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Abstract: The huge volume of hyperspectral imagery demands enormous computational resources,
storage memory, and bandwidth between the sensor and the ground stations. Compressed sensing
theory has great potential to reduce the enormous cost of hyperspectral imagery by only collecting a
few compressed measurements on the onboard imaging system. Inspired by distributed source coding,
in this paper, a distributed compressed sensing framework of hyperspectral imagery is proposed.
Similar to distributed compressed video sensing, spatial-spectral hyperspectral imagery is separated
into key-band and compressed-sensing-band with different sampling rates during collecting data of
proposed framework. However, unlike distributed compressed video sensing using side information
for reconstruction, the widely used spectral unmixing method is employed for the recovery of
hyperspectral imagery. First, endmembers are extracted from the compressed-sensing-band. Then,
the endmembers of the key-band are predicted by interpolation method and abundance estimation
is achieved by exploiting sparse penalty. Finally, the original hyperspectral imagery is recovered
by linear mixing model. Extensive experimental results on multiple real hyperspectral datasets
demonstrate that the proposed method can effectively recover the original data. The reconstruction
peak signal-to-noise ratio of the proposed framework surpasses other state-of-the-art methods.

Keywords: hyperspectral imagery; compressed sensing; distributed compressed sensing; linear
mixing model; spectral unmixing

1. Introduction

Hyperspectral imagery (HSI) is different from conventional color images, and can collect
tens or hundreds of spectrum samples for each image pixel. Therefore, HSI is usually used as
a three-dimensional (3D) data cube with 2D spatial and 1D spectral variation [1]. This kind of data
potential is useful in applications in the food safety, biomedical, forensic, and industrial fields [2].
However, with the increase in spatial and spectral resolution, the amount of data of HSI increases
dramatically. This has motivated the application of compressed sensing (CS) [3] techniques for
hyperspectral imaging.

CS is a mathematical framework for single-signal sensing and compression. CS theory has proved
that sufficiently sparse signal can be accurately recovered from its compressed measurement by solving
the quadratic programming [3]. Thus, only a few measurements need to be collected by CS technique
to recover the original data. HSI can be transformed into sparse signals by many popular sparsification
techniques such as orthogonal transformation-based methods [4], dictionary-based methods [5], or
spectral unmixing [6,7].

As the double sparsity structure exists in both the spatial and spectral domains, a variety of
sampling methods have been produced for HSI compressed sampling. First, spatial compressed
sampling for conventional grayscale image can be applied directly to all spectral bands of HSI if the
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measurement matrix per channel is an independent random pattern, which is referred to as distributed
CS (DCS) [8,9]. Second, the sparsity in spectral domains makes hyperspectral imagery easy to
achieve with spectral compressed sampling. The most typical representative is compressive-projection
principal component analysis (CPPCA) [10] and its derived algorithm [11–14]. However, CPPCA is
only valid for the first few largest eigenvalues of hyperspectral imagery, but it is usually not true
for the smaller eigenvalues, owing to the high degree of correlation among the spectral vectors [15].
Therefore, when the spectral sampling rate is very low, the CPPCA algorithm fails to recover original
data. Previous works [9,16,17] on sampling mode have proposed compressed sampling hyperspectral
imagery combining the structures of the spatial and spectral. Three-dimensional compressive sampling
(3DCS) [16] constructed a generic 3D sparsity measure to exploit 3D piecewise smoothness and spectral
low-rank property in hyperspectral imagery.

Inspired by distributed source coding (DSC) [18], the distributed compressive video sensing
(DCVS) [19,20] framework was proposed for capturing and compressing video data simultaneously
by integrating DSC and CS. DCVS divided the frames of a video sequence into key frames and
non-key frames. Key frames are sent by conventional video lossless compression, and non-key frames
are compressed sampled by common CS technology and transmitted to the decoder. Liu et al. [21]
extended the DCVS framework to hyperspectral imagery. At the coding end, the compressed reference
and non-reference band images and the prediction coefficients between them are collected. However,
the calculation of prediction coefficient violates the original intention of CS sampling to be as simple
as possible. In this paper, we divided hyperspectral imagery into key band images and CS band
images, and then different sampling mode is applied to both types of images. With Kronecker
product [9] transformation, the proposed compressed sampling method holds the same form as
standard compressed sampling.

One of the important tasks of CS theory is how to recover the original data from a small amount
of compressed data. The success of CS depends critically on the assumption that the underlying
signals are sparse or compressible when represented on a suitable frame. Fortunately, hyperspectral
imagery is highly correlated in both spatial and spectral domains and is thus compressible [15]. Many
reconstruction algorithms are dedicated to development of sparse, total variation (TV), low rank, and
other prior information for HIS [7,16,22–24]. However, this type of reconstruction algorithms performs
convex optimization operations directly on the whole hyperspectral imagery. As there exists a huge
amount of hyperspectral data, generally, the speed of such algorithms is slow.

Matrix decomposition is another kind of reconstruction approach for hyperspectral imagery.
CPPCA [10] reconstructs an HSI data set using principal component analysis (PCA) at the decoder.
The significant advantage for CPPCA is the transfer of computation from the on-board remote devices
with limited computational resources to a ground working station. Although possessing excellent
reconstruction quality and low computational complexity with high sampling rates, the reconstruction
accuracy of CPPCA is low when the sampling rate lower than 0.2.

The linear mixing model (LMM) is one of the more simply and widely used hypotheses in
hyperspectral imagery processing [2,25,26]. Hyperspectral imagery can be decomposed to endmember
and abundance according to LMM. LMM-based compressed sensing reconstructing [6,15,27,28] for
hyperspectral imagery demonstrated significant advantages in terms of both reconstruction quality
and computational complexity. Spatio-spectral hybrid compressive sensing (SSHCS) [27] collects
spatial and spectral compressed hyperspectral data, and recovers original hyperspectral imagery by
the product of the endmembers extracted from the spatial compressed data and the corresponding
abundance estimated from spectral compressed data. Spatial-spectral compressed reconstruction
based on spectral unmixing (SSCR_SU) [28] extends SSHCS by alternately iterating endmembers and
abundance. Spectral compressive acquisition (SpeCA) proposes a two-step measurement strategy
operating on the spectral domain. One is the common spectral compressed sampling on per pixel,
which is using to estimate abundance. The other is the spectral compressed sampling on some randomly
chosen specific pixel, which can estimate endmembers by combining the estimated abundance.
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In this paper, we propose a distributed compressed sampling and reconstruction framework
for hyperspectral imagery. On the encoding side, we propose a distributed compressed sampling
strategy similar to DCVS to collect hyperspectral data. The difference is that the side information of
the key frame is used in DCVS reconstruction, which cannot be applied to the hyperspectral imagery
in a low sampling rate environment with only a small number of key bands. Moreover, we recover
hyperspectral data by linear spectral unmixing method on the decoding end. For brevity, we will call
the proposed framework distributed compressed hyperspectral sensing (DCHS).

Specifically, the contribution of the paper has the following three aspects. First, distributed
compressed sampling framework divides hyperspectral imagery into key band and CS band for
separate acquisition, allowing endmembers and abundance to be independently estimated. Second,
linear interpolation is employed to predict key band endmembers by the extracted CS band endmembers.
Finally, an augmented Lagrangian minimization algorithm is designed to estimated abundance matrix
under low sampling rate.

This paper is organized as follows. Section 2 proposes our DCHS framework. The endmembers
predicting of key band and the augmented Lagrangian optimization algorithm for CS reconstruction
by DCHS is described in Section 3. Section 4 presents the experimental results using three different
datasets and discusses the quantitative and qualitative analysis. Finally, this study is concluded in
Section 5.

2. Distributed Compressed Sampling Framework

The hyperspectral data of a single scene usually consists of several hundred images. Here, the
matrix X ∈ RN×L describes the hyperspectral data of a particular scene. Each column of X represents a
vectorized band image and each row denotes the spectrum of one pixel. The size L is the number of
band of the sensor, and N denotes the number of pixels per band.

Figure 1 schematizes the proposed distributed compressed sampling strategy and reconstruction
framework of CS band images. The DCHS framework consists of two parts: encoding end and
decoding end.
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For the distributed compressed sampling of the encoding end in Figure 1, we divided hyperspectral
imagery into key band images and CS band images, represented by XK ∈ RN×LK and XCS ∈ RN×LCS ,
respectively, where, LK is the number of key band and LCS = L− LK is the number of the CS band.

First, hyperspectral imagery should be grouped in equal parts according to band, similar to the
Group-of-Pictures (GOP) structure in many video codecs. Lg denotes the number of bands in each
group. The intermediate bands are then extracted from each group as the key band of the group. The
key bands are transmitted directly to the decoding end without compressed sampling. This means
that the equivalent sampling rate of the key band SRK is LK/L. Band selection [29–34], according to
hyperspectral feature, will provide a benefit to the performance of grouping. However, it will violate
the requirement of the lowest computational cost at the encoding end of CS.

The remaining bands are taken as CS band images and the measurement matrices is defined
as A ∈ RM×N (M � N). Matrix A acts on the CS band along the spatial domain generating M
measurements per band. The measurements obtained with matrix A are YCS = AXCS. In our previous
work [27], we designed a spatial measurement matrix, where each row is a one-hot vector. The
designed matrix is still used in this paper for the spatial observation of CS band. The sampling rate
of CS band SRCS is MLCS/NL. As a consequence, the total equivalent sampling rate of DCHS is
SR = SRK + SRCS = (NLK + MLCS)/NL.

In hyperspectral imagery processing, LMM is an important and widely used model. LMM of
hyperspectral imagery can be described in the following Equation.

X = SE (1)

For the key band images, Equation (1) can be rewritten as

XK = SEK (2)

where EK ∈ Rp×LK denotes an endmember matrix of the key band holding the spectral signatures of
the endmembers; S ∈ RN×p is the corresponding abundance matrix of key band, which describes the
proportion fractions of ground materials at each pixel; and p is the number of endmember. As the CS
band, the key band, and the original hyperspectral data describe the same scene and ground objects,
the three data should have the same abundance matrix, S. Now, the compressed measurement of CS
band can be written as

YCS = AXCS = ASECS (3)

According to the proposed distributed compressed sampling mode, the task of DCHS
reconstruction is to recover the CS band images, XCS, as the key band is transmitted directly to
the decoder. From Equation (3), we can see that the task of reconstructing XCS can be converted to the
estimation of the endmember matrix ECS and the abundance matrix, S. Therefore, at the decoding end
of Figure 1, the observed data of CS band images is first used to extract endmembers of the CS band.
Then, the endmembers of the key band are predicted by these extracted endmembers. Afterwards, the
abundance matrix can be estimated by combining the images and endmembers of the key band. Next,
the endmember of CS bands is modified by the estimated abundance. Finally, the CS band images are
reconstructed using the modified endmember and the estimated abundance fraction based on LMM.

3. Reconstruction Algorithm of CS Band

In this section, we focus on the reconstruction algorithm of DCHS for CS band images, which
mainly includes endmember extraction and abundance estimation, where the endmember extraction
includes the extraction of ECS from spatial compressed data and the prediction of EK by the extracted
endmember matrix ECS.
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3.1. Endmember Extraction

The first goal is to extract ECS from YCS. Thanks to the designed measurement matrix A, the
existing endmember extraction algorithms are suitable for the compressed data [27]. Vertex component
analysis (VCA) [35] is one of the most popular endmember extraction algorithms for hyperspectral
unmixing. In this paper, we employ the VCA algorithm to extract the endmember matrix ECS from
YCS. We use Equation (4) for the endmember extraction,

ECS = vca(YCS) (4)

where vca denotes VCA endmember extraction algorithm.
Note that p will play an important role for the VCA algorithm. In the absence of noise, the rank of

observed data matrix YCS is precisely p. Some state-of-the-art subspace clustering algorithms [36–40]
will help to accurately estimate the number of endmembers. However, the goal of CS is to reconstruct
the original data rather than unmixing. In the experiments, we find that a p slightly higher than
the real number of endmember can slightly improve the reconstruction accuracy. Hyperspectral
signal identification by minimum error (HySime) [41] can estimate higher endmembers in most cases.
Therefore, p is estimated from YCS by the HySime algorithm.

Next, we must successfully predict EK before estimating abundance, although the abundance
can also be estimated from YCS. However, due to the extremely low spatial sampling rate, accurate
estimation of abundance is very difficult. Therefore, we turn to the prediction of EK to estimate S. We
find that the matrix EK is composed of the column vectors extracted by interval Lg from matrix E. The
remaining column vectors composes the matrix ECS. The interpolation method can locate the nearest
data value, and assign the value according to the nearest data. Therefore, a simplest interpolation
algorithm is employed to predict EK from the extracted endmember matrix ECS of CS band.

EK = interp(ECS) (5)

where interp denotes interpolation method.
Figure 2 evaluates the performance of several interpolation methods by average signal-to-noise

ratio of (SNR) between the reference value and its estimated value predicted from the CS band.
The spectral curves used for the evaluation come from the USGS library [42], which includes 501
spectral curves of different mineral types with 224 spectral bands. A total of 188 spectral bands remain
after removing the water absorption and noise bands. EK is selected as reference value from the USGS
library according to the grouping rules of the DCHS framework. Linear, nearest neighbor, spline, and
shape-preserving piecewise cubic (pchip) interpolation methods are tested.
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From Figure 2, we can see that linear and pchip methods achieve better prediction results than
the other two interpolation methods. Linear interpolation is slightly better than pchip interpolation.
Therefore, linear interpolation is used in all the following experiments.

3.2. Abundant Estimation

The next goal is to estimate the abundance matrix S after EK is successfully predicted. As described
in the previous section, it is difficult to estimate abundance directly from YCS due to the extremely low
spatial sampling rate. Therefore, in this section, we combine YCS and XK to estimate abundance. At the
same time, the abundance characterizes the distribution map of different materials in the scene, which
is a sparse signal on the orthogonal basis. Although sparse coding and feature representation-based
methods [36–40] can better describe the sparsity of abundance, their use will significantly increase the
computational complexity and contribute little to the final CS band reconstruction. This is because
the modification of ECS in the next section can make up for the deficiency of abundance estimation.
Therefore, we employ wavelet base as the orthogonal sparse basis.

Now, the abundant estimation task can be described as solving S, given observed data YCS,
measurement matrix A, key band images XK, and endmember matrix EK and ECS. We consider the
following constrained optimization problem,

min
S
‖WS‖1,1 subject to XK = SEK, YCS = ASECS (6)

where ‖C‖1,1 ≡
∑p

i=1 ‖ci‖1(ci denotes the ith column of C, ‖ · ‖1 denotes `1 norm), and W represents an
orthogonal wavelet base.

As the problem (6) is a non-convex optimization, we specialize the Alternating Direction
Method of Multipliers (ADMM) [43,44] to optimize problem (6). First, by introducing regularization
parameters, an equivalent way of writing the optimization problem (6) is the following unconstrained
optimization problem,

min
S
‖WS‖1,1 +

λ1

2
‖XK − SEK‖

2
F +

λ2

2
‖YCS −ASECS‖

2
F (7)

where parameters λ1 ≥ 0 and λ2 ≥ 0 control the relative weight of the second and third terms in
problem (7), respectively, and ‖C‖F ≡

√
trace

{
CCT} denotes the Frobenius norm of C. We introduce an

auxiliary matrix Z = WS. Problem (7) can be written as

min
Z
‖Z‖1,1 +

λ1

2
‖XK −W−1ZEK‖

2
F +

λ2

2
‖YCS −AW−1ZECS‖

2
F (8)

where W−1 is the inverse of matrix W.
Before the alternating minimization is apply to the corresponding augmented Lagrangian functions,

we write the following equivalent formulation with auxiliary matrix R1, R2, and R3,

min
Z,R1,R2,R3

‖Z‖1,1 +
λ1
2 ‖XK −R2EK‖

2
F +

λ2
2 ‖YCS −AR3‖

2
F

subject to R1 = Z
R2 = W−1R1

R3 = R2ECS

(9)

Constrained optimization problem (9) has an augmented Lagrangian subproblem of the form

min
Z,R1,R2,R3,T1,T2,T3

‖Z‖1,1 +
λ1
2 ‖XK −R2EK‖

2
F +

λ2
2 ‖YCS −AR3‖

2
F

+
µ
2 ‖Z−R1 − T1‖

2
F +

µ
2 ‖W

−1R1 −R2 − T2‖
2
F +

µ
2 ‖R2ECS −R3 − T3‖

2
F

(10)
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where µ > 0 is a positive penalty constant; T1, T2, and T3 denote the Lagrange multipliers.
For each iteration of ADMM, we first fix R1, R2, R3 and T1, T2, T3; the minimizer of objective

function (10) with respect to Z is the well-known soft threshold problem [45], and the problem can be
reduced to

min
Z
‖Z‖1,1 +

µ

2
‖Z−Rk

1 − Tk
1‖

2
F (11)

The soft threshold to solve problem (11) is given by

Zk+1 = so f t
(
Rk

1 + Tk
1,

1
µ

)
(12)

Next, given other variables, simple manipulation shows that the minimization of objective function
(10) with respect to R1 is equivalent to

min
R1
‖Zk+1

−R1 − Tk
1‖

2
F + ‖W

−1R1 −Rk
2 − Tk

2‖
2
F (13)

which is a least squares problem, and the corresponding normal Equation is(
IN + WW−1

)
R1 = Zk+1

− Tk
1 + W

(
Rk

2 + Tk
2

)
(14)

where IN denotes the N ×N identity matrix. As W is the orthonormal basis, WW−1 = IN. Therefore,
the solution Rk

1 of Equation (14) is given easily by

Rk+1
1 =

1
2

[
Zk+1

− Tk
1 + W

(
Rk

2 + Tk
2

)]
(15)

Similarly, the steps to compute the values of the variables R2 and R3 are also least squares problems.
The value of R2 is given by

Rk+1
2 =

[
λ1XKET

K + µW−1Rk+1
1 − µTk

2 + µ
(
Rk

3 + Tk
3

)
ET

CS

](
λ1EKET

K + µIp + µECSET
CS

)−1
(16)

where ET
K is the transpose of matrix EK, and Ip is a p× p identity matrix. The value of R3 is given by

Rk+1
3 =

(
λ2ATA + µIN

)−1[
λ2ATYCS + µ

(
Rk+1

2 ECS − Tk
3

)]
(17)

As the number of pixels N is usually large,
(
λ2ATA + µIN

)−1
often requires enormous computation

time. However, the designed measure measurement matrices A and IN are sparse matrices. The inverse
operation is easy to perform. Moreover, the inversion only needs to be calculated once, as λ2ATA+ µIN

is unchanged for each iteration.
Finally, we update Lagrange multipliers by

Tk+1
1 = Tk

1 −
(
Zk+1

−Rk+1
1

)
Tk+1

2 = Tk
2 −

(
W−1Rk+1

1 −Rk+1
2

)
Tk+1

3 = Tk
3 −

(
Rk+1

2 ECS −Rk+1
3

) (18)

After the kth iteration, the residual is defined as

res1 = ‖XK − Sk+1EK‖F/‖XK‖F
res2 = ‖YCS −ASk+1ECS‖F/‖YCS‖F

(19)

The iteration stopping criterion is defined as res1 < ε1 and res2 < ε2.
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3.3. Recovery of CS Band

Although we have extracted the endmember ECS by VCA algorithm in Section 3.1 and estimated
the abundance S in Section 3.2, the endmember and abundance are not directly matched, and this
may reduce the reconstruction accuracy. Therefore, we modify ECS to minimize the objective function
‖YCS −ASk+1ECS‖

2
F, whose least squares solution is given

ÊCS =
((

ASk+1
)T

ASk+1
)−1(

ASk+1
)T

YCS (20)

Finally, the CS band can be reconstructed by the LMM.

X̂CS= Sk+1ÊCS (21)

In summary, we call the proposed CS band reconstruction algorithm a DCHS reconstruction
algorithm, which is described in Algorithm 1.

Algorithm 1: DCHS reconstruction algorithm

Inputs: XK, YCS, and A
Output: X̂CS
1. Estimate p by HySime algorithm from YCS
2. Extract ECS from YCS by VCA algorithm
3. Predict EK by ECS using interpolation algorithm
4. Set parameters: λ1, λ2, µ and maxiters
5. Initialize: S0 = XKET

K(EKET
K)
−1, Z0 = WS0, R0

1 = Z0, R0
2 = W−1R0

1, R0
3 = R0

2ECS,
T0

1 = 0, T0
2 = 0, T0

3 = 0, k = 1, thr = 10−5, res1 = res2 = ∞

6. While k < maxiters and (res1 > thr or res2 > thr)
7. Compute Zk+1 by soft-threshold function according to (12)

8. Compute Rk+1
1 by (15)

9. Compute Rk+1
2 by (16)

10. Compute Rk+1
3 by (17)

11. Update Lagrange multipliers Tk+1
1 , Tk+1

2 , and Tk+1
3 by (18)

12. Compute res1 and res2 by (19)

13. Sk+1 = W−1Zk+1, k = k + 1

End while

14. Modify ECS by (20)
15. Recover CS band according to LMM by (21)

In the DCHS reconstruction algorithm, the computational complexity is mainly reflected in the
estimation of the abundance due to multiple iterations. In each iteration of abundance estimation,
the most costly steps are the calculus of Rk+1

2 and Rk+1
3 , both of which have the order of complexity

O(pNLCS), where p is the number of endmembers, N is the number of pixels in the image, and LCS is
the number of CS spectral bands.

4. Experiments and Results

In this section, we compare the proposed DCHS framework with several state-of-the-art
reconstruction algorithms to evaluate the validity of the proposed framework, including MT-BCS [46],
CPPCA [10], SSHCS [27], SpeCA [15], and SSCR_SU [28]. In the comparison experiments, we used the
default parameter settings of those compared methods described in the reference papers. It is worth
noting that the SpeCA algorithm cannot estimate the number of endmember. Therefore, in comparison
experiments, we set it according to the ground truth. All the experiments were run with MATLAB
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2014a (32-bit) on a laptop workstation with 2.6 GHz CPU and 32 GB RAM. We quantitatively and
visually evaluated the performance of the proposed method on three real datasets, namely, Cuprite
and Urban from the hyperspectral unmixing datasets [47], and PaviaU from hyperspectral remote
sensing scenes [48].

The Cuprite dataset contains 188 bands via removing water absorption and noise bands, including
250× 190 pixels. In general, the Cuprite dataset is considered to contain 14 types of minerals. The Urban
dataset is of size 306 × 306 and consists of 162 bands. There are six endmembers contained in the
ground truth. PaviaU dataset is of 610 × 340 pixels and 103 bands. The ground truths differentiate
nine classes. The false-color images of the three dataset are shown in Figure 6a. The red, green, and
blue channels are (40,20,10) bands for Cuprite dataset, (28,11,2) bands for Urban dataset, and (50,30,5)
bands for PaviaU dataset, respectively.

In order to evaluate the reconstruction performances of all methods, three quantitative indices are
employed in the experiments. The first index is mean peak signal-to-noise ratio (MPSNR) between the
reconstructed images and the original images, which is defined as the average peak signal-to-noise
ratio (PSNR) of all bands. MPSNR is defined as

MPSNR =
1
L

L∑
i=1

20 log10
max(Xi)√
‖Xi − X̂i‖

2
2/N

(22)

where Xi and X̂i correspond to the original and reconstructed band image vector. max(Xi) is the peak
value of Xi. High values of MPSNR represent better reconstruction results.

The second index is mean spectral angle mapper (MSAM), which calculates the average angle
between the original and reconstructed spectral vectors for all spatial positions; its definition is
as follows,

MSAM =
1
N

N∑
j=1

arccos
XT

j · X̂ j

‖X j‖2 · ‖X̂ j‖2

(23)

where X j and X̂ j are the jth spectral vectors of the original and reconstructed HSI, respectively. Low
values of MSAM represent better reconstruction results.

The last index, mean structure similarity (MSSIM), is used to evaluate the structural consistency
between the original and reconstructed HSI, which is expressed as

MSSIM =
1
L

L∑
i=1

SSIM(Xi, X̂i) (24)

where SSIM(Xi, X̂i) is defined as the structure similarity of between Xi and X̂i. For the details of the
SSIM function the reader can refer to work in [49].

The first group experiments discuss the parameter setting of the proposed algorithm by Cuprite
dataset. In our DCHS reconstruction algorithm, there are three important parameters: λ1, λ2, and µ.
First, we fix parameter µ = 30, and set the number of bands in each group Lg = 20, 10, 5, corresponding
to 0.0564, 0.1048, and 0.2048 sampling rate. Figure 3 shows the trends of MPSNR with λ1 and λ2.

From Figure 3, we can see that the change trends of MPSNR with λ1 and λ2 are basically the same
for different Lg. Therefore, for different sampling rates, we can use the same setting for parameters λ1

and λ2. In addition, MPSNR changes significantly more along the λ2-axis direction than along the
λ1-axis direction, which means that the proposed DCHS reconstruction algorithm is more sensitive
to λ2. MPSNR increases when λ2 increases. When λ2 is greater than 1, MPSNR increases very little.
Therefore, in the following experiments, we set the parameters λ1 = 104, λ2 = 1.

Figure 4 shows the influence of parameter µ on the reconstruction performance with different
sampling rates. We can see that as µ increases, the reconstructed MPSNR gradually increases. When µ



Sensors 2020, 20, 2305 10 of 17

is less than 10, the MPSNR increase rapidly. When µ exceeds 30, the MPSNR is basically unchanged.
Therefore, in our following experiments, we set parameter µ = 30.
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SR = 0.0564, (b) Lg = 10, SR = 0.1048, and (c) Lg = 5, SR = 0.2048.
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The second group experiments compare the reconstruction performance of the proposed approach
with respect to the state-of-the-art methods for the above three datasets. In these experiments, we give
the changes of MPSNR, MSAM, and MSSIM of several reconstruction algorithms with the sampling
rate. Because the sampling rate is a consistent indicator of compressed sensing references, although
some references describe other forms of sampling rates, such as the number of bands per group Lg, in
this paper, they can be converted to sampling rates indicator. As the sampling rate of the proposed
DCHS depends on Lg, we test DCHS using different values of Lg: 30, 20, 15, 10, 7, 5, 4, 3, corresponding
to different sampling rates. For example, for the Cuprite dataset, the corresponding sampling rates are
0.0416, 0.0564, 0.0732, 0.1048, 0.1469, 0.2048, 0.2575, and 0.3365; for the Urban dataset, the corresponding
sampling rates are 0.0406, 0.0589, 0.0711, 0.1078, 0.1506, 0.2056, 0.2544, and 0.34; for the PaviaU dataset,
the corresponding sampling rates are 0.0388, 0.0581, 0.0677, 0.1061, 0.1446, 0.2022, 0.2503, and 0.3368.

Figure 5 shows the comparison results of MPSNR of different algorithms for different datasets.
For the Cuprite dataset, the proposed DCHS algorithm shows its superiority at low sampling rates. For
example, around 0.05 sampling rate, it is more than 4dB higher than the SpeCA algorithm with the best
performance. However, this advantage gradually diminishes as the sampling rate increases. When the
sampling rate exceeds 0.25, the DCHS algorithm achieves almost the same MPSNR values as the SSHCS.
This is because when the sampling rate is increased, the value of Lg will become smaller, and the
endmember prediction accuracy of key band images will reduce, thereby affecting the reconstruction
performance. In addition, it can be seen from the Figure 5a that CPPCA algorithm fails at low sampling
rate. When the sampling rate exceeded 0.15, the reconstruction performance of CPPCA exceeds that of
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MT-BCS, and SSHCS exceeds that of SpeCA. Although the performance of CPPCA improves rapidly
with the increase of sampling rate, it still lags behind other LMM-based reconstruction algorithms.
For example, the MPSNR of DCHS is more than 5 dB higher than CPPCA with a higher sampling rate.
The results further prove that hyperspectral compressed sensing reconstruction based on LMM, such
as DCHS, SSCR_SU, SpeCA, and SSHCS, is better than the reconstruction algorithms without using
LMM, such as CPPCA and MT-BCS.Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 
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Figure 5. Mean peak signal-to-noise ratio (MPSNR) curves of different algorithms for different datasets:
(a) Cuprite dataset, (b) Urban dataset, and (c) PaviaU dataset.

Similar to the results of the Cuprite dataset, DCHS can still obtain the best reconstruction
performance for the Urban and PaviaU datasets. It is worth mentioning that, unlike the experiment
results of Cuprite and Urban, the reconstruction performance of the DCHS on the PaviaU dataset is
also excellent even at a high sampling rate. It further illustrates the effectiveness of the proposed DCHS
framework. In addition, the MT-BCS algorithm also performs very well on the PaviaU dataset. When
the sampling rate exceeds 0.3, the MT-BCS algorithm is superior to other reconstruction algorithms
except DCHS.

Figure 6 shows the visual qualities of the original and reconstructed pseudocolor images for the
different datasets. The sampling rate is set to 0.0564, 0.0589, and 0.0581 for Cuprite, Urban, and PaviaU
dataset, respectively. It can be seen from the figure that the CPPCA algorithm can hardly recover the
original image near the 0.05 sampling rate. The reconstruction quality of MT-BCS is also very poor.
The compressed sensing reconstruction algorithms based on LMM can recover the original image
better, and the spatial details are well preserved. However, slight color distortion can still be observed
on the PaviaU dataset. This color distortion phenomenon indicates that the LMM-based reconstruction
algorithm has excellent performance in preserving spatial information, but is poor in maintaining
spectral information. The advantages and disadvantages of SSHCS, SpeCA, SSCR_SU, and DCHS
algorithms are hard to distinguish visually. Actually, they have subtle color distortions that make
it difficult for the human eye to distinguish. Therefore, in order to illuminate the visual difference
of reconstructed images achieved by LMM-based algorithms, we demonstrate the residual images
between the original images and the reconstructed images in Figure 7.

Figure 7 shows the residual images at the 28th band of the three datasets. Note that the residuals
of each dataset of all algorithms are amplified at the same scale. The brighter the residual image, the
larger the residual, that is, the worse the reconstruction performance of the algorithm. The results of
Figure 7 clearly demonstrate the effectiveness of the proposed DCHS algorithm. No matter which
dataset, the residual images achieved by DCHS are obviously darker than the other three LMM-based
algorithms. For the Cuprite and Urban datasets, the residual images of SSCR_SU brighter than that of
SSHCS and SpeCA. The residual image of SpeCA is brightest on PaviaU dataset.
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Figure 6. Original and reconstructed pseudocolor images achieved by different algorithms on different
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(b) MT-BCS, (c) CPPCA, (d) SSHCS, (e) SpeCA, (f) SSCR_SU, and (g) DCHS.
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Table 1 illuminates the MSAM by various reconstruction algorithms. It can be seen from the
experimental results that the proposed DCHS algorithm does not always lead with the spectral angle
mapper, which may be caused by the low prediction accuracy of the endmember of key band by DCHS.
A more accurate prediction algorithm may help reduce MSAM, but this is beyond the scope of the
article. Even so, for the Urban dataset, the MSAM at all sampling rates is lower than other algorithms.
For other two datasets, DCHS is still very close to the optimal result. For some specific sampling rates,
DCHS still outperforms the other algorithms.

Table 1. Comparison of mean spectral angle mapper (MSAM) (◦) achieved by the various algorithms
(the best results are in bold).

Lg 30 20 15 10 7 5 4 3

Results on the Cuprite Dataset

SR 0.0416 0.0564 0.0732 0.1048 0.1469 0.2048 0.2575 0.3365

MT-BCS 13.135 6.5641 5.6391 4.4379 3.5327 3.0821 2.8048 2.529
CPPCA 87.408 82.683 63.714 21.502 3.5086 0.9931 0.9064 0.6554
SSHCS 1.8222 0.9963 0.8775 1.1346 0.6602 0.4074 0.387 0.3658
SpeCA 0.8355 0.8227 0.6226 0.5005 0.4706 0.4523 0.4222 0.4079
SSCR_SU 1.7216 1.0615 0.983 0.9051 0.7575 0.6331 0.5846 0.5059
DCHS 0.9694 0.7088 0.6528 0.5735 0.5083 0.4901 0.4537 0.4352

Results on the Urban Dataset

SR 0.0406 0.0589 0.0711 0.1078 0.1506 0.2056 0.2544 0.34

MT-BCS 20.949 12.691 10.356 7.7535 5.5784 3.9322 3.1864 2.241
CPPCA 87.626 73.818 50.011 13.114 4.9118 3.1499 2.3014 1.7288
SSHCS 3.8007 3.5748 3.1717 2.2219 2.0846 1.4805 1.1498 1.0011
SpeCA 3.2096 2.8107 2.5085 2.1831 2.0845 2.0381 1.9604 1.9545
SSCR_SU 8.9135 4.6612 2.94 2.6452 2.3153 2.1638 1.6217 1.3918
DCHS 2.671 2.2361 2.0754 1.533 1.2448 1.1214 1.0631 0.9546

Results on the PaviaU Dataset

SR 0.0388 0.0581 0.0677 0.1061 0.1446 0.2022 0.2503 0.3368

MT-BCS 41.148 15.13 11.286 5.7488 3.6916 2.3748 1.8101 1.2232
CPPCA 88.814 87.689 82.943 59.258 8.9603 3.4445 3.1112 2.357
SSHCS 8.2997 6.0203 4.7841 2.8518 2.3971 1.8155 1.6073 1.4682
SpeCA 4.9424 4.1384 3.3207 2.3286 2.0295 1.809 1.6015 1.5467
SSCR_SU 15.2691 5.7259 5.0558 3.477 2.6279 2.144 1.7809 1.7833
DCHS 5.5415 3.211 3.0072 2.4134 2.2623 2.1816 1.3542 1.1391

The comparison of the original and reconstructed spectral curves is shown in Figure 8.
The sampling rates of Cuprite, Urban, and PaviaU are 0.3365, 0.34, and 0.3368, respectively. We also
provide locally enlarged subgraphs. As the spectral deviation of the MT-BCS and CPPCA algorithms is
serious, these two algorithms are removed from Figure 8 in order to clearly show the contrast effect. As
can be seen from the figure, Cuprite has the highest spectral matching for all algorithm, while PaviaU
has the worst, which is also consistent with MSAM in Table 1. It is possible that the reconstruction
algorithms based on LMM are sensitive to the number of bands; the higher the number of bands, the
better the reconstruction performance.

From locally enlarged subgraphs in Figure 8, the SpeCA algorithm for the Cuprite dataset is the
worst, and the SSCR_CU algorithm for the Urban dataset is the worst. However, the spectral curves
recovered by several algorithms for PaviaU dataset are poor. DCHS and SSHCS are closer to the
original spectral curves. However, this is only a local feature and cannot explain the advantages and
disadvantages of each algorithm. To evaluate the reconstruction algorithm on spectral domain, it is
also necessary to refer to the statistical indicators of all pixels, such as MSAM.
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The experimental results of MSSIM are shown in Table 2, which is similar to Table 1. In most cases,
the proposed DCHS can achieve the highest MSSIM value; although it is not optimal in a few cases, it is
still close to optimal. MT-BCS and CPPCA performed worst in both Tables 1 and 2. The effectiveness
of the LMM-based hyperspectral compressed sensing reconstruction algorithm is further confirmed.

In the last experiment, the runtime is measured in order to compare the computational complexity
of algorithms. Herein, we use the Cuprite dataset to evaluate the speed of the algorithms. Table 3
presents the runtimes of different algorithms on Cuprite dataset. The running time of CPPCA
and SSHCS is on the same order of magnitude, achieving the fastest reconstruction speed. The
computational complexity of MT-BCS, SpeCA, and DCHS is equivalent, and the running time is in the
same order of magnitude.
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The comparison of the original and reconstructed spectral curves is shown in Figure 8. The 
sampling rates of Cuprite, Urban, and PaviaU are 0.3365, 0.34, and 0.3368, respectively. We also 
provide locally enlarged subgraphs. As the spectral deviation of the MT-BCS and CPPCA algorithms 
is serious, these two algorithms are removed from Figure 8 in order to clearly show the contrast 
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From locally enlarged subgraphs in Figure 8, the SpeCA algorithm for the Cuprite dataset is 
the worst, and the SSCR_CU algorithm for the Urban dataset is the worst. However, the spectral 
curves recovered by several algorithms for PaviaU dataset are poor. DCHS and SSHCS are closer to 
the original spectral curves. However, this is only a local feature and cannot explain the advantages 
and disadvantages of each algorithm. To evaluate the reconstruction algorithm on spectral domain, 
it is also necessary to refer to the statistical indicators of all pixels, such as MSAM. 

 
(a)                              (b)                             (c) 

Figure 8. Spectral curves of original and reconstructed achieved by different algorithms. (a) Cuprite 
dataset, (b)Urban dataset, (c) PaviaU dataset. 

Figure 8. Spectral curves of original and reconstructed achieved by different algorithms. (a) Cuprite
dataset, (b)Urban dataset, (c) PaviaU dataset.

Table 2. Comparison of MSSIM achieved by the various algorithms (the best results are in bold).

Lg 30 20 15 10 7 5 4 3

Results on the Cuprite Dataset

SR 0.0416 0.0564 0.0732 0.1048 0.1469 0.2048 0.2575 0.3365

MT-BCS 0.2987 0.6297 0.7213 0.8332 0.91 0.9461 0.9604 0.9729
CPPCA 0.0001 0.0026 0.0191 0.3278 0.9535 0.9862 0.9876 0.9926
SSHCS 0.9624 0.987 0.9855 0.9916 0.9940 0.9962 0.9965 0.997
SpeCA 0.9863 0.9875 0.9912 0.9946 0.9953 0.9956 0.9961 0.9964
SSCR_SU 0.9737 0.988 0.9874 0.9876 0.9896 0.9925 0.9933 0.9949
DCHS 0.9857 0.9888 0.9902 0.9922 0.9938 0.994 0.9949 0.9953

Results on the Urban Dataset

SR 0.0406 0.0589 0.0711 0.1078 0.1506 0.2056 0.2544 0.34

MT-BCS 0.4105 0.614 0.6823 0.7563 0.828 0.8924 0.9158 0.9487
CPPCA 0.0051 0.0332 0.2008 0.6924 0.8842 0.9393 0.9609 0.9734
SSHCS 0.9443 0.9424 0.9314 0.959 0.9558 0.973 0.9832 0.9863
SpeCA 0.9467 0.9474 0.9675 0.9741 0.9754 0.9793 0.9795 0.9804
SSCR_SU 0.8762 0.9344 0.9648 0.9711 0.9742 0.9771 0.9822 0.9839
DCHS 0.9667 0.9722 0.9749 0.9825 0.9857 0.9871 0.9883 0.9901

Results on the PaviaU Dataset

SR 0.0388 0.0581 0.0677 0.1061 0.1446 0.2022 0.2503 0.3368

MT-BCS 0.124 0.4773 0.5716 0.7687 0.8617 0.9239 0.9492 0.9742
CPPCA 0.0068 0.0072 0.0173 0.1254 0.7075 0.9013 0.9154 0.9351
SSHCS 0.803 0.8714 0.8928 0.9445 0.9585 0.9717 0.9755 0.9814
SpeCA 0.8149 0.863 0.8841 0.9341 0.9471 0.958 0.9641 0.9655
SSCR_SU 0.6054 0.8653 0.8354 0.9105 0.9383 0.945 0.9566 0.9565
DCHS 0.861 0.9187 0.92 0.9413 0.9505 0.9572 0.9755 0.9834
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Table 3. Comparison of runtime(s) for the various algorithms on Cuprite dataset.

Lg 30 20 15 10 7 5 4 3

SR 0.0416 0.0564 0.0732 0.1048 0.1469 0.2048 0.2575 0.3365

MT-BCS 19.0391 22.1187 17.7807 25.6069 29.3980 34.6212 43.4569 52.9737
CPPCA 0.1005 0.0627 0.0585 0.1006 0.1066 0.1727 0.2139 0.5978
SSHCS 0.2831 0.1351 0.1269 0.0917 0.1132 0.1012 0.0919 0.0932
SpeCA 15.5695 30.4764 49.2695 58.9999 58.9444 59.8885 57.1876 56.5255
SSCR_SU 4.2837 3.3935 1.2450 3.4530 1.3813 1.2545 1.3005 1.3809
DCHS 33.0788 34.6071 36.2856 34.2655 33.2441 30.8957 29.1711 26.9435

5. Conclusions

In this paper, inspired by DCVS, we proposed a compressed sensing framework for hyperspectral
imagery, called DCHS, which first decomposes hyperspectral data into the CS band and key band
for compressed sampling. To effectively recover original hyperspectral imagery from compressed
data based on the proposed compressed sampling framework, we discarded side information
based reconstruction of DCVS and developed a hyperspectral reconstruction algorithm based on
spectral unmixing for distributed compressed sampling. The reconstruction process is converted
to the estimation of the endmember and its corresponding abundance fraction. A method
combining endmember extraction and prediction was proposed for key band endmembers estimation.
The optimization algorithm of joint abundance sparsity, key and CS band observation data fidelity was
also designed for abundance estimation. By analyzing the experimental results on three real datasets,
we found that the proposed framework is beneficial to reconstruct the original data by LMM. More
notably, the proposed method is able to obtain a more accurate peak signal-to-noise ratio compared to
other state-of-the-art reconstruction algorithms.

However, the proposed DCHS cannot always lead the recovery of the spectral curve. Therefore,
in future work, we will look for accurate endmember prediction algorithms in order to recover the
spectral curve with high precision.
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