, termed as hCTCFp-kB-sites,

which may be responsible for p50 binding to affect CTCF

promoter activity [30]. To further characterize the effect of Bcl-3

Figure 1. Effects of EGF- and UV stress-induced activation of NF-kB pathways. (A) Time course EGF-induced phosphorylation of IkBa. (B)
Time course EGF-induced degradation of IkBa. (C) Effect of UV stress on phosphorylation of IkBa. (D) Effect of UV stress on degradation of IkBa. (E)
Effect of EGF stimulation on nuclear activities of p50, p65 and Bcl-3. (F) UV stress-induced nuclear activities of p50, p65 and Bcl-3. HCE cells were
synchronized by serum-depletion for 24 h. Total and nuclear proteins were extracted following stimulation at indicated time points and detected by
Western analysis. Symbol ‘‘*’’ indicates significant differences between control and induced HCE cells (p,0.05, n = 3).
doi:10.1371/journal.pone.0023984.g001

Regulation of CTCF by Stress-Induced Bcl-3
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activation on CTCF expression, we examined whether Bcl-3 can

bind to the same kB-site in the region of CTCF promoter by ChIP

assays. ChIP analysis showed that Bcl-3 was recruited to the

hCTCFp-kB-site. DNA fragments containing the CTCF promoter

were pulled down by anti-CTCF antibodies from UV stress-

induced cells, but not from EGF-stimulated cells, suggesting that

there was a binding site for Bcl-3 to interact with, which is similar

to the effect of p50 on the sites of the CTCF promoter region

(Fig. 3A & 3B). Next question was whether specific hCTCFp-kB-

site that was observed in p50 binding experiments also requires

Bcl-3 binding to carry out its repressor effect. Bcl-3 and p50 were

overexpressed in HCE cells that were co-transfected with a CTCF

reporter (CTCFR-wildtype) to test for CTCF promoter activity.

Overexpression of Bcl-3 resulted in a significant suppression of

CTCF promoter activity. However, CTCF promoter activity was

not affected in cells transfected with a mutant reporter (CTCFR-

kB-del) in that the hCTCFp-kB-site was deleted (Fig. 3C). We also

examined CTCF expression in Bcl-3-overexpressed cells by

Western analysis. It showed that increased concentration of Bcl-

3 cDNA in transfected cells resulted in a significantly increased

suppression of CTCF (Fig. 3D). These results indicate that there

was an interaction between Bcl-3 and CTCF promoter and that

Bcl-3 suppressed CTCF promoter activity.

Effect of altered Bcl-3 activity on UV-induced suppression
of CTCF

As shown above that UV stress-induced Bcl-3 activation down-

regulated CTCF, we further verified whether altered Bcl-3 activity

has a functional impact on regulation of CTCF in UV stress-

induced HCE cells. Bcl-3 was knocked down by transfecting cells

with siRNA specific to Bcl-3, and control cells were transfected

with non-related siRNA with/without UV irradiation (Fig. 4A).

The results showed that knockdown of Bcl-3 resulted in increases

in CTCF mRNA levels following a time course detected by RT-

PCR and by quantitative real-time PCR (Fig. 4B & 4C). In

addition, knocking down Bcl-3 mRNA abolished the inhibitory

effect of UV irradiation on CTCF promoter activity (Fig. 4D). The

effects of UV irradiation on suppression of CTCF were reversed

by silencing Bcl-3 mRNA indicate that Bcl-3 plays an important

role in regulating CTCF transcription by control of CTCF

promoter activity.

Interaction between Bcl-3 and p50. In order to demonstrate the

physical interaction between Bcl-3 and p50, Bcl-3 and p50 were

pulled down each other by antibodies against Bcl-3 and p50 in

EGF- and UV stress-induce cells, respectively. Bcl-3 antibody

pulled down more p50 UV stress-induced HCE cell compared

with cells stimulated with EGF. No bands were found in the lanes

of IgG controls indicating that there was truly a difference of the

p50 levels in UV and EGF stimulated cells (Fig. 5A). In the

meantime, Bcl-3 was specifically immuno-coprecipitated with p50

by anti-p50 antibody in UV stress-induced cells (Fig. 5B).

However, Bcl-3 did not interact with p50 in EGF-stimulated cells.

Total amounts of p50 and Bcl-3 in cell lysates were analyzed by

Western blots for input controls. To further investigate whether

there is a functional interaction between Bcl-3 and p50,

experiments to co-localize Bcl-3 and p50 in nuclei in EGF- and

Figure 2. Effect of EGF and UV stress on CTCF activity. (A) Time course of UV stress-induced changes in Bcl-3 and CTCF activity. (B)
Quantitative detection of UV stress-induced effect on CTCF mRNA expression by real time PCR. (C) Effect of EGF on Bcl-3 and CTCF activity following a
time course. (D) Quantitative detection of EGF-induced effect on CTCF mRNA expression by real time PCR. Proteins and RNA were isolated from HCE
cells at indicated time-point before/after EGF (20 ng/ml) and UV irradiation (42 mJ/cm2), respectively. Symbol ‘‘*’’ indicates significant differences
between control and UV stress-induced cells (p,0.05, n = 3).
doi:10.1371/journal.pone.0023984.g002
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UV stress-induced cells were performed using antibodies labeled

with Alexa 488 (green) and 594 (red) against Bcl-3 and p50,

respectively (Fig. 5C). Bcl-3 and p50 were co-localized in the

nucleus that was indicated by DAPI staining in UV stress-induced

cells. There was no co-localization of Bcl-3 and p50 found in EGF-

induced and un-stimulated cells (control). Further statistical

analysis revealed that there was a significant increase in Bcl-3

and p50 co-localization in nuclei of UV stress-induced cells

(Fig. 5D). Immunoco-localization of Bcl-3 and p50 in the nucleus

of UV stress-induced cells suggests that Bcl-3 and p50 are very

likely to form a functional heterodimer complex in response to UV

stress stimulation. The results provide further evidence indicating

that Bcl-3 has functional interactions and physical associations

with p50 in the nucleus of UV stress-stimulated HCE cells.

Discussion

In recent studies, we demonstrate that regulation of CTCF is

stimulus-dependent to affect HCE cell fate [15]. Differential

stimuli involve activation of NF-kB subtypes that are able to

regulate CTCF activity in the NF-kB family. However, there is no

detailed information available regarding why UV stress-induced

regulation of CTCF is different from the EGF effect since both

stimuli all activate the NF-kB pathway. We found previously that

EGF-induced activation of p65 and p50 forms heterodimers,

which belong to the canonical NF-kB pathway. In the present

study, we focus on the effect of UV stress on down regulation of

CTCF through activation of a Bcl-3-mediated signaling pathway

in HCE cells. In contrast to the EGF effect, we did not observe

phosphorylation and degradation of IkBa in UV stress-induced

cells, suggesting that there may be an involvement of an alternative

NF-kB pathway, such as Bcl-3 that is often seen in oxidative stress-

related events demonstrated by previous studies [16].

The present study is for the first time to demonstrate that

differential stimuli induce activation of different IkB isoforms in

NF-kB pathways, leading to up- and down-regulation of CTCF,

respectively. In the canonical NF-kB pathway, EGF significantly

promoted a rapid phosphorylation and degradation of IkBa and

nuclear translocation of p65, leading to enhancement of CTCF

expression following the traditional regulatory mechanism of the

NF-kB pathway [31,32,33]. In contrast to activation of the

canonical NF-kB pathway, UV stress did not induce phosphor-

ylation and degradation of IkBa. Instead, UV stress up-regulated

Bcl-3 activity in the nucleus to form Bcl-3/p50 complex that

suppressed CTCF expression without involving IkBa and p65,

suggesting the involvement of noncanonical NF-kB pathways

[34,35].

We identified that Bcl-3 is involved in UV stress-induced

signaling responses linking to CTCF regulation in HCE cells. It

has suggested that Bcl-3 is one of the IkB proteins in the

noncanonical NF-kB pathway. In the present study, we reveal that

UV stress-induced CTCF regulation is very different from what it

Figure 3. Interaction of Bcl-3 and p50 with CTCF promoter. (A) EGF- and UV stress-induced interactions of Bcl-3 and p50 with CTCF promoter
detected by ChIP assays. (B) Analysis of interactions between Bcl-3/p50 and CTCF promoter. (C) Effect of over-expression of Bcl-3 and p50 on activities
of wildtype and deletion mutant of CTCF promoter. (D) Dose-response relationship between over-expression of Bcl-3 and suppression of CTCF
expression. HCE cells were transfected with full-length cDNAs encoding Bcl-3 (a generous gift from Dr. Shin-Ichiro Takahashi at the University of
Tokyo) and p50, CTCF reporter and the mutant CTCF reporter with kB site-deletion by lipofection. Symbol ‘‘*’’ indicates significant differences
between control and transfected cells (p,0.05, n = 4).
doi:10.1371/journal.pone.0023984.g003
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was observed in EGF-stimulated cells. In consistent to previous

published results, phosphorylation and degradation of IkBa in

EEGF-induced cells plays a critical role in canonical IkBa-

dependent regulation of CTCF transcription. Previous studies also

demonstrate that Bcl-3 is associated with p50 or p52 subtypes to

form dimeric complex and bound to the promoter region of

various genes [36,37,38]. The effect of Bcl-3 on inhibition of gene

transcriptions may involve enhancing p50 binding to DNA,

facilitating p50 nuclear translocation and promoting assembly of

p50 dimers [22,28,39]. Our results provided further supporting

evidence for the effect of forming Bcl-3/p50 complex in UV stress-

induced corneal epithelial cells to suppress CTCF promoter

activity and expression. Thus, stress-induced CTCF down-

regulation by formation of Bcl-3/p50 complex is defined as an

event involving the noncanonical NF-kB pathway [16].

We detected Bcl-3 and p50 in NF-kB consensus sites located in

the promoter region of CTCF gene (Fig. 3). NF-kB dimers bind to

kB sites within the promoter region of CTCF is consistent to their

actions observed in regulating transcriptions of other target genes

[29]. In addition, altered Bcl-3 activity by over-expression of Bcl-3

or by knockdown of Bcl-3 with specific siRNA markedly decreased

and increased CTCF promoter activities and CTCF expression,

respectively. These results support the notion that Bcl-3 indeed

involves regulation of CTCF gene. Bcl-3 activity was significantly

enhanced in UV stress-induced cells. This conclusion is supported

by observations of nuclear accumulation of Bcl-3, increases in

nuclear Bcl-3/p50 complex and interaction of Bcl-3 with kB

binding sites located in the promoter region of CTCF gene.

Finally, we found that formation of Bcl-3/p50 complex resulted in

suppression of CTCF in UV stress-induce HCE cells.

In summary, IkBa and Bcl-3 are two members of the IkB

proteins. They function differently in regulating CTCF, which is

dependent on stimulation of EGF and UV stress. We found UV

stress-induced CTCF regulation is very different from what was

observed in EGF-stimulated cells in that phosphorylation and

degradation of IkBa plays a critical role in canonical NF-kB-

dependent regulation of CTCF transcription. Instead, UV stress-

induced Bcl-3 activation directly regulates CTCF transcription

activity through a noncanonical mechanism. Most importantly,

the present study demonstrates new mechanisms for regulation of

CTCF in response to growth factor and UV stress stimulation

mediated by important NF-kB IkBa and Bcl-3 mediated

pathways, respectively. The new information provided here

concern how the environmental stimulation regulates epigenetic

factors through various signaling cascades to affect human corneal

epithelial cell fates.

Materials and Methods

Cell Culture
Human corneal epithelial (HCE) cells (a SV40-immortalized

cell line) were cultured in DMEM/F12 medium [11,40]. The

medium contained 10% FBS and 5 ng/ml insulin in a humidified

incubator gassed with 5% CO2 at 37uC (InvitrogenTM Life

Technologies, Grand Island, NY, USA). HCE cells were passed by

treatment of 0.05% trypsin–EDTA and seeded with a density of

Figure 4. Effects of knocking down Bcl-3 on UV stress-induced suppression of CTCF. (A) Time-dependent effect of knocking down Bcl-3 on
UV stress-induced suppression of CTCF detected by Western analysis. (B) Time-dependent effect of knocking down Bcl-3 on UV stress-induced
inhibition of CTCF mRNA expression by RT-PCR. (C) Quantitative detection of UV stress-induced CTCF mRNA suppression in Bcl-3 knocking down cells
by real time PCR. (D) Effect of knocking down Bcl-3 on UV stress-induced suppression of CTCF promoter activity. Data were plotted as Mean6SE and
statistical significance was determined at p,0.05 (n = 3 to 6).
doi:10.1371/journal.pone.0023984.g004

Regulation of CTCF by Stress-Induced Bcl-3
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105/ml. HCE cells were synchronized by serum-deprived culture

for 24 h prior to experimental treatments. EGF was applied

(20 ng/ml) following various time courses. HCE cells were

exposed to UV irradiation (245 nm) at a dosage of 42 mJ/cm2.

Western Analysis
Nuclear proteins were extracted and used in Western blots

following a previously described protocol [15]. In brief, HCE cells

were rinsed twice with cold PBS and harvested in 0.3 ml lysis buffer

containing (mM): 20 Tris/pH 7.5, 137 NaCl, 1.5 MgCl2, 2 EDTA,

10 sodium pyrophosphate, 25 b-glycerophosphate, 10% glycerol,

1% Triton X-100, 1 Na-orthovanadate, 1 phenylmethylsulfonyl

fluoride, 10 mg/ml aprotinin and 10 mg/ml leupeptin). Lysates

were centrifuged at 13,0006g for 15 min at 4uC, and denatured by

adding an equal volume of 26Laemmli buffer and by boiling for

5 min. Each sample containing 20 mg protein was displayed in 8–

10% SDS-polyacrylamide gel depended on molecular sizes of target

proteins. Proteins in the gel were transferred to polyvinylidene

difluoride (PVDF) membranes by a Semi-dry Transfer Cell

(Promega). Following blocked with 5% fat free milk in Tris buffered

saline with 0.5% Tween-20 (TBS-T) for 1 h at room temperature

(RT), the membrane was hybridized with respective primary

antibodies at 4uC overnight. Positive protein bands in the PVDF

membrane were visualized by using corresponding secondary

antibodies and Western Blotting Luminol Reagent kit (Santa Cruz

Biotech, Santa Cruz, CA). Primary antibodies used in the

experiments included: anti-CTCF (Upstate, 1:5000 in use), anti-

Bcl-3 (Santa Cruz, 1:1000), anti-p50 (Santa Cruz, 1:1000), anti-65

(Santa Cruz, 1:1000), anti-cleaved PARP (Cell Signaling, 1:1000),

anti-b-actin (Sigma, 1:10000).

Immunostaining Cytochemistry
HCE cells were grown on glass slides. Cells were rinsed twice

with PBS, fixed for 15 min in 4% paraformaldehyde, and then

permeabilized with PBS, 0.1% Triton X-100 (PBS-T) for 30 min

at room temperature (RT). The cells were blocked by incubation

with 10% normal horse serum in PBS-T for 1 h at RT (Jackson

ImmunoResearch Labs, PA), followed by double immunostaining

with corresponding antibodies. Cells were washed with ice-cold

PBS and stained with DAPI. Photos were captured by using a

Nikon fluorescent microscope and analyzed by Nikon software

programs. EGF- and UV stress-induced interactions were

determined by immunoco-precipitation and immunocolalization.

Antibodies against Bcl-3, p50 and p65 were individually mixed

with protein-A beads on a rotator for 1 h at RT. DSS solution

(2 mg disuccinimidyl suberate in 80 ml DMSO) was added to the

mixtures and equilibrated for 60 min at RT. The cross-linked

mixtures were centrifuged, washed and suspended in 100 ml of

binding buffer. After adding 10 ml antibody-beads to lysates, the

mixture was gently rotated at 4uC overnight. The mixture was

Figure 5. UV stress-induced activation and interaction of Bcl-3 and p50. (A) Immuno-coprecipitation of Bcl-3 and p50 pulled down by anti-
Bcl-3 antibodies. (B) Immuno-coprecipitation of Bcl-3 and p50 pulled down by anti-p50 antibodies. (C) Nuclear immuno-colocalization of Bcl-3 and
p50 in UV stress-induced HCE cells. Arrows indicate activated p50, Bcl-3 and p50+Bcl-3 localized in the nucleus. (D) Statistical significance of immuno-
colocalized nuclear Bcl-3 and p50 in UV stress-induced HCE cells. Bcl-3 and p50 in control, EGF stimulated and UV stress-induced HCE cells were
detected by immunostaining experiments with specific antibodies against Bcl-3 and p50. Cell nuclei were detected by DAPI staining. Arrows are
indicating immune activities that by were imaged by using a Nikon fluorescent microscope at 406, and data were analyzed by Nikon software.
Symbol ‘‘*’’ indicates significant differences (p,0.05, n = 26).
doi:10.1371/journal.pone.0023984.g005

Regulation of CTCF by Stress-Induced Bcl-3
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boiled for 5 min and centrifuged to separate precipitated proteins

from antibody-beads. Immunoprecipitated products (20 ml each)

were used for Western analysis.

Knockdown of Bcl-3
Double-stranded RNA (dsRNA) nucleotides specifically target-

ing Bcl-3 were purchased with a sequence of 59-CAACGT-

GAACGCGCAAATGTA-39 (Qiagen, Cat#: SI02654554). Cells

were plated in six-well plates and grown to reach 70% confluence.

Bcl-3 specific siRNA was transfected using HiPerFect reagent kit

following the manufacturer’s protocol (Qiagen). Transfected cells

were cultured under the normal condition for 48 h before

experiments were performed. Control cells were transfected with

nonsilencing siRNA using the same protocol.

Measurements of CTCF Promoter Activity
HCE cells were plated in 24-well dishes and grown to reach

70% confluence. Cells were transfected with indicated plasmids

using lipfectamine reagents following the manufacturer’s protocol

(Invitrogen). Transfected cells were cultured under the normal

condition for 48 h before experiments. Extracts were prepared

using the Dual Luciferase Assay System (Promega), and luciferase

activity was measured by a luminometer (Femtomaster FB by

Zylux, Oak Ridge, TN). Promoter activity was analyzed by

normalization of luciferase activity with controls.

Chromatin Immunoprecipitation (ChIP)
Following indicated treatments, HCE cells were fixed for 5 min

in 1% formaldehyde and lysed for 10 min in lysis buffer.

Chromatin was sheared by sonication to an average size of 1–

2 kb and incubated with salmon sperm DNA-saturated protein G-

Sepharose beads for 2 h at 4uC. Chromatin mixtures were

precipitated overnight at 4uC using 10 ml of antibodies. Immuno-

complexes were washed extensively with PBS. Input and

immunoprecipitated chromatins were incubated overnight at

65uC to reverse cross-links. After proteinase K digestion, DNA

was extracted with phenol/chloroform and precipitated with

ethanol. Resulted DNA fragments were dissolved in 20 ml of TE

solution. For each sample, 1 ml purified ChIP-DNA or 0.1 mg of

the input control DNA was used in PCR reaction. A pair of

primers including (59-TAAGGTCAAGCGGACTGGAT-39) and

the reverse primer- (59-GGGGGAGGAAAGGTGAGG-39) locat-

ed upstream and downstream of the kB site in human CTCF

promoter were used in PCR for 25 cycles.

RT-PCR and Real-time PCR
Total RNA extracted from HCE cells was treated with Trizol

reagent (GIBCO-BRL). Reverse transcription was performed

using 2 mg of RNA and oligo (dT), and products (4 ml) were used

in PCR with a pair of CTCF primers. The forward primer is 59-

CCCTGCGGCTTTTGTCTGTTCTAA-39 and the reverse

primer is 59-CTGTTTGGGCTGGTTGGTTCTGC-39. Real-

time PCR reactions contained approximately 15–30 ng of cDNA,

5 ml SYBR Green Super mix, and 0.15 mM of each reverse and

forward primer specific for those tested genes in 3 sets. Reactions

were run for 50 cycles (95uC for 30 sec, 58uC for 30 sec, 72uC for

30 sec) following 2 min initial step at 50uC and 7 min incubation

at 95uC. GAPDH was used as a control reference.

Statistical Analysis
Western blot and DNA gel signals were scanned digitally and

some of the optical densities (OD) were quantified with Image

Calculator software. Data were shown as mean values plus/minus

standard errors (Mean6SE). Significant differences between the

control group and treated groups were determined by One-Way

ANOVA and Student’s t test at P,0.05.
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