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Abstract
Novel Coronavirus 2019 disease or COVID-19 is a viral disease caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2). The use of chest X-rays (CXRs) has become an important practice to assist in the diagnosis of COVID-19 as

they can be used to detect the abnormalities developed in the infected patients’ lungs. With the fast spread of the disease, many

researchers across the world are striving to use several deep learning-based systems to identify the COVID-19 from such CXR

images. To this end, we propose an inverted bell-curve-based ensemble of deep learning models for the detection of COVID-

19 from CXR images. We first use a selection of models pretrained on ImageNet dataset and use the concept of transfer

learning to retrain them with CXR datasets. Then the trained models are combined with the proposed inverted bell curve

weighted ensemble method, where the output of each classifier is assigned a weight, and the final prediction is done by

performing a weighted average of those outputs. We evaluate the proposed method on two publicly available datasets: the

COVID-19 Radiography Database and the IEEE COVID Chest X-ray Dataset. The accuracy, F1 score and the AUC ROC

achieved by the proposed method are 99.66%, 99.75% and 99.99%, respectively, in the first dataset, and, 99.84%, 99.81% and

99.99%, respectively, in the other dataset. Experimental results ensure that the use of transfer learning-based models and their

combination using the proposed ensemble method result in improved predictions of COVID-19 in CXRs.
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1 Introduction

The Novel Coronavirus 2019 disease or COVID-19 caused

by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) is spreading rapidly all over the globe. The

World Health Organization (WHO) declared it as a global

pandemic [1] on March 11, 2020, and as of January 2021,

the virus has infected more than 105,000,000 people

worldwide. Though having a lower mortality rate than its

predecessors, Severe Acute Respiratory Syndrome (SARS)

and Middle East Respiratory Syndrome (MERS), COVID-

19 has killed more than 2,200,000 people worldwide.

The standard and the definitive way to detect COVID-19 is

via Reverse Transcription Polymerase Chain Reaction (RT-

PCR). However, such tests are reported to have a high false-

negative rate [2] and variable sensitivity. So as an alternative

diagnosis method and to determine the progress of the disease

in a patient’s body, chest X-rays (CXRs) and computed

tomography (CT) scans are used [3]. This is due to the fact that

COVID-19 causes visible abnormalities in the lungs which are

visually similar yet often distinct from viral pneumonia [4].

Though chest CT scans have high sensitivity towards pul-

monary diseases, they are not portable and carry a high risk of

exposing health workers and the person under investigation to

the virus. The CXRs being portable are considered to be a safe
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alternative [5] as the person under investigation can be imaged

in a more isolated environment, thereby lowering the risk of

spreading the virus. Although a vaccine has been developed, it

will take time to vaccinate the entire world population, espe-

cially in developing countries [6].

With the recent developments in data-driven Deep

Learning (DL), various DL models like convolutional neural

networks (CNNs) are being used extensively to study med-

ical images [7]. CNNs are achieving state-of-the-art perfor-

mances in classification into disease classes for diagnosis

and also in segmentation of the region of interest (ROI) in

medical images. This is enabled by the fact that CNNs can

learn local features very accurately from a given medical

image which can be a CT scan or a CXR. Combining outputs

of multiple classifiers to generate the final output is a popular

approach to enhance the performance of classification. The

combination of ensemble algorithms works on the output

scores of the individual classifiers, which may have different

architectures to capture different elements of data or differ-

ent input vectors generated from the same data instance [8].

Existing popular rank level or confidence score level

ensemble methods like majority voting, sum-rule (soft vot-

ing) [9] focus on a linear combination of the classifiers’

outputs to generate the final prediction, lacking any consid-

eration of the output vector quality.

In this paper, we propose a novel weighted average

ensemble method to combine the confidence scores of

various pretrained CNN models to achieve better perfor-

mance in detecting COVID-19 from CXR images. The

inverted bell curve is used to assign weights to the classi-

fiers’ outputs. The more we move further from the centre of

the bell we attain higher weight values, and thus the shape

of the inverted bell is utilized to calculate the weight for an

output vector. Both the classifiers’ output quality and the

overall performance of the classifiers are considered,

thereby providing a more justifying combination of clas-

sifier outputs. Transfer learning is used where the CNN

models are first pretrained on a huge dataset to learn basic

image-related features. Then they transfer the knowledge

with some fine-tuning to classify CXR images to help the

medical practitioners in the diagnosis of COVID-19. We

highlight the benefits of the proposed inverted bell-curve-

based ensemble method to improve the accuracy and

robustness of these transfer learning models.

To summarize, the contributions of this work are as

follows:

1. We propose an ensemble of transfer learning models to

classify CXR images to detect COVID-19.

2. We propose a novel ensemble method that uses an

inverted Bell curve to assign weight to the output of the

classifiers and performs weighted average to obtain the

final output vector.

3. The proposed approach is evaluated on COVID-19

Radiography Database [10] and IEEE COVID Chest

X-ray Dataset [11] and state-of-the-art results are

obtained.

The remaining paper is structured as follows: Sect. 2 pro-

vides a quick review of the past methods related to the

research topic under consideration. In Sect. 3, we discuss

the proposed approach. Section 4 presents the results fol-

lowed by a brief discussion on the same. We end with

concluding remarks outlining some future research plans in

Sect. 5.

2 Related work

Several methods such as transfer learning, ensembling,

etc., have been proposed in the literature to improve the

performance of the DL models. More recently, researchers

have applied these techniques in several domains of image

processing like facial expression recognition [12], image

fusion [13], malware classification [14], etc. Such methods

have also been used in the medical image processing

domain. A recent work by Dolz et al. [15] uses CNN

ensembles for infant’s brain MRI segmentation. Another

work by Efaz et al. [16] uses deep CNN supported

ensembles for computer-aided diagnosis of malaria. Savelli

et al. [17] have also developed a similar method for small

lesion detection. It is, therefore, logical that similar meth-

ods have also been applied for COVID-19 detection. We

highlight a few such works below.

Gianchandani et al. [18] have also used an approach

where they use transfer learning and ensembling to

improve the performance of their DL models. The authors

have considered the VGG16, ResNet152V2, Incep-

tionResNetV2 and DenseNet201 models in their work

which are trained using transfer learning. The authors then

show that a deep neural ensembling provides better results

when compared to each of the models. The work utilized

two datasets for training the DL models. The first one was

obtained from Kaggle and used for binary classification.

The second one was collected by a team of researchers in

collaboration with doctors and was used for multi-class

classification. It contained 1203 CXRs equally split among

the 3 classes of COVID affected, normal and pneumonia

affected, respectively. The accuracy and F1 scores are

reported as 96.15% and 0.961 for the binary classification

task, and as 99.21% and 0.99 for the multi-class classifi-

cation task, respectively.

A recent work by Ouyang et al. [19] also utilizes

ensembling. The authors have developed a dual-sampling

attention network to detect COVID-19 in CT scan images.

To deal with the imbalance in the distribution of the
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infection regions in the lungs, a dual-sampling strategy was

used. Two separate 3D ResNet34 models were trained

using different sampling strategies, and finally, the pre-

dictions were combined using weighted average ensem-

bling. For training and validation, a dataset consisting of

2186 CT scans from 1588 patients was used. For the testing

stage, another independent dataset comprising of 2796 CT

scans from 2057 patients was used. The AUC, accuracy

and F1 score values are reported as 0.944, 87.5% and

82.0%, respectively, on the testing dataset.

Similarly, in [20], the authors have used ensembling and

iterative pruni ng to improve the classification results of

their DL models. Four publicly available CXR datasets are

used in the work. One pneumonia-related dataset was used

for modality-specific training before training on the

COVID-19 CXRs. The idea is that training on a similar

dataset of CXRs will be beneficial for the DL models. The

authors report their accuracy and AUC as 99.01% and

0.9972, respectively.

Zhang et al. [21] have used two-stage transfer learning

and a deep residual network framework for the classifica-

tion of CXR images. The authors used pretrained ResNet34

model and fine-tuned the model on a large dataset of

pneumonia CXR images. The authors then used a feature

smoothing layer and a feature extraction layer and utilized

them along with layers transferred from the fine-tuned

ResNet34 model. A fully connected layer at the end of the

network produces the final output. The authors used two

datasets of CXR images, one with 5860 images which were

used for the first stage of training and the other one with

739 images which was used for the later stage. The testing

accuracy is reported as 91.08 % by the authors.

Jaiswal et al. [22], in their work, have utilized transfer

learning in DL models to detect COVID-19 in CT scan

images. The authors have used the ImageNet dataset for

pretraining and the SARS-CoV-2 CT scan dataset for

training the models. The authors have observed that the

DenseNet201 model performs the best as compared to the

VGG16, ResNet152V2 and InceptionResNetV2 models.

The training, testing and validation accuracies are reported

as 99.82%, 96.25% and 97.40%, respectively.

Recently, several works ([23, 24]) have also been pro-

posed which make use of optimization algorithms along

with DL for COVID-19 detection. The work by Goel et al.

[25] introduced an optimized CNN termed as OptCoNet for

the purpose of COVID-19 diagnosis from CXRs. The

proposed CNN model consists of feature extraction com-

ponents and classification components as usual. However,

the hyperparameters of the CNN (like learning rate, num-

ber of epochs, etc.) have been optimized by using the Grey

Wolf Optimization algorithm. A dataset comprising of

2700 CXRs collected from various public repositories was

used. There were three classes in all: COVID affected,

pneumonia affected and normal, with 900 X-rays belong-

ing to the COVID affected class. The authors have reported

the accuracy, sensitivity, specificity and F1 score values as

97.78%, 97.75% 96.25% and 95.25%, respectively.

Ezzat et al. [26] also use a similar approach where they

have used the Gravitational Search Algorithm to choose the

optimal hyperparameters for a DenseNet121 CNN model.

The authors go on to show that such a method performs

better than the state-of-the-art InceptionV3 model. In the

work, a combination of two datasets, the Cohen dataset and

the Kaggle Chest X-ray Dataset, has been used. The final

dataset contained 99 COVID-19-positive X-rays and 207

COVID-19-negative X-rays which also included some

other diseases like pneumonia, SARS, etc. in addition to

normal X-rays. The authors have reported the accuracy and

F1 score of their method as 98.38% and 98%, respectively.

The availability of a large quantity of training data is

also required for the success of DL models. However, in

the emerging domains, there is often a lack of training data.

Waheed et al. [27] have proposed an auxiliary classifier

generative adversarial network (ACGAN)-based model

termed as COVIDGAN to tackle this issue. The authors

have used a dataset consisting of 1124 CXRs of which 403

are COVID-19 infected, and the rest are normal. It has been

derived from 3 open-sourced datasets. The authors have

shown that including the synthetic images generated by

COVIDGAN in a VGG16 classifier improves the perfor-

mance of the model. The accuracy, F1 score, sensitivity

and specificity improve to 95%, 0.95, 90% and 97%,

respectively, from 85%, 0.85%, 69% and 95%,

respectively.

2.1 Research gap

As highlighted in the previous section, ensembling-based

approaches are widely used in different image classifica-

tion tasks among others. They have also been used in a few

methods proposed for COVID-19 detection. The most

common techniques used include summation, majority

voting, averaging and weighted averaging of the predic-

tions obtained from the classifiers considered for forming

the ensemble. These approaches provide a significant

improvement in performance in most cases. However, an

important observation is that these methods do not consider

the quality of the predictions while producing the output.

These techniques simply apply the corresponding operation

to obtain the output. We may also choose to use some

secondary classifiers [28] which can make use of some

learning algorithms. This learning process is based on the

optimization of some metrics like accuracy or F1 score. For

example, the work by Gianchandani et al. [18] mentioned

previously uses a neural network-based secondary classi-

fier. Applying the similar technique in our experimental
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setup does not produce a superior result. This secondary

classification stage also does not give any separate treat-

ment based on the quality of the predictions, which may

explain the previous observation.

In many cases, it has been observed that classifiers

obtain high accuracy on a particular task even if the quality

of the predictions is inferior. Here, we assume the accuracy

to be the fraction of correctly predicted classes where each

prediction is the class with the maximum probability as

predicted by the model under consideration. By quality, we

refer to the difference among the predicted probabilities.

This is to some extent a metric to measure the confidence

of the model. For example, between two classifiers with

predicted class probabilities as [0.8, 0.1, 0.1] and

[0.4, 0.3, 0.3], we would prefer the former classifier. In

terms of the accuracy viewpoint mentioned previously,

both would produce the same output. However, from the

quality viewpoint, the first classifier would be preferred

since it predicts the class with high confidence. The dif-

ferences in probability scores of the predicted class (0.8)

with the other classes (0.1 and 0.1) are very high. The

second classifier is said to be unsure of the prediction since

the differences in scores of the predicted class (0.4) with

the other classes (0.3 and 0.3) are very low. Its output is

very close to the uniform random prediction of

[0.33, 0.33, 0.33]. Hence, we would consider the first

classifier as the better one, since the difference between the

probabilities of the predicted class and the other classes is

minimal.

In the present work, we use the inverted bell curve in

order to minimize this issue. The aim is to introduce some

robustness in the ensembling process while improving

classification accuracy at the same time.

3 Proposed approach

This section describes the methods used in this study. All

these methods put together to create the proposed analysis

pipeline whose block diagram is shown in Fig. 1.

3.1 Preliminaries

In the domain of computer vision, CNNs have proved to be

the best tool by achieving excellence in a wide array of

research problems including image classification, object

detection, image segmentation, etc. The convolution layer

does most of the computation. These layers convolve the

input with a filter and pass it to the next layers as the

output. Like the former, pooling layers do not have any

weights associated with them. The pooling layers help to

reduce the dimensions of the intermediate feature maps

before they are passed through the activation function.

Although this downsampling strategy using pooling layers

loses some data, it helps in preventing overfitting and

reduces the complexity of the overall network. The final

convolution layer is generally followed by a fully con-

nected network (FC), where all the neurons in one layer are

connected to the outputs of the previous layer.

Activation functions are used to introduce nonlinearity

in neural networks. The activation functions that we have

used include: Rectified Linear Unit (ReLU), Softmax and

Sigmoid. Practically, ReLU has been found to be better as

compared to sigmoidal functions for intermediate activa-

tion in a network. It speeds up the convergence of

stochastic gradient descent (SGD) and also reduces the

vanishing gradient problem.

Dropout [29] is a method of regularization and is fre-

quent used in CNNs. Normally, overfitting is a major

Densenet-161

Resnet-18

VGG-16

Inverted Bell-
curve Based

Ensemble
Final Prediction

CXR Images Transfer Learning
Confidence

Score Ensemble Output

Final Output
Vector

Fig. 1 Graphical representation of the proposed ensemble method used for detecting COVID-19 from CXR images
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problem in deep networks with a large number of param-

eters. Dropout randomly drops neurons along with their

connections from the entire network. This prevents neurons

from co-adapting too much and can be considered to be a

form of model averaging but for neural networks. Batch

normalization [30] is a method used to make the training of

neural networks faster and more stable by reducing internal

covariate shift. This is achieved by normalization of the

layer inputs by recentring and scaling.

3.2 Transfer learning

In general, CNNs require a large amount of data for their

training and also for the generalizability of the trained

model. On smaller datasets, there is the risk of overfitting,

where the model tries to remember the training data and the

corresponding output. As a result, it cannot handle input

samples outside of the training dataset. This is especially

relevant for the deeper and more complex models. Nowa-

days, CNNs are rarely trained from scratch. Transfer

learning is applied where the model is first trained on a

much larger dataset like ImageNet. Thereafter, the model is

trained on the dataset for the task under consideration with

a low learning rate. Recently, this concept has been suc-

cessfully applied on various complex image processing

tasks including medical image analysis. We use the same

technique in this work.

Here, we consider three widely used and standard CNN

models as the base learners of the proposed ensemble

approach which are VGG-16 [31], ResNet-18 [32] and

DenseNet-161 [33]. We choose this particular set of

models as these models are able to pay attention to the

different regions at an image that can produce better results

with the ensemble (refer to Sect. 4.3). Along with that

among all the combinations tried, the ensemble of these

three models produces the best result, as shown in Table 4.

We train them to obtain the confidence scores for the

classes present in the dataset under consideration. The

models are first pretrained on the ImageNet dataset. Then

the models are trained for 20 epochs using the SGD opti-

mization algorithm with a learning rate of 0.001.

The VGG [31] is one of the simpler and older CNN

architectures first proposed by Simonyan and Zisserman. It

consists of convolutional, pooling and fully connected

layers. The last layer has a softmax activation and produces

a 1D tensor with a dimension equal to the number of

classes.

The ResNet [32] architecture was first proposed to deal

with the vanishing gradients problem that occurs when

training very deep networks. It consists of skip connections

in-between consecutive layers which reduce this problem

to a great extent. This is highlighted in Fig. 2. The identity

path provides an alternative route for the gradients to flow

through.

The DenseNet [33] architecture is also similar to the

ResNet architecture. While ResNet adds skip connections

between layers, DenseNet adds dense connections in-be-

tween layers. The output of a particular layer is directly

connected to all subsequent layers of the network. This is

highlighted in Fig. 3. The addition of these direct con-

nections improves the parameter efficiency of the model

while reducing redundancy at the same time. It also allows

an improved flow of gradients through the network, similar

to ResNet.

3.3 Classifier combination methods

It is a popular approach to combine two or more classifier’s

output using some combination or ensemble function to

generate the combined output. The outputs of one single

classifier can be represented as a vector where the dimen-

sion of the vector is the same as the total number of classes

the classifier is trained to predict. So the problem of

combination can be defined as to generate an N-dimen-

sional vector from M such N-dimensional vectors (Fig. 4),

where N is the total number of classes and M is the total

number of classifiers and the ensemble function should

minimize the amount of misclassification.

To build an ensemble function f in order to combine

classifiers output we can consider two approaches. The first

one is to take the outputs from the classifier and run some

machine learning-based algorithm to generate the final

output vector. So in other words the ensemble function

S
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Input

Weight Layer

ReLU

Weight Layer
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x

F(x)
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Fig. 2 A pictorial representation of the skip connections in the ResNet

architecture. Modified from [32]
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works as a secondary classifier that takes the outputs of the

primary classifiers as input. Dar-Shyang Lee proposed

neural networks [35] to generate the combination output

using the output vectors generated from individual classi-

fiers. So in this way, f can be a neural network, support

vector machine (SVM) or any other machine learning

algorithm used for classification.

The other approach is to define f as simple functions

such as sum, average or weighted average. In this way

instead of learning from the outputs of the classifiers, it

considers the output score or even the output prediction

(argmax of the output vector) to generate the combined

output vector.

The ensemble function f can operate on any level of the

classifiers. So instead of using classifiers as class predictors

we can use them as a feature extractor and execute f on this

level. This concept makes more sense when learning

algorithms are used as the ensemble function. Now dif-

ferent classifiers might learn some features better than

other ones and f as the secondary classifier can learn those

features. The ensemble function can also operate on output

or confidence score level where it is not required to pass

any architectural or feature-based knowledge of the clas-

sifiers to f. Score level combination is used popularly

because it allows the combination of classifiers of different

architectures.

3.3.1 Majority voting

This is a straightforward voting method that only considers

the predicted classes of the classifiers and chooses the most

frequent class label as the final output from the whole

output set. One major drawback of this voting may result in

a tie. Though Ho et al [9] discuss tie-breaking methods,

generally the number of classifiers are taken as odd while

using this method.

3.3.2 Sum rule (Soft voting)

Let us consider output of some ith classifier (i 2 ½0; k�) is

oi ¼ ½s0
i ; s

1
i ; :::; s

C
i � where sji is the confidence score of jth

class (j 2 ½0;C�). Now define majority as summation of the

vectors s0i where s0ki is 1 if only argmaxjs
j
i ¼ k, any other

value is 0. So if the final output vector Y ¼ ½Y0; Y1; :::; YC�
is produced by majority voting then

Yj ¼
Xk

i¼0

s0
j
i ð1Þ

We can simply use the concept of summation with only

using sji by doing

Yj ¼
Xk

i¼0

sji ð2Þ

This method is also known as soft voting as we include the

concept of voting but instead of only considering predic-

tions, the confidence score is considered. We can further

perform average or some normalization on the output

values.

BN + ReLU + Conv

BN + ReLU + Conv

BN + ReLU + Conv

x0

x1

x2

x3

Fig. 3 A pictorial representation of the dense connections (colored

edges) in the DenseNet architecture. Modified from [33]
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1
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Score 1

Score 2
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Fig. 4 A pictorial description of the concept of the classifier

combination in general. Modified from [34]

Neural Computing and Applications

123



3.3.3 Borda count

This method is a voting technique that works on the rank

level of the classifiers [37]. The confidence score sji in each

classifier’s output is assigned with a rank rji in such a way

that the highest score value gets the lowest rank value. In

Borda count, the rank values are added to get the combined

rank output R ¼ ½R0;R1; :::;RC�.

Rj ¼
Xk

i¼0

rji ð3Þ

The final class is predicted by performing argmin on R. To

enhance the method a weight value wi is attached to each

classifier, which can be calculation by logistic regression

[38] and the final rank is counted by taking the weighted

sum.

3.4 Proposed method: inverted bell curve
weighted ensemble

This section presents the mathematical formulation of the

proposed ensemble methods. Let there be C classes in

dataset and k classifiers trained on the dataset. In this paper

value of k is taken is 3 but k can take any finite value. Let sji
be the confidence score for jth class predicted by the ith

classifier. The confidence scores are the output of softmax;

hence, the output of some ith classifier will follow:

XC

j¼0

sji ¼ 1 where sji 2 ½0; 1� ð4Þ

Now weight is assigned to each of the classifiers output

using inverted bell curve function which is a function in

form of

f ðxÞ ¼ 1

a
exp

ðx� bÞ2

2c2

 !
ð5Þ

The function f(x) is also known as the inverted bell cur-

ve (see Fig. 5). The inverted bell shape is particularly

useful to implement this weighted averaging scheme. It can

be observed that the shape of f(x) is more round at the

bottom than any equivalent parabolic curve. We hypothe-

size that this helps in penalizing a wider range of low

confidence score values, resulting in a better ensemble.

The parameter a is inversely proportional to the depth of

the inverted bell. The value of a gets closer to 0 the bottom

of the curve comes nearer to the x-axis. The parameter b

controls the position of the centre of the curve bottom. At

x ¼ b, we can achieve the minimum value of f(x) where

a[ 0. The parameter c determines the width of the bell.

Let us consider the point x ¼ b, where f(x) has its

minima given a[ 0, so as x is incremented or decremented

we will get higher values of f(x), similar amount at both

direction due to the fact that ðx� bÞ term is squared in the

equation. This very idea is used in the context of assigning

weights to the outputs of each classifier.

Let us consider two independent classifiers P and Q

produce [0.8, 0.1, 0.1] and [0.5, 0.3, 0.2] as output confi-

dence scores for some input X. Though both of these

classifiers predict the X belongs to class-0, the classifier P

does it more confidently. Therefore, while doing the

weighted average of these scores, we must assign more

weight to the classifier P for this output. In doing so, the

property of f(x) discussed above is used. Let the minima of

f(x) be at x ¼ 0:5, then we will get higher values of f(x) as

we get closer to 0 or 1 because these are respectively lower

and upper bounds for sji. It can be easily shown that minima

of f(x) exists at x ¼ b. So the value of b is taken as 0.5 to

satisfy our requirement. The value of c determines the

range of the weights and it is chosen as 0.5 experimentally.

There may arrive a situation when some classifiers

having very poor performance metrics over a dataset but

for some instances it produces the outputs confidently.

Therefore, without suppressing the classifiers’ impacts

completely, we aim to weaken its contribution in the

ensemble output, and we consider the accuracy of the

classifier by taking a ¼ 1=Ai; in f(x), where Ai is the

accuracy for the ith classifier. So the weight wi assigned to

the output of ith classifier is

wi ¼ Ai �
XC

j¼0

f ðsjiÞ where ð6Þ

Fig. 5 The plot of the function f(x) from Eq. 7 Here it can be observed

that we have higher value of the weight as we approach both 1 and 0.

So more weight is assigned to an output of a classifier when it not

only classifies the correct class with highest confidence but also shows

confidence that the sample data does not belong to the incorrect class

with lower s value
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f ðxÞ ¼ expððx� 0:5Þ2

0:5
Þ ð7Þ

The final output ½Y0; Y1; :::; YC� is generated by taking the

weighted average of confidence scores across k classifiers

using wi, where

Yj ¼
1

k
�
Xk

i¼0

wi � sji ð8Þ

We can further apply softmax on the calculated Y to nor-

malize the output scores and obtain the final class proba-

bility. Finally, the class f is predicted from this output as

f ¼ argmaxjfYjg ð9Þ

Table 1 shows an example of the proposed ensemble

method where we take C ¼ 3 and k ¼ 3 and calculate with

output confidences of these classifier.

4 Results and discussion

4.1 Dataset used

The proposed method is evaluated on two publicly acces-

sible datasets of CXR images:

1. COVID-19 Radiography Database [10] - This dataset is

comprised of 1,341 Normal, 1,345 Viral Pneumonia

and 219 COVID-19 positive CXR images. This is also

known as the Kaggle dataset.

2. IEEE COVID Chest X-ray Dataset [11] - This dataset

contains 563 COVID-19 positive CXRs and 283 CXRs

which are not diagnosed as COVID-19. As this dataset

size is very small, image rotation is applied as a data

augmentation technique to avoid over-fitting during

model training. This dataset is also known as the

Cohen dataset.

4.2 Performance metrics

In this section, we first highlight the performance metrics

that are used in the present work. Before defining the

metrics, we define true positives, true negatives, false

positives and false negatives in the context of classification.

Thereafter, we mention the metrics.

The number of true positives TP denotes the number of

items belonging to a particular class that are correctly

predicted as belonging to that class.

The number of true negatives TN denotes the number of

items not belonging to a particular class that are correctly

predicted as not belonging to that class.

The number of false positives FP denotes the number of

items not belonging to a particular class that are incorrectly

predicted as belonging to that class.

The number of false negatives FN denotes the number of

items belonging to a particular class that are incorrectly

predicted as not belonging to that class.

Accuracy represents the fraction of labels that the model

predicts correctly. It can be represented mathematically by

Eq. 10. Oftentimes, it is represented in the percentage form.

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð10Þ

Precision is the ratio of the number of items correctly

predicted as belonging to a class to the total number of

items predicted as belonging to that same class. It can be

mathematically represented by Eq. 11.

P ¼ TP

TPþ FP
ð11Þ

Recall is the ratio of the number of items correctly pre-

dicted as belonging to a class to the total number of items

belonging to that same class. It can be mathematically

represented by Eq. 12.

Table 1 Example of the

proposed ensemble method in

comparison with sum-rule

method (with average)

Classifier Accuracy Output Calculated Weight Weighted output

1 0.91 [0.97,0.03,0.0] 4.331 [4.201,0.129,0.0]

2 0.95 [0.22,0.55,0.23] 3.165 [0.696,1.741,0.728]

3 0.95 [0.0,0.72,0.28] 3.659 [0.0,2.635,1.025]

Weighted average [1.633,1.502,0.584]

Normalized score [0.449,0.394,0.157]

Predicted class class-0

Predicted class with sum-rule class-1

The weights are calculated using Eqs. 6 and 7. Then the weighted average is calculated using Eq. 8. The

normalized scores the softmax output of weighted average. When the combination of the output scores is

done by just averaging the score values, we get final output close to [0.39,0.43,0.18] denoting class-1 to be

the final prediction, while the proposed method considers the confidence scores shown by the output of

classifier-1 and reflects it in the final prediction
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R ¼ TP

TPþ FN
ð12Þ

F1 score is the harmonic mean of precision and recall. It

can be mathematically represented by Eq. 13.

F1 ¼ 2
P� R

Pþ R
ð13Þ

A receiver operating characteristics (ROC) curve is a

graphical plot that highlights the performance of a classifier

at different thresholds. It is created by plotting the TP rate

against the FP rate. The area under the curve (AUC) pro-

vides a metric for judging the performance of a classifier.

The AUC value lies in the range [0.5, 1] with a value of 0.5

denoting the performance of a random classifier and a

value of 1 representing a perfect classifier. Hence, the

higher the AUC, the better is the classifier’s performance.

4.3 Experimental results

The CXR images from the COVID-19 Radiography

Database are trained on pretrained Denenet-161, ResNet-

18 and VGG-16 separately with no frozen layers. This is a

multi-class classification with the classes: ‘COVID-19’,

‘Normal’, and, ‘Viral Pneumonia’. The validation split

used in this training is 0.2. The models are trained up to

100% training accuracy and no overfitting has been

observed. The model accuracy, F1 score and AUC ROC

calculated on the test set are shown in Table 2. The com-

putation times of the transfer learning models are reported

in Table 3. The proposed ensemble method is applied with

the confidence score obtained from the trained classifiers

and the metrics calculated based on the output of the

ensemble are also shown in Table 2. Figure 6 shows the

confusion matrix for this dataset on the test set. It is clearly

observed that the proposed ensemble method has increased

the accuracy significantly.

To determine the value of the parameter c in the Eq. 5,

we have tested with multiple values of c[ 0. Figure 7

shows the ensemble accuracy achieved for different values

of c on the COVID-19 Radiography Database. We chose to

proceed with the value c ¼ 0:5 as it achieves the highest

accuracy.

For hyperparameter optimization, we use the grid search

method. Figure 8 shows the accuracy score on the Radio-

graphy Database dataset for different values of batch size

and learning rate. The accuracy shown in the figure is the

proposed ensemble accuracy on the test set. When the

learning rate is large, the model arrives on a sub-optimal

Table 2 Evaluation metric on COVID-19 Radiography Database

Model Accuracy(%) F1 score(%) AUC(%)

DenseNet-161 98.97 99.25 99.63

ResNet-18 98.11 98.02 99.07

VGG-16 98.11 98.02 99.07

Proposed 99.66 99.75 99.99

Fig. 6 Confusion matrix for COVID-19 Radiography Database

Fig. 7 Effect of weight function parameter (c) on accuracy(in %) of

the model. The arrows indicate the maximum accuracy obtained by

the model

Table 3 Computation time to train each individual transfer learning

models

Model Epochs Time

DenseNet-161 20 45m 44s

ResNet-18 20 33m 46s

VGG-16 20 34m 13s
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final set of weights and due to large step size arriving on

further optimal stages is not possible. With a small learning

rate, there is always a possibility of reaching a locally

optimal set of weights instead of the global one. So we

observe worse performance for higher and lower values of

learning rate. We can also observe that a smaller batch size

produces better results due to the small size of the dataset

used in this study.

For the experimentation, multiple ImageNet pretrained

models are trained and tested on the CXR images and we

have also tried all possible combinations of the models

using the proposed ensemble method. Table 4 shows the

Accuracy and F1 Score obtained on the said databases for

the models and some of their combinations. Though the

table clearly shows that the proposed ensemble method

gives better performance than individual models for all of

the combinations considered, we have decided to continue

with DenseNet-161, VGG-16 and ResNet-18 as their

combination produces the best result.

All the available architectures of the pretrained models

have been taken under consideration for the experiment

purpose. We choose the architectures that produce good

results with low training time. Figure 9 shows the test

accuracy on COVID-19 Radiography Database for differ-

ent model architectures. Shortened names of model archi-

tectures are used in the mentioned figure such as R34 for

ResNet34, V16 for VGG16 etc. An increment in the depth

of a CNN model does not always guarantee better perfor-

mance, we can observe that in the figure where VGG16

outperforms VGG19 by a tiny margin but DenseNet 161

outperforms DenseNet121. For ResNet architectures, we

can observe that ResNet50 produces better accuracy than

ResNet18 and ResNet34, but the time required to train

ResNet50 is much higher than the other two. Though

ResNet34 and ResNet18 perform similarly on this dataset,

we continue with ResNet18 due to its faster training time.

The IEEE COVID Chest X-ray Dataset is similarly

trained on the previously mentioned pretrained models.

This is a two-class dataset with ‘COVID’ and ‘Non-

COVID’ as classes. Table 5 shows the accuracy, F1 score

and AUC ROC calculated from the trained models and

ensemble of these three. Figure 10 shows the confusion

matrix for this dataset.

Fig. 8 Effect of learning rate on the model’s accuracy for different

batch sizes

Table 4 Performance metrics for various pretrained model on

COVID-19 radiography database

Models Accuracy(in %) F1 score

DenseNet-161 (1) 98.97 99.25

ResNet-18 (2) 98.11 98.02

VGG-16 (3) 98.11 98.02

Alexnet (4) 97.94 97.75

Inception-v3 (5) 98.80 98.78

1?3?4 99.31 99.26

1?2?4 99.31 99.26

11213 99.66 99.75

2?3?5 99.49 99.34

1?2?3?5 99.49 99.34

1?2?3?4 99.31 99.26

1?2?3?4?5 99.49 99.34

Bold text suggests the best performance obtained within the table.

Ensemble combinations are denoted by the model numbers concate-

nated with ‘?’ signs

Fig. 9 Pretrained Model Architecture vs Test Accuracy(in %). Only

the initial letter and the numeric part of the architecture have been

used to shorten the name. R, V and D stands for ResNet, VGG and

DenseNet, respectively, as such, R50 denotes ResNet50
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Table 6 shows the comparison between the popular

ensemble techniques and the proposed method on of the

datasets mentioned in this paper.

We observe from Tables 2 and 5 that the present

approach achieves the best results on both datasets. On the

first dataset, the DenseNet-161 model produces the best

performance and has a 99.66% accuracy. On the second

dataset, the VGG-16 model achieves the best results and

has an accuracy of 99.75%. However, the present ensem-

bling approach outperforms both the above and achieves

accuracy values of 99.66% and 99.84%, respectively, on

the two datasets. This demonstrates the robustness of the

model as compared to the three state-of-the-art CNNs

considered for comparison.

In addition to the above, Table 6 also highlights the

performance with some ensembling techniques that have

been used in some recent works on COVID-19. As men-

tioned previously, these do not take into account the quality

of the classifier predictions. It can be seen that the present

approach also provides better results than all these

ensembling techniques. This can be attributed to the fact

that the present method favours the classifiers that predict

classes with higher probabilities.

We also experiment on Kaggle Pneumonia Dataset to

prove the robustness of the proposed method. This dataset

contains 2530 Bacterial Pneumonia, 1345 Viral Pneumonia

and 1341 Normal CXR images. Table 7 shows the test

accuracy achieved with base models and proposed

ensemble. It can be observed that the proposed method

significantly increases the performance of the best accu-

racy. Hence, we can safely claim that the inverted Bell

curve based ensemble method can be explored in future in

other domains.

4.4 Discussion

DL-based models like CNNs generally provide better

performance than conventional white-box machine learn-

ing models techniques like regression, decision trees, etc.

However, it is to be noted that DL-based models are black-

box models in general. It is difficult to obtain explainability

for the predictions which may be important in certain fields

like medical image processing. Here, medical professionals

want a prediction to come from the relevant artefacts

present in the input image (X-Ray, CT scan, etc.) and not

from irrelevant parts of the image like the background.

The work reported in [48] is one such work that provides

an explainable machine learning approach for EEG-based

brain-computer interface systems. In this work, the core

prediction is performed using a CNN model. To introduce

explainability in the system, the authors have used occlu-

sion sensitivity analysis along with saliency maps seg-

mentation through k-means clustering. Occlusion

sensitivity analysis is a simple approach where patches of

Table 5 Performance evaluation (in %) on IEEE COVID Chest X-ray

Dataset

Model Accuracy F1 score AUC

DenseNet-161 99.59 99.51 99.57

ResNet-18 99.59 99.51 99.57

VGG-16 99.75 99.71 99.79

Proposed 99.84 99.81 99.99

Table 6 Accuracy (in %) over different ensemble techniques

Ensemble methods Radiology dataset IEEE dataset

Borda count 98.11 99.59

Majority voting 98.97 99.59

Sum-rule 98.97 99.59

Proposed 99.66 99.84

Table 7 Evaluation metric on Kaggle Pneumonia Dataset

Model Accuracy(in %)

DenseNet-161 83.52

ResNet-18 83.14

VGG-16 83.71

Proposed 86.11

Fig. 10 Confusion matrix for The IEEE COVID Chest X-ray Dataset
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the input image are occluded using a mask and the effect

on the output is observed. This is used to infer the regions

of interest.

The work in [49] is another work where the authors have

introduced explainability in a machine learning framework.

They have evaluated their approach for Glioma Cancer

prediction and have shown a comparable performance with

black box methods with the added advantage of explain-

able predictions. Besides, the work reported in [50] is a

recent method, where an explainable deep learning

framework has been presented for COVID-19 diagnosis in

chest X-rays. The authors have utilized the Grad-CAM

approach for obtaining explainability from their CNN base

learners.

In the present work, we use Grad-CAM [39] to capture

the region of attention for the three models used in this

study. The idea behind Grad-CAM is to calculate the

weighted average of the feature maps obtained from a

particular layer in a model where the weights are the gra-

dients of the feature maps calculated on the predicted class

score. We choose the final convolution layer for Grad-

CAM as it is considered to have the best compromise

between detailed spatial information and high-level

semantics [39]. In Fig. 11, the superimposed image of the

Grad-CAM mask and the input CXR is shown. The rows in

the image grid correspond to VGG-16, ResNet-18 and

DenseNet-161, respectively, from top to bottom. Each

column represents the same input CXR. The region of

interest is shown as red spots in the figure. It can be

observed that different models put attention on different

regions of the same CXR which can prove to be useful for

the combination of these models.

Figure 11 also shows that the regions of attention of the

models are near the upper respiratory tract and alveolar

lobes. The initial effects of SARS-CoV-2 are generally

found in the upper respiratory tract. Further development of

the virus results in fibrin accumulation on the alveolar

region causing reduced gas exchange in the lung. The

models individually pay attention to small and different

regions looking for the textural changes caused by this

fibrin accumulation [42]. So the proposed ensemble of

these models can help in considering all of these textural

changes found in the chest X-rays.

Table 8 compares the proposed method with some

recent works in the same domain. Tang et al. [44] imple-

ment an ensemble of multiple snapshot models of COV-

IDNet [40] on the COVIDx Dataset. The authors use a

weighted ageing ensemble technique to combine the

snapshot models. Qiao et al. [45] use focal loss bases

neural ensemble on a combined dataset of IEEE COVID

Dataset and a Kaggle Pneumonia Dataset. Chowdhury

et al. [47] use an ensemble of a number of EfficientNet

snapshots on COVIDx dataset. Turkoglu et al. [46] apply

Relief feature selection algorithm to select deep features

from transfer learned AlexNet. This method is evaluated on

a combined dataset made up of three public datasets.

4.5 Error case analysis

Table 9 shows a failure case encountered with the proposed

method. Upon careful observation, it can be found that all

of the predictions from the base learners are very weak.

Not a single model has a confidence score over 60% for

their predicted labels. Though the VGG network predicts

the correct label, it has the lowest confidence score among

all the other prediction confidences. Our method is unable

to emphasize such low confidence score leading to incor-

rect prediction.

Figure 12 shows the Grad-CAM results for a failure

case. From the figure, it is noted that VGG-16 network
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Fig. 11 Grad-CAM performed on the last convolution layer for VGG-16 (top row), ResNet-18 (middle row) and DenseNet-161 (bottom row)
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mostly focuses on the lung regions as shown by the red

regions in the heatmap. It produces the correct label pre-

diction of 2 indicating viral pneumonia. However, if we

consider the ResNet-18 network, it does not focus on the

lungs for its prediction, which may explain the incorrect

prediction of label 1 indicating a normal X-Ray. Finally,

for the DenseNet-161 network, we see that it also focuses

on the lung region. However, as compared to VGG-16, the

focus is very dispersed as indicated by the reddish region in

the top-left of the image. The incorrect prediction of label 1

can be attributed to this factor.

5 Conclusion

In this work, we have developed an inverted-bell-curve-

based ensemble of DL (or CNN) models for the detection

of COVID-19 from CXR images. The concept of transfer

learning is used to transfer and fine-tune the pretrained

weights as the availability of COVID-19 CXR images are

not abundant enough. We have used three such models to

train on the available data and combined them at confi-

dence score level using the proposed ensemble method

which considers how confidently a classifier predicts the

correct class with a high score value as well as identifies

the wrong class as wrong with low score value.

The experimental results indicate that the combination

of the CNN models using the proposed method produces

better results than the individual models themselves. It is

also notable that the proposed ensemble method gives

superior results over existing confidence score level

ensemble methods which do not consider the quality of the

output of the classifiers.

6 Limitations and future work

An obvious limitation of the present work is that the CNN

classifiers may fail to detect the COVID-19 in CXRs of the

patients in the early stages. This is because the CXRs may

contain minor or no artefacts which the CNNs cannot

detect as features. Hence, future works can focus on

improving the feature extractors to combat the previous

issue. To extract relevant features, recent techniques like

hybrid supervised-unsupervised machine learning [41] can

be used. Furthermore, recent architectures such as Vision

Transformers [43] can be explored instead of CNNs. Pre-

processing and postprocessing techniques can also be

explored, especially those relevant for radiological images.

In addition to the above, meta-heuristic algorithms can also

be explored to improve the overall performance of the

approach. Several recent works exist which have used

Table 8 Comparison of the proposed method with other deep learning methods in previous studies

Work ref. Datasets Accuracy (%)

Tang et al. [44] COVIDx Dataset 95

Qiao et al. [45] IEEE COVID CXR ? Kaggle Pneumonia 79.67

Chowdhury et al. [47] COVIDx 97

Turkoglu et al.[46] COVID-19 Radiography Database ? Kaggle COVID-19 ? Kaggle Pneumonia 99.18

Proposed method COVID-19 Radiography Database 99.66

IEEE COVID CXR 99.84

Table 9 An example of a failure case

Model Output score Predicted label

ResNet-18 [0.2215, 0.5241, 0.2544] 1

VGG-16 [0.2293, 0.3107, 0.4600] 2

DenseNet-161 [0.2194, 0.5393, 0.2414] 1

Ensemble [0.0434, 0.8095, 0.1471] 1

True Label 2

It can be observed that ResNet-18 and DenseNet-161 yield wrong

predictions. Though VGG-16 produces the correct label, it does so

with very low confidence. The proposed method assigns less weight

due to this low confidence score, producing the incorrect prediction

Fig. 12 Grad-CAM results for the failure case mentioned in Table 9
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meta-heuristics for hyperparameter tuning of the neural

network to improve detection performance.
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