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Teratogenicity is one of the main concerns in clinical medications of pregnant women.
Prescription of antiseizure medications (ASMs) in women with epilepsy during pregnancy
may cause teratogenic effects on the fetus. Although large scale epilepsy pregnancy
registries played an important role in evaluating the teratogenic risk of ASMs, for most
ASMs, especially the newly approved ones, the potential teratogenic risk cannot be
effectively assessed due to the lack of evidence. In this study, the analyses are performed
on any medication, with a focus on ASMs. We curated a list containing the drugs with
potential teratogenicity based on the US Food and Drug Administration (FDA)-approved
drug labeling, and established a support vector machine (SVM) model for detecting drugs
with high teratogenic risk. The model was validated by using the post-marketing
surveillance data from US FDA Spontaneous Adverse Events Reporting System
(FAERS) and applied to the prediction of potential teratogenic risk of ASMs. Our
results showed that our proposed model outperformed the state-of-art approaches,
including logistic regression (LR), random forest (RF) and extreme gradient boosting
(XGBoost), when detecting the high teratogenic risk of drugs (MCC and recall rate
were 0.312 and 0.851, respectively). Among 196 drugs with teratogenic potential
reported by FAERS, 136 (69.4%) drugs were correctly predicted. For the eight
commonly used ASMs, 4 of them were predicted as high teratogenic risk drugs,
including topiramate, phenobarbital, valproate and phenytoin (predicted probabilities of
teratogenic risk were 0.69, 0.60 0.59, and 0.56, respectively), which were consistent with
the statement in FDA-approved drug labeling and the high reported prevalence of
teratogenicity in epilepsy pregnancy registries. In addition, the structural alerts in ASMs
that related to the genotoxic carcinogenicity and mutagenicity, idiosyncratic adverse
reaction, potential electrophilic agents and endocrine disruption were identified and
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discussed. Our findings can be a good complementary for the teratogenic risk assessment
in drug development and facilitate the determination of pharmacological therapies during
pregnancy.

Keywords: drug safety evaluation, structure-activity relationship, machine learning, antiseizure medications, drug-
induced teratogenesis

INTRODUCTION

Congenital malformations are defined as the malformations of
organs or body parts during development in utero, mainly
attributed to hereditary, maternal, external environmental or
some unknown factors. Major congenital malformations
(MCMs) are defined as structural abnormalities with surgical,
medical, functional, and or cosmetic importance (Tomson et al.,
2019). It is not only an irreparable blow to the family, but also a
burden on society. As a potential teratogen, a number of drugs
can pass through the placental barrier and affect the growth and
development of the fetus in utero. It is commonly accepted that
the most sensitive period to teratogens is during active
organogenesis, which is from three to 8 weeks after
fertilization. Some organs, such as the brain, will continue to
be very active developmentally after active organogenesis and
may still be affected by teratogens (Ornoy, 2009).

Antiseizure medications (ASMs) are used to control various
types of convulsive disorders or as mood stabilizers. About
0.3–0.7% of pregnant women are diagnosed with epilepsy
(Viinikainen et al., 2006), most of which receive ASMs
monotherapy (74%) (Meador et al., 2018). Although the
incidence of MCMs in offspring of women with epilepsy
(WWE) receiving ASMs monotherapy during pregnancy is
very low (4%), the rate is still higher than that of MCMs in
the general population (Campbell et al., 2014). In clinical practice,
the lowest effective dose is usually recommended for seizure
control for the safety of both mother and child. Furthermore,
WWE should avoid unexpected pregnancies because ASMs will
take a period of time to metabolize to a safe level for embryo.
Therefore, the teratogenic risk evaluation of ASMs is crucial for
the clinical medications.

During the last decade, data from large prospective epilepsy
and pregnancy registries have been used to compare the incidence
and the risk of MCMs in offspring exposed to different ASMs.
When exposed to different antiseizure medications (ASMs), the
incidence of teratogenesis exhibits significant difference. The
incidence of MCMs in offspring exposed to valproate and
phenobarbital is 5–11% and 6–7%, respectively, while it is only
2–3% for lamotrigine and levetiracetam (Brodie, 2006;
Hernandez-Diaz et al., 2012; Tomson and Battino, 2012;
Bromley et al., 2017; Tomson et al., 2018). Fetal exposure to
ASMs is associated with an increased risk of MCMs. Although
there is a variation in the rate, the evidence in pregnancy registries
implies that valproate is associated with the highest risk of MCMs
among ASMs. The post-marketing surveillance data in US Food
and Drug Administration (FDA) Spontaneous Adverse Events
Reporting System (FAERS) also indicates the high prevalence of
congenital malformations induced by valproate. (Supplementary

Table S1). In addition, carbamazepine, phenobarbital, phenytoin,
and topiramate are also associated with the increased risk of
MCMs in offspring, while lamotrigine and levetiracetam are of
relatively low teratogenic risk (Tomson et al., 2011; Hernandez-
Diaz et al., 2012; Campbell et al., 2014; Tomson et al., 2018). In
preclinical studies, zebrafish embryo model and the animal
models have also been established to evaluate the
developmental toxicity, and teratogenic activity of the drugs
(Murayama et al., 2018; Chetot et al., 2020; Jarque et al., 2020;
Nguyen et al., 2021; Simeon et al., 2021). In addition, a few in
silico models have been proposed to predict the reproductive
toxicity of the chemical compounds (Basant et al., 2016; Jiang
et al., 2019), but none of them is developed for the purpose of
teratogenic risk prediction.

Although large scale epilepsy pregnancy registries played an
important role in evaluating the teratogenic risk of ASMs, the
teratogenic risks of a large proportion of ASMs, especially the
newly approved ones, are still unknown because of the limited
post-marketing surveillance data. To fill this gap, we endeavoured
to construct a model to predict the potential teratogenic risk of
the drugs based on their chemical structural information. The
detailed workflow was depicted in Figure 1.

MATERIALS AND METHODS

Generation of Curated Dataset
FDA-approved drug labeling contains the essential information
for the safe and effective use of the drug, which is a relative
accurate and stable data source to evaluate the teratogenic risk of
a drug (Wu et al., 2019). Drug labeling with keywords
“teratogenicity” were extracted from FDALabel public version
(https://nctr-crs.fda.gov/fdalabel/ui/search) (Data was acquired
on April 26th, 2021) by using full text searching. In total, we
obtained 7,926 drug labeling with keywords “teratogenicity”.
Then, we kept 7,059 drug labeling with single active ingredient
based on Unique Ingredient Identifier (UNII). Subsequently, we
only kept the drug labeling administered through oral or
parenteral route (6,180 drug labeling). If multiple drug
labeling contains the same UNII, we kept the latest version of
drug labeling. Consequently, we generated a curated dataset
containing 286 drugs with potential teratogenic risk.

Based on the FDA use-in-pregnancy ratings, we divided the
286 drugs into high teratogenic risk (positives, 67 drugs) group
and low teratogenic risk (negatives, 45 drugs) group based on the
drug labeling information. A drug was categorized into high
teratogenic risk if it was indicated in drug labeling that adequate
and well-controlled studies or animal studies had shown the
teratogenic risk to the foetus, while a drug was categorized into
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low teratogenic risk if both animal and human studies showed no
risk to the foetus. In addition, we further validated teratogenic
risk of the drugs in low teratogenic risk group by using the post-
marketing surveillance data in FAERS.

To generate the structure data files (SDFs) of the drugs, we
mapped the drugs to the PubChem (https://pubchem.ncbi.nlm.
nih.gov/) (Kim et al., 2016) database and obtained the 2D and 3D
SDFs of 112 drugs for SAR model construction, among which 67
drugs were positives and 45 drugs were negatives.

FDA FAERS Dataset
The FDA FAERS database (https://open.fda.gov/data/faers/)
contains the post-marketing surveillance data of human
prescription drugs and is commonly used for drug safety
surveillance. Current version of FAERS database contains
several hurdles including nonstandard usage of terms, duplicate
records, and mapping of drugs and adverse events inaccurately.
Following the preprocessing procedures proposed by Banda et al.
(2016), we compiled the records in FAERS from 1 Jan 2004 to 31
Dec 2020 via the four steps: 1) removing the duplicated cases based
on four demographic data fields, namely event date, age, sex, and
reporter country; 2) mapping the drug names into RxNorm CUIs
and Observational Health Data Sciences and Informatics (OHDSI)
standard vocabulary concept identifiers; 3) mapping the drug
indications and reactions from MedDRA to the Systematized
Nomenclature of Medicine Clinical Terms (SNOMED-CT)
standard codes by using OHDSI vocabulary; 4) establishing the
drug-event pair by linking each drug in each case with the
associated outcome and calculating the reporting odds ratio
(ROR) for each drug by the equation:

ROR � a/c

b/d
(1)

where a, b, c and d were the number of cases defined by the
contingency table (Table 1).

We retrieved the cases and obtained the drugs with teratogenic
risk according to the following steps. Firstly, all the preferred
terms related to congenital malformation under the subject word
“Congenital Abnormalities” in MeSH were extracted
(Supplementary Table S2). Secondly, we used these preferred
terms as keywords to search the FAERS database and kept the
cases if the preferred terms were reported as adverse events.
Finally, the drug reported as the primary suspected drug in each
case were considered as the teratogenic risk drug. After
removing the drugs that existed in the training set and
keeping the drugs only administered through oral or
parenteral route, we kept drugs, for which the number of
reported cases was greater than three and the lower limit of
the 95% CI was greater than 1. We uploaded them into the
PubChem database to generate 2D and 3D SDFs. In addition,
the Anatomical Therapeutic Chemical (ATC) code for each
drug was extracted from the Drugbank database (https://go.
drugbank.com/) (Wishart et al., 2008).

Calculation of Molecular Descriptors
The 1D and 2D molecular descriptors were calculated by Mold2
(https://www.fda.gov/science-research/bioinformatics-tools/
mold2) with the 2D SDFs of the drugs, which is a free and easy-to-
use software package (Hong et al., 2008). The 3D molecular
descriptors were calculated by E-Dragon web server (http://www.
vcclab.org/lab/edragon/) (Mauri et al., 2006) with 3D SDFs of
the drugs.

Model Development
Support vector machine (SVM) algorithm, which is a classical
machine learning method that maps vectors nonlinearly to a
high-dimensional space and constructs decision surfaces in the
high-dimensional space (Cortes and Vapnik, 1995), was proposed
in this study for the teratogenic risk prediction. We used the
radial basic function (RBF) as the kernel function and optimized
two parameters, namely, regularization parameter (c) and kernel
width (γ), by grid searching and five-fold cross-validation. The
optimal regularization parameter (c) and kernel width (γ) were 2
and 0.001, respectively. After determining the optimal
parameters, we performed 1,000 iterations of 5-fold cross-
validation to investigate the performance of the models. For
comparison, we constructed the models by using logistic
regression (LR), random forest (RF), and extreme gradient

FIGURE 1 | The workflow of our study.

TABLE 1 | Contingency table for the calculation of reported odds ratio.

Cases
with current ADR

Cases
without current ADR

Cases with current drugs a b
Cases with other drugs c d
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boosting (XGBoost). LR is a classical linear classifier with a
sigmoid activation function (Park, 2013). The inverse of
regularization strength (C) was optimized in modeling
procedure. RF is an ensemble classifier, which integrates
multiple decision trees (DT) and then classifies the samples
according to the voting results (Qi, 2012). Three parameters,
namely the number of trees, the number of features and the
maximum depth of a tree were optimized in our study. XGBoost
is also an ensemble classifier and is integrated with multiple
gradient boosted decision trees (Chen and Guestrin, 2016).
Different from RF, XGBoost establishes the association
between the decision trees and can be considered as a scalable
end-to-end tree boosting system. Two parameters, namely
minimum loss reduction parameter (γ) and the maximum
depth were optimized in our study. The modeling procedures
and predictions were conducted in Python 3.7.5 with the package
scikit-learn 0.24.1. All the data and source codes can be freely
downloaded from Github (https://github.com/LiSH7450/DIT_
model).

Performance Evaluation
To evaluate the performance of the models, nine performance
metrics, namely accuracy, recall rate, precision, specificity,
Matthews correlation coefficient (MCC), balance accuracy
(BACC), F1 score, the area under the receiver operating
characteristic curve (AUROC), and the area under the
precision-recall curve (AUPRC), were used in this study. The
equations of the nine metrics were listed as follow:

accuracy � TP + TN

TP + TN + FP + FN
(2)

recall rate � TP

TP + FN
(3)

precision � TP

TP + FP
(4)

MCC � TP×TN − FP×FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (5)

BACC � (TPR + TNR)
2

(6)

F1score � 2× (precision× recall rate)
precision + recall rate

(7)

AUROC � ∫1

x�0
TPR(FPR−1(x))dx (8)

AUPRC � ∫∞

− ∞
precision(x)dP[Y≤ x] (9)

specificity � TN

TN + FP
(10)

RESULTS

To facilitate the prevention and early detection of drug-induced
teratogenesis in pregnancy, we generated a curated dataset and
developed a SARmodel to predict the potential teratogenic risk of
a drug. The model was subsequently applied to evaluating the
teratogenic risk of ASMs.

The SAR Model Performance
In total, we generated 777 1D and 2D molecular descriptors and
1,666 3D molecular descriptors. After filtering the descriptors
with the standard deviation across all samples less than 0.001, we
finally kept 2083 1D/2D/3D descriptors as features for model
construction. Of the 2083 molecular descriptors, 585 were 1D/2D
molecular descriptors and 1,498 were 3D molecular descriptors.

The frequency distribution of MCCs and recall rates achieved
by 1,000 iterations of five-fold cross-validation of the four models
and the randommodel was shown in Figure 2. Either for MCC or
recall rate, the performance of four models was obviously higher
than that of random model. The MCCs and recall rates achieved
by SVMwere higher than those achieved by LR, RF and XGBoost.
Table 2 showed the average values of performance metrics and
the corresponding standard deviations of 1,000 iterations. Among
the four modeling algorithms, SVM exhibited the best
performance on predicting the teratogenic risk. The average
MCC, BACC, F1 score, AUROC, AUPRC, specificity and
recall rate achieved by SVM were 0.312, 0.640, 0.762, 0.640,
0.676, 0.428, and 0.851, respectively. Specifically, the average
recall rate was 0.851 achieved by SVM significantly higher
than those achieved by LR, RF, and XGBoost (average recall
rates = 0.657, 0.787 and 0.735 for LR, RF, and XGBoost,
respectively. Welch’s t-test p-values < 0.0001, respectively),
indicating that SVM performed better on detecting the drugs
with high teratogenic risk.

Teratogenic Risk Prediction of FAERS
Dataset
The SVM model was validated by using 196 drugs that were
reported to induce congenital malformations in the FDA FAERS
database. The distribution of the drugs in different therapeutic
categories was shown in Figure 3A. The Anatomical Therapeutic
Chemical (ATC) code for each drug was extracted from the
Drugbank database by searching for the drug names. There is no
therapeutic category associated with two of 196 drugs. 37 drugs
are associated with more than one therapeutic category. For each
of the 37 drugs, we counted it once in each of the categories it
belongs to when calculating the recall rate of our model for each
of the therapeutic categories. Among 196 drugs, over half percent
of the drugs belonged to four therapeutic categories including
nervous system (N, 65 drugs, 53.8%), antiinfectives for systemic
use (J, 36 drugs, 91.7%), cardiovascular system (C, 33 drugs,
51.5%), and antineoplastic and immunomodulating agents (L, 26
drugs, 92.3%). A total of 136 drugs (136/196, 69.4%) were
predicted to be high teratogenic risk by the SVM model. For
each therapeutic category, the SVM model can detect more than
50% drugs (Figure 3A). Specifically, for the therapeutic category
of antineoplastic and immunomodulating agents (L), 92.3%
drugs were correctly predicted with potential teratogenic risk.

Subsequently, the 196 drugs were ranked by their RORs in
descending order and were used to investigate the performance of
the SVM model on detecting high teratogenic risk drugs. We
generated a subset containing the top 25 drugs and then extended
it by adding 25 drugs at a time until all drugs were included. For
each subset, we calculated the recall rate achieved by SVM.
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Figure 3B showed the recall rates for all the subsets. It can be seen
that the SVM model can detect 80.0% drugs from the top 25
drugs. The recall rate decreased with the increase of the number
of drugs involved in the subset. Only 69.4% drugs can be detected
in the top 196 drugs, indicating that the SVM model was more
sensitive to detecting the drugs with high teratogenic risk. In
addition, we investigated the prediction results of the ten drugs

ranked at the top of the subset and found that 8 of them (80%)
were correctly predicted (Table 3).

Teratogenic Risk Prediction of ASMs
The predicted probabilities of ASMs were shown in Figure 4. We
took 0.5 as a cut-off of predicted probability to classify the drugs.
The drugs with predicted probability larger than 0.5 were

FIGURE 2 | The distribution of MCCs and recall rates achieved by SVM, LR, RF, and XGBoost with 1,000 iterations of five-fold cross-validation. (A) The distribution
of MCCs. (B) The distribution of recall rates. Permutation_Y indicated that the SVM models constructed by using the samples with randomly permutated labels.

TABLE 2 | The prediction results of SVM, LR, RF, XGBoost and Permutation_Y*.

SVM LR RF XGBoost Permutation_Y

Accuracy 0.681 ± 0.001 0.610 ± 0.001 0.638 ± 0.001 0.630 ± 0.001 0.554 ± 0.002
Recall rate 0.851 ± 0.001 0.657 ± 0.001 0.787 ± 0.001 0.735 ± 0.002 0.770 ± 0.003
Precision 0.690 ± 0.000 0.680 ± 0.001 0.668 ± 0.001 0.676 ± 0.001 0.599 ± 0.001
MCC 0.312 ± 0.004 0.195 ± 0.004 0.219 ± 0.005 0.215 ± 0.005 0.001 ± 0.015
BACC 0.640 ± 0.001 0.598 ± 0.001 0.602 ± 0.001 0.604 ± 0.001 0.501 ± 0.003
F1 score 0.762 ± 0.000 0.668 ± 0.001 0.722 ± 0.001 0.704 ± 0.001 0.673 ± 0.001
AUROC 0.640 ± 0.001 0.598 ± 0.001 0.602 ± 0.001 0.604 ± 0.001 0.501 ± 0.003
AUPRC 0.676 ± 0.000 0.653 ± 0.000 0.653 ± 0.000 0.656 ± 0.000 0.600 ± 0.001
Specificity 0.428 ± 0.003 0.539 ± 0.002 0.416 ± 0.004 0.474 ± 0.004 0.233 ± 0.006

*Permutation_Y, the SVM model constructed by using the samples with permutated lables.

FIGURE 3 | The distribution of the drugs with teratogenic risk in different therapeutic categories in FAERS and the recall rates obtained by SVM model. (A)
Distribution of all the drugs and the drugs predicted as positives. (B) The trend of recall rate changed with the number of drugs increased.
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considered as high teratogenic risk drugs. It can be seen from the
figure that 21 ASMs (21/39, 53.8%) including four commonly
used ASMs, namely valproate, topiramate, phenobarbital, and
phenytoin, were predicted to be high teratogenic risk. In addition,
five commonly used ASMs including lamotrigine, levetiracetam,
gabapentin, carbamazepine, and oxcarbazepine were predicted to
be low teratogenic risk.

DISCUSSION

Although the incidence of drug-induced malformations accounts
for only 1% or less of the cases of birth defects with known causes
(De Santis et al., 2001), the teratogenicity of drugs has always been
a widespread concern in clinical medication. Since the first case

report indicated that ASMs were associated with congenital
malformations in the 1960s (Janz, 1964; Meadow, 1968), a
number of efforts had been made for assessing the teratogenic
risk of ASMs, so as to help pregnant women avoid the harm of
drugs to the offspring while treating epilepsy (Tomson et al.,
2011; Hernandez-Diaz et al., 2012; Campbell et al., 2014; Thomas
et al., 2017; Tomson et al., 2018; Tomson et al., 2019). Case-
controlled studies and animal studies are currently reliable
approaches to evaluate the teratogenic risk of ASMs. The
teratogenicity of commonly used ASMs including valproate,
carbamazepine, and lamotrigine had been systematically
investigated by reviewing the prevalence of major congenital
malformations in epilepsy pregnancy registries (Tomson et al.,
2011; Hernandez-Diaz et al., 2012; Campbell et al., 2014; Tomson
et al., 2018; Tomson et al., 2019). However, for a large proportion
of ASMs, especially the newly approved ones, the lack of evidence
is a big hurdle to effectively estimate the teratogenic risk. To fill
this gap, we proposed a SAR model to detect the drugs with high
teratogenic risk and applied it to assess the teratogenic risk of
ASMs. The model was constructed by using SVM algorithm with
the chemical structural descriptors of the drugs as features.

As a result, the SVM model performed the best when
compared to the state-of-art machine learning approaches
(Figure 2). The average MCC, F1 score and recall rate for
classifying the teratogenic risk of drugs in the curated dataset
were 0.312, 0.762, and 0.851, respectively. When validated by the
FAERS dataset, the SVM model detected 136 of 196 drugs with
teratogenic risk (recall rate = 0.694). The distribution of the
predicted probability of the teratogenic risk of the drugs were
shown in Supplementary Figure S1. For the subsets of top ten

TABLE 3 | The information of top ten drugs with high teratogenic risk in FAERS.

Drug name Odds ratio ATC code

cisapride* 364.7 Withdrawn
Levamisole 284.7 Withdrawn
bedaquiline* 146.7 J04AK05
ibutilide* 139.3 C01BD05
ondansetron* 95.0 A04AA01
clofazimine* 78.5 J04BA01
Nelfinavir 77.0 J05AE04
folic acid* 70.7 V04CX02; B03BB01
Procainamide 64.1 C01BA02
Vandetanib* 63.8 L01XE12

*Drugs that were predicted as positives by our model.

FIGURE 4 | The predicted risk of teratogenicity of 39 antiseizure medications. The antiseizure medications were ranked by their predicted probabilities in
descending order. The higher the predicted probability value is, the higher the teratogenic risk is. We took 0.5 as a cutoff. A drug with predicted probability larger than 0.5
was predicted as high teratogenic risk, otherwise it was predicted as low teratogenic risk. For the sake of demonstration, we subtracted 0.5 from the predicted
probability of each drug before plotting.
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and top 25 drugs ranked by their RORs, the recall rates achieved
by the SVM model were 0.700 and 0.800, respectively, indicating
that the model was more sensitive to detecting the high
teratogenic risk drugs (Figure 3B). Interestingly, the model
seems to be sensitive to detecting the teratogenic risk drugs in
two therapeutic categories, namely antiinfectives for systemic use
and antineoplastic and immunomodulating agents, for which the
recall rates were 91.7% and 92.3% (Figure 3A).

For the risk prediction of ASMs, valproate, topiramate,
phenobarbital and phenytoin were predicted to be high
teratogenic risk, which were consistent with drug labeling
information, and reported prevalence in pregnancy registries
(Tomson et al., 2011; Hernandez-Diaz et al., 2012; Campbell
et al., 2014; Tomson et al., 2018; Tomson et al., 2019). The FDA-
approved drug labeling of these four drugs included clear
statement of the teratogenic risk of use during pregnancy.
Valproate was warned in the BOXED WARNING labeling
section that it can cause major congenital malformations, e.g.,
neural tube defects, and should avoid treating women with
epilepsy during pregnancy. The teratogenic severity of
topiramate, phenobarbital and phenytoin was also indicated in
WARNINGS AND PRECAUSIONS labeling section that infants
exposed to these drugs in utero had an increased risk for congenital
malformations and other developmental outcomes. Especially for
topiramate and phenobarbital, case-controlled studies and the data
in pregnancy registries indicated that the use of these two drugs
might increase the risk of fetal abnormalities. Furthermore,
relatively high prevalence of major congenital malformations of
valproate, topiramate, phenobarbital, and phenytoin is reported in
the pregnancy registries (Tomson et al., 2011; Hernandez-Diaz
et al., 2012; Campbell et al., 2014; Thomas et al., 2017; Tomson
et al., 2018; Tomson et al., 2019). In addition, five commonly
used ASMs including lamotrigine, levetiracetam, gabapentin,
carbamazepine, and oxcarbazepine were predicted to be low
teratogenic risk, which was also consistent with the low reported
prevalence of major congenital malformations in pregnancy
registries (Tomson et al., 2011; Hernandez-Diaz et al., 2012;
Thomas et al., 2017; Tomson et al., 2018; Tomson et al., 2019).

The chemical structures of drugs containing the toxicophores
(or structural alerts (SAs)) was considered as one of the important
factors of drug-induced teratogenesis (Sankar and Lerner, 2008).
For instance, the aromatic ring in the chemical structure of a
drug, e.g., lamotrigine, may produce a highly reactive epoxide or
arene oxide in the metabolism through cytochrome P-450 family
of enzymes and generate reactive metabolites, which may
contribute to teratogenesis (Sankar and Lerner, 2008). To
further investigate the structural features of ASMs and help
better understand the mechanisms of teratogenicity, the SAs
associated with known toxic property were extracted from the
structures of 39 ASMs. We uploaded the SDFs of the ASMs into
the Online Chemical Modeling Environment (OCHEM, https://
ochem.eu/) (Sushko et al., 2011) and used a web server named
ToxAlerts (Sushko et al., 2012) for mapping the toxicological SAs.
Consequently, a total of 23 SAs that might be associated with
teratogenicity were extracted, which belonged to four endpoints,
namely genotoxic carcinogenicity andmutagenicity, idiosyncratic
adverse reaction, potential electrophilic agents and endocrine

disruption (Table 4). The chemical structure of the common
antiepileptic drug valproate contained the carboxylic acids, which
might lead to the formation of reactivemetabolites, and then induce
the dose-dependent idiosyncratic adverse reaction (Kalgutkar and
Soglia, 2005). Another drug phenytoin contained a toxicological
alert ethane-1,1-diyldibenzene, which was reported to be of
potential estrogenic and androgenic activities (Nendza et al.,
2016). In addition, ezogabine was predicted to be a high
teratogenic risk drug by the SVM model with the highest
predicted probability (0.858), for which the chemical structure
contained three SAs. One of the SA was anilines, which might
form the reactive metabolites by bioactivation and was linked to the
idiosyncratic adverse reaction (Kalgutkar and Soglia, 2005). The
other two SAs were aromatic amines and derivatives of urethane,
whichwere reported to be associated with genotoxic carcinogenicity
and mutagenicity (Ashby and Tennant, 1988).

At present, three third-generation antiepileptic drugs, namely
perampanel, rufinamide, and brivaracetam were used in clinics
and there is still insufficient data to support the risk assessment of
teratogenicity. The predicted probability of teratogenicity was 0.80,
0.75, and 0.50 for perampanel, rufinamide and brivaracetam,
respectively, indicating a high risk of perampanel and
rufinamide and a moderate risk of brivaracetam. In the FDA
drug labeling, the evidence provided by animal studies showed
that these three ASMs had developmental toxicity in pregnant rats
or rabbits at clinically relevant doses or at plasma exposures greater
than clinical exposures, including visceral abnormalities, skeletal
abnormalities, decreased fetal weight and embryo-fetal death for
perampanel exposure at dose of 1, 3 or 10 mg/kg/day, skeletal
abnormalities, decreased fetal weight and embryo-fetal death for
rufinamide exposure at dose of 20, 100, and 300 mg/kg/day, and
embryo-fetal death and decreased fetal weight only for highest dose
brivaracetam exposure. One case report reported 2 cases of minor
congenital malformations in the offspring exposed to brivaracetam
during pregnancy (Paolini et al., 2020). As a result, ourmodel can be
used as a tool to alert new drugs that still lack clinical evidence for
teratogenicity.

Some caveats of this study were worth further discussing. It is
still a big challenge to develop a reproducible procedure to assess
the teratogenic risk for the drugs. A set of attributes, such as
severity, expectedness and causality, should be considered in
annotating the teratogenic risk for a drug. In this study, we
annotated the teratogenic risk for the drugs based on the FDA-
approved drug labeling by considering the fact that drug labeling
is a compilation of up-to-date drug safety information and a
relatively accurate and stable data source. Consequently, we
annotated 67 drugs with teratogenic risk (positive samples)
and 45 drugs with low teratogenic risk (negative samples). The
average precision achieved by our model in 1,000 iterations of 5-
fold cross-validation was 0.690. When validating the model by
using the FAERS data, we can only determine the drugs with
teratogenic risk when the teratogenicity is reported. As a result,
we only tested the recall rate of our model. Note that the
annotation was based on the US FDA-approved drug labeling.
The classification of the drugs might be different when using the
drug labeling of other countries. The teratogenic risk of the drugs
used in the modeling is determined by the FDA drug labeling. In
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the drug list, all of the 26 drugs in the therapeutic category of
antineoplastic and immunomodulating agents (L) were assigned
to the high teratogenic risk group (positive samples). It may be
one of the main reasons that 92.3% of drugs were predicted to
have teratogenic risk when using the FAERS dataset to validate
the predictive model. In comparison, the number of drugs in the
therapeutic category N (Nervous system) in the high teratogenic
risk group (positive samples) and the low teratogenic risk group
(negative samples) is relatively balanced (7 positive and 10
negative samples). As a result, 53.8% of the drugs in the
FAERS dataset were predicted to be teratogenic. When more
balanced data can be obtained with the update of the FDA drug
labeling, the predictive performance of our model can be further
improved. Our proposed model only based on the chemical
structures of the drugs. Although it is simple and easy to use,
the limited information restricted the predictive performance of
the model. Considering that drug-induced malformations are
usually dose-dependent and affected by many factors. Additional
information, such as the cell-based in vitro data, the data from
animal studies as well as the pharmacogenomics data, involved in
the modeling procedure may improve the model performance.
Furthermore, a comprehensive model is also needed.

CONCLUSION

In this study, we proposed a SAR model for predicting the
potential teratogenic risk of the ASMs based on the chemical
structures of the drugs. The model was sensitive to detecting the
high teratogenic risk drugs. Our findings can be helpful for the
prevention and early detection of drug-induced teratogenesis.
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