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Abstract

A primary goal of HIV-1 vaccine development is the consistent elicitation of protective, neu-

tralizing antibodies. While highly similar neutralizing antibodies (nAbs) have been isolated

from multiple HIV-infected individuals, it is unclear whether vaccination can consistently

elicit highly similar nAbs in genetically diverse primates. Here, we show in three outbred rhe-

sus macaques that immunization with Env elicits a genotypically and phenotypically con-

served nAb response. From these vaccinated macaques, we isolated four antibody lineages

that had commonalities in immunoglobulin variable, diversity, and joining gene segment

usage. Atomic-level structures of the antigen binding fragments of the two most similar anti-

bodies showed nearly identical paratopes. The Env binding modes of each of the four vac-

cine-induced nAbs were distinct from previously known monoclonal HIV-1 neutralizing

antibodies, but were nearly identical to each other. The similarities of these antibodies show

that the immune system in outbred primates can respond to HIV-1 Env vaccination with a

similar structural and genotypic solution for recognizing a particular neutralizing epitope.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009624 June 4, 2021 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Cai F, Chen W-H, Wu W, Jones JA, Choe

M, Gohain N, et al. (2021) Structural and genetic

convergence of HIV-1 neutralizing antibodies in

vaccinated non-human primates. PLoS Pathog

17(6): e1009624. https://doi.org/10.1371/journal.

ppat.1009624

Editor: Dennis R. Burton, The Scripps Research

Institute, UNITED STATES

Received: June 12, 2020

Accepted: May 7, 2021

Published: June 4, 2021

Copyright: © 2021 Cai et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The data presented in

this manuscript are tabulated in the main paper and

the Supporting information. Atomic coordinates

and structure factors of the reported crystal

structures have been deposited in the Protein Data

Bank under accession codes 6U6M, and 6U6O.

The structures solved by negative stain EM have

been deposited in the EM Database under codes

EMD-21448 to EMD-21451).

Funding: We also acknowledge the Southeast

Regional Collaborative Access Team (SER-CAT)

https://orcid.org/0000-0003-3724-9195
https://orcid.org/0000-0002-4900-5406
https://orcid.org/0000-0003-0243-5203
https://orcid.org/0000-0003-1370-312X
https://orcid.org/0000-0002-8387-3952
https://orcid.org/0000-0002-6653-6655
https://orcid.org/0000-0003-3064-2947
https://orcid.org/0000-0001-5498-3469
https://orcid.org/0000-0002-2612-8729
https://orcid.org/0000-0001-6444-3562
https://orcid.org/0000-0002-3890-5855
https://orcid.org/0000-0002-8796-1714
https://orcid.org/0000-0002-2026-5757
https://orcid.org/0000-0003-2973-2101
https://orcid.org/0000-0002-6808-7232
https://orcid.org/0000-0001-7399-7954
https://doi.org/10.1371/journal.ppat.1009624
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1009624&domain=pdf&date_stamp=2021-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1009624&domain=pdf&date_stamp=2021-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1009624&domain=pdf&date_stamp=2021-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1009624&domain=pdf&date_stamp=2021-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1009624&domain=pdf&date_stamp=2021-06-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1009624&domain=pdf&date_stamp=2021-06-21
https://doi.org/10.1371/journal.ppat.1009624
https://doi.org/10.1371/journal.ppat.1009624
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


These results support rational vaccine design for HIV-1 that aims to reproducibly elicit, in

genetically diverse primates, nAbs with specific paratope structures capable of binding con-

served epitopes.

Author summary

The primate immune system generates a diverse repertoire of pathogen-binding proteins

called antibodies. Primate antibody repertoires must be diverse to respond to infection by

many different pathogens. In this study, we characterized the structure and genetic fea-

tures of HIV-1 inhibitory antibodies from vaccinated monkeys as a model for human vac-

cination. We found that individual monkeys responded to HIV vaccination by generating

highly similar HIV-1 neutralizing antibodies. The antibodies had nearly identical struc-

tures and genetic makeups. Thus, the immune systems of different monkeys generate a

common solution for inhibiting viral protein function and infectivity. Success of vaccines

in multiple recipients may be augmented by the ability of immune systems to reproduc-

ibly devise a common antibody solution to attack vulnerable sites on pathogens.

Introduction

In a recent nonhuman primate vaccine study, vaccine-elicited HIV-1 nAb titers were shown to

correlate with protection from the vaccine-matched challenge virus [1]. This correlation, in

conjunction with protection by passively-infused antibodies [2,3], provides a rationale for

induction of nAbs as a goal for a protective HIV-1 vaccine [4].

HIV-1 nAbs can be categorized based on their neutralization breadth [5,6]. Antibodies that

target highly conserved epitopes on HIV-1 envelope glycoprotein are capable of neutralizing

diverse HIV-1 isolates and are designated as broadly neutralizing antibodies (bnAbs) [7–9].

These bnAbs are rarely elicited by vaccination in primates [10,11], and in the select cases

where they have been induced, they appear at low titers [12,13]. Another category of nAbs are

antibodies capable of neutralizing only the HIV-1 strain used for vaccination or infection—

also referred to as the autologous virus [1,14–16]. These autologous neutralizing antibodies

have been more readily elicited with vaccination than bnAbs.

Autologous neutralizing and broadly neutralizing categories of antibodies are not mutually

exclusive. The study of bnAb lineage development and autologous virus coevolution has

shown that the early members of bnAb lineages exhibit neutralization activity against autolo-

gous HIV-1 isolates only. Upon further affinity maturation, a subset of the bnAb lineage mem-

bers develop broad neutralization activity [17–19]. Therefore, it is necessary to characterize the

epitopes of autologous nAbs to distinguish antibodies in the early stages of bnAb development

from those that target a non-conserved epitope.

HIV-1 nAb responses vary in potency, breadth, and epitope specificity during human infec-

tion and vaccination; presenting a challenge for HIV-1 vaccines that aim to reproducibly elicit

neutralizing antibodies [1,11,20–25]. The variability in antibody responses to envelope may be

because the antibody repertoire of an individual is derived from unique rearrangements within

each antibody of polymorphic variable, diversity, and joining gene segments [26,27]. Thus,

whether uniform HIV-1 nAbs can be consistently induced in multiple primates with vaccina-

tion remains a significant question to address. During natural infection, bnAbs with very simi-

lar binding modes and similar immunogenetics have developed against the CD4 binding site
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and membrane proximal external region in multiple individuals [28–33]. Thus, it is possible

for the immune system to respond to Env antigen during infection in a reproducible way that

results in very similar bnAbs. Two of the most widely used strategies for HIV-1 vaccine design,

B cell lineage design and reverse vaccinology design, are built upon the premise that vaccina-

tion can also elicit very similar envelope-specific antibodies in multiple individuals [9,34,35].

Each of these strategies aim to elicit the same type of neutralizing antibody in multiple individ-

uals by targeting precursors of specific B cell lineages with HIV-1 envelope immunogens

[9,34,35]. In support of these vaccine design concepts, relatively easy-to-induce non-nAbs

with conserved binding modes to HIV-1 envelope and similar immunogenetic sequence

motifs have been elicited [36]. Determining whether vaccination can elicit more difficult-to-

induce stereotyped nAbs in outbred primates would further support B cell lineage and reverse

vaccinology design concepts.

In the present study, we isolated and compared four nAbs from three rhesus macaques that

were immunized with a group M consensus envelope called CON-S. Although, the macaques

were immunized with different CON-S envelope vaccine regimens, the CON-S nAbs had

immunogenetic commonalities, and were able to exchange immunoglobulin chains with each

other and still maintain envelope reactivity. The atomic-level structures of the unliganded anti-

gen binding fragment (Fab) from two of these antibodies showed nearly identical paratope

conformation. Structures of the antibodies in complex with CON-S envelope trimers showed

the four CON-S Env-induced antibodies bound to the same epitope on Env with very similar

angles of approach. This study demonstrates proof-of-concept that HIV-1 envelope vaccina-

tion reproducibly elicits nAbs with nearly identical binding modes to HIV-1 envelope. These

results support HIV-1 vaccine design strategies that aim to reproducibly elicit stereotyped

nAbs in outbred primates.

Results

Vaccine elicitation of nAbs against HIV-1 CON-S

Consensus envelopes have been derived from group M HIV-1 isolates as an immunogen design

approach for broadening immune responses. In particular, CON-S is central to the M group,

and is a consensus of within-clade consensus sequences [37–39]. To investigate nAbs elicited by

consensus HIV-1 envelope vaccination, rhesus macaques were immunized with two different

vaccine regimens. In one study, Indian origin rhesus macaques were administered CON-S

gp140 oligomers via DNA vectors, recombinant Ad5 vectors, and recombinant gp140 protein

(Fig 1A) [40]. In the second study, macaques were immunized with NYVAC vectors expressing

gp120 and recombinant gp120 protein (Fig 1B) [41]. All of the macaques, including macaques

L999 and M172, that received the DNA/rAd5/gp140 vaccine developed nAbs against the autolo-

gous HIV-1 CON-S isolate (Fig 1C). Similarly, three of four macaques, including 80–12, that

received the NYVAC/gp120 regimen developed nAbs against the vaccine strain (Fig 1D). None

of the vaccinated macaques had detectable bnAbs in their plasma or serum (S1 Fig) [41].

Since HIV-1 isolates exhibit a spectrum of neutralizing antibody sensitivities [5,6], we

sought to determine the significance of CON-S neutralization by determining its neutraliza-

tion sensitivity. We determined the neutralization sensitivity tier of CON-S relative to 23 natu-

ral HIV-1 isolates [6]. The geometric mean neutralization titer for each virus was determined

for purified IgG from 5 HIV-1-infected serum samples. The geometric mean titer for CON-S

was 108 μg/mL (Fig 1E), which made it more resistant than the commonly-used natural HIV-

1 isolate 92BR025, but more sensitive than routinely-used isolate Q23.17. Overall, CON-S

pseudovirus typed as a tier 1B isolate. To determine the exposure of broadly neutralizing and

poorly neutralizing epitopes on CON-S envelope, we examined the sensitivity of CON-S

PLOS PATHOGENS HIV-1 vaccination elicits convergent neutralizing antibodies

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009624 June 4, 2021 3 / 29

https://doi.org/10.1371/journal.ppat.1009624


Fig 1. Vaccine elicitation of HIV-1 nAbs in rhesus macaques. (A) CON-S envelope DNA/recombinant Adenovirus/protein vaccination

regimen administered to macaques L999 and M172 (see Materials and methods for details). (B) Macaque 80–12 was immunized with a

NYVAC vector expressing gp120 followed by boosting immunization with recombinant gp120. (C,D) Macaque serum neutralization of

HIV-1 CON-S infection of TZM-bl cells. Serum or plasma was obtained two weeks after immunization and examined for neutralization.

Neutralization titer is shown as reciprocal plasma or serum dilution that inhibits 50% of virus replication (ID50). Macaques from which
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pseudovirus to a panel of HIV-1 bnAbs and HIV-1 poorly neutralizing monoclonal antibodies.

The bnAbs targeted the CD4 binding site, V1V2-glycan site, V3-glycan, gp120-41 interface,

fusion peptide, outer domain glycans, and MPER sites, while the collection of poorly nAbs tar-

geted the third variable region and CD4 binding site. Interestingly, CON-S was sensitive to all

bnAbs tested, and was resistant to all poorly neutralizing HIV-1 antibodies (Fig 1F and 1G,

two-tailed exact Wilcoxon test, P<0.01, n = 11 non-bnAbs versus 17 bnAbs). The difference in

sensitivity to broadly versus poorly nAbs could be due to CON-S envelope being most often in

a closed conformational state that occludes poorly neutralizing epitopes, or the amino acid

sequence of CON-S was sufficiently divergent from each clade resulting in binding by broadly-

reactive antibodies only. Nonetheless, the vaccine-elicited macaque serum nAbs targeted epi-

topes distinct from poorly-neutralizing third variable region-specific or poorly-neutralizing

CD4 binding site-specific antibodies.

To determine the epitopes targeted by the vaccine-induced macaque neutralizing antibod-

ies, we sought to isolate monoclonal antibodies from macaques L999, M172, and 80–12—all of

which had serum nAbs against CON-S. Single B cells that bound to fluorophore-labeled

uncleaved CON-S gp140 were sorted from macaque L999 peripheral blood mononuclear cells

(PBMC, S2 Fig). The sorted B cells were cultured in vitro and the secreted antibody was tested

for CON-S neutralization. Of the 11,639 B cell cultures, only 21 B cell culture supernatants

exhibited CON-S neutralization activity (S3 Fig). Antibody DH840.1 was recovered from one

culture well that exhibited neutralization (Fig 1H, S3 and S4 Figs). The remaining 20 antibod-

ies either failed to amplify by PCR or lacked neutralization activity once tested as a purified

monoclonal antibody (S3 Fig). Similarly, single B cells that bound soluble stabilized CON-S

Env trimers were sorted from macaques M172 and 80–12 (Fig 1H). Antibody DH842 was

recovered from M172 PBMC, and DH845.1 and DH846.1 were isolated from 80–12 PBMC

(Fig 1H, S5 and S6 Figs). Clonal lineages for DH845 and DH846 were inferred by Cloanalyst

using single B cell PCR sequences (S7A, S7B, S8 and S9 Figs). The antibodies within the

DH845 and DH846 clonal lineages bound to soluble stabilized CON-S Env trimers with simi-

lar magnitudes (S7C Fig). Next generation sequencing of peripheral blood B cell heavy chain

variable (VH) regions identified four VH regions that were inferred to be clonally related to

DH840.1. However, none of the VH regions when paired with the DH840.1 light chain exhib-

ited binding to CON-S Env trimers (S7C Fig). Thus, the natural light chains for these antibod-

ies may be important for binding to CON-S Env trimers. We next determined whether

DH840.1, DH842, DH845.1, and DH846.1 could bind to heterologous HIV-1 envelopes from

CRF02_AG, clade A, and clade C. DH840.1, DH842, DH845.1, and DH846.1 bound to stabi-

lized CON-S SOSIP gp140 trimers, but lacked binding to BG505, T250-4, CH505 w78.33,

CH505 w100.B6, and CH848 transmitted/founder SOSIP trimers (S10A Fig). DH840.1,

DH842, DH845.1, and DH846.1 were tested for their neutralization activity against 8 HIV-1

isolates including the autologous CON-S virus. All four monoclonal antibodies neutralized

CON-S, but lacked heterologous tier 1 or 2 neutralization (Fig 1I). Additional monoclonal

antibodies were also cloned from the same single B cell sorts, however none of these antibodies

monoclonal antibodies were isolated are shown in red, blue, and purple. (E) Comparison of neutralization sensitivity of CON-S (red) and

other common HIV-1 strains to purified IgG from HIV-1 infected individuals (n = 5). Neutralization titer is shown as IgG concentration

in μg/ml that inhibits 50% of virus replication (IC50). Horizontal bars represent the geometric mean of the 5 IgG samples. Vertical dotted

lines separate different neutralization tiers. (F,G) HIV-1 CON-S neutralization sensitivity to (F) bnAbs and resistance to (G) linear V3 and

poorly-neutralizing CD4 binding site antibodies. Neutralization titer is shown as IC50, and are color-coded based on potency. (H) Antigen-

specific single B cell fluorescence-activated cell sorting of the PBMC from each macaque shown in C and D. The recovered antibody of

interest is shown within the magenta sort gate. (I) Monoclonal antibody neutralization of HIV-1 infection of TZM-bl cells. Each curve shows

the neutralization of different HIV-1 isolates listed in the legend.

https://doi.org/10.1371/journal.ppat.1009624.g001
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exhibited any CON-S neutralization activity (S11 Fig). Thus, we only focused on further char-

acterization of the four CON-S neutralizing antibodies.

Immunogenetic commonalities among CON-S neutralizing antibody

lineages

To determine whether the four CON-S nAbs were genetically similar, we inferred the gene seg-

ment usage and third complementarity determining region (CDR3) lengths for each antibody.

Since the rhesus library of reference gene segments continues to expand and each reference

library has different genes included, we used three different reference libraries for gene usage

inferences (S7A Fig). For clarity we refer below to the inference from the most recent rhesus

Cloanalyst library. The four CON-S nAbs were inferred to originate from the same IGHV4-n

gene segment (Table 1 and S7A Fig). The VH of the antibodies were also highly similar to

IGHV4-e, but IGHV4-n had the highest identity and fewest gaps in our reference library and

was thus selected as the most probable inferred germline gene (S12 Fig). Given the high genetic

variability in macaques it is likely that the true germline gene segments of DH840.1 and

DH846.1 are allelic variants of this reference gene [42,43]. Of the four antibodies DH840.1 and

DH846.1 had the most immunogenetic similarities. Despite being isolated from different

macaques vaccinated with different regimens, DH840 and DH846 antibody lineages were both

inferred to derive from IGHV4-n and IGKV3-d heavy chain and light chain variable gene seg-

ments, respectively (Table 1). Additionally, their heavy and light chain CDR3s were the same

lengths (Table 1 and S7A Fig). However, the CDR3 amino acid sequences had low sequence

identity (S13 Fig), and the antibodies somatically mutated to encode different amino acids (S8,

S9 and S13 Figs). Therefore, antibodies DH840.1 and DH846.1 were derived from similar gene

segments, but underwent distinct affinity maturation processes. Thus, the four neutralizing

monoclonal antibodies were genetically similar, with one pair of antibodies originating from

nearly identical gene segment rearrangements.

Structural convergence of DH840.1 and DH846.1 variable fragments

To investigate whether the antibody sequence similarity between DH840.1, and DH846.1

translated to similar variable fragment (Fv) conformation, we determined the crystal structures

of unliganded DH840.1 and DH846.1 antigen binding fragments (Fabs) at resolutions of 2.7 Å
and 2.8 Å, respectively (Fig 2A and 2B and S1 Table). Superposition of the Fv region of

DH840.1 and DH846.1 Fabs showed a high degree of structural overlap, despite the 71.5%

heavy chain and 83% light chain sequence identity (Fig 2C and S13 Fig). Within the Fv not

only did the peptide backbone overlap, but also the amino acid side chains exhibited the same

orientations (Fig 2C). Thus, DH840.1 and DH846.1 were highly similar structurally.

In the DH840.1 and DH846.1 Fab crystal structures, we identified amino acids that were

solvent-exposed that could potentially interact with HIV-1 Env. In DH840.1 these amino acids

were V29CDR1, R30CDR1, E91CDR3, and W94CDR3 in the light chain variable (VL) region (All

antibody residue numbering and CDR loops are designated using the Kabat numbering

Table 1. Immunogenetics determined by Cloanalyst rhesus macaque library.

Vaccine Macaque Antibody Macaque VH Macaque JH HCDR3 length (aa) Macaque VL Macaque JL HCDR3 length (aa)

DNA/Ad5/Protein L999 DH840.1 IGHV4-n IGHJ4 15 IGKV3-d IGKJ4-1 8

DNA/Ad5/Protein M172 DH842 IGHV4-n IGHJ5-1 17 IGLV5-e IGLJ1 9

NYVAC-gp120 80–12 DH845.1 IGHV4-n IGHJ1 20 IGKV1-Ab IGKJ2-1 9

NYVAC-gp120 80–12 DH846.1 IGHV4-n IGHJ4 15 IGKV3-d IGKJ1-1 8

https://doi.org/10.1371/journal.ppat.1009624.t001
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Fig 2. Structural conservation of CON-S neutralizing antibody paratopes. (A,B) Crystal structures of (A) DH840.1 and (B) DH846.1 Fabs shown in ribbon

representation in two orientations. Amino acids encoded by nucleotide somatic mutations are indicated by black spheres. (C) DH840.1 and DH846.1 Fabs shown in

ribbon representation are structurally overlaid and shown in three orientations. Close-up views of select CDR loop residues from both DH840.1 and DH846.1 that are

similar in sequence and location are shown in stick representation, with DH840.1 paratope alanine mutants tested in F underlined for reference. (D,E) Amino acid

comparison of DH840.1 (orange), DH846.1 (violet), and their putative unmutated common ancestors. (D) Heavy chain and (E) light chain variable region amino acid

sequences. Dots represent identical amino acids. Variable region domains are listed above the amino acid sequence. (F) Antibody binding titers to CON-S envelope by

DH840.1 paratope alanine mutants. Binding titer was measured by ELISA, and is shown as the area-under-the-log-transformed curve (log AUC). Kif, kifunensine;

GnTI-/-, 293S cells lacking the GnTI enzyme. Mean values of two to four independent measurements are shown. (G) Antibody binding titers as log AUC in ELISA to

CON-S envelope for chimeric antibodies composed of heavy and light chains from different CON-S nAb lineages. The binding magnitude is color-coded with stronger

binding being darker shades of red. Mean values of four independent measurements are shown.

https://doi.org/10.1371/journal.ppat.1009624.g002

PLOS PATHOGENS HIV-1 vaccination elicits convergent neutralizing antibodies

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009624 June 4, 2021 7 / 29

https://doi.org/10.1371/journal.ppat.1009624.g002
https://doi.org/10.1371/journal.ppat.1009624


system). The same amino acids were exposed in DH846.1 VL, except a serine was present at

position 30CDR1 instead of an arginine and aspartate was present at position 91CDR3, instead of

glutamate (Fig 2D and 2E). In the VH region D99CDR3, W100b CDR3, and W103 FR4 were

exposed in the antigen binding site (Fig 2C–2E). W100b CDR3 and W103 FR4 were oriented

almost identically in the DH840.1 and DH846.1 antigen binding fragments (Fig 2C). The

DH846.1 VH differed from DH840.1 at position 99CDR3 where the inferred germline amino

acid serine was encoded (Fig 2C). Among these seven amino acids R30CDR1 in the DH840.1

VL, E91CDR3 in DH846.1 VL, and D99CDR3 in the DH840.1 VH were encoded by somatic

mutations (Fig 2D and 2E).

To discern which solvent-exposed amino acids mediated Env binding we mutated each

amino acid to alanine and examined binding to HIV-1 envelope. Alanine substitution of

W100bCDR3 in the heavy chain reduced antibody binding to CON-S by 64% (Fig 2F). The reduc-

tion in Env gp120 binding by DH840.1 W100bA was more severe when the envelope glycans

were modified to be high mannose glycans by kifunensine treatment or GnT1 knockout (Fig

2F). Changing W94CDR3 in the VL also reduced binding activity in the presence of high mannose

glycans but to a lesser extent (Fig 2F). Thus, W94CDR3 and W100b CDR3 enabled DH840.1 to

accommodate the presence of high mannose glycans on Env. Although the heavy chain CDR3s

of DH840.1 and DH846.1 had low sequence identity, W100b was present in both antibodies

(S13 Fig). In summary, one of the principal amino acids that conferred DH840.1 Env binding

was a solvent-exposed, germline-encoded tryptophan at position 100b in the heavy chain CDR3.

We hypothesized that the conserved immunogenetics and Fv structures of DH840.1 and

DH846.1 would result in antibodies with similar binding modes. Antibodies with highly simi-

lar binding modes to Env can exchange immunoglobulin chains and retain binding activity

[44,45]. Thus, we exchanged the heavy chain of DH840.1 and DH846.1 with the light chains

from each antibody, and assessed CON-S envelope binding. In agreement with the immunoge-

netic and Fab structure similarities, exchanging heavy chains or light chains between DH840.1

and DH846.1 resulted in chimeric antibodies that still bound to CON-S envelope—albeit

weaker than the wildtype antibodies (Fig 2G). We also examined immunoglobulin chain com-

plementation by the other CON-S neutralizing antibodies. The DH845.1 light chain paired

with DH846.1 or DH842 heavy chains created less potent, but functional binding antibodies

(Fig 2G). DH845.1 heavy chain and DH842 light chain showed limited ability to pair with

immunoglobulin chains from the other CON-S neutralizing antibodies. Modeling of the struc-

ture of the DH845.1 heavy chain and DH842 light chain suggested the lack of complementa-

tion could be due to distinct protruding CDR loops present in each of these two

immunoglobulin chains (S14 Fig).

Glycans at N389, N395, and N460 block CON-S neutralizing antibody

binding

The similarity in binding modes among the CON-S nAbs suggested that the antibodies tar-

geted the same epitope on Env. In support of this hypothesis, competition ELISA binding

assays showed that all four CON-S nAbs blocked DH840.1 from binding to stabilized CON-S

SOSIP gp140 trimer (S10B Fig). To investigate the nature of the epitope recognized by the vac-

cine-induced CON-S neutralizing antibodies, we assessed their ability to bind to different

forms of soluble HIV-1 CON-S envelope. Each of the antibodies bound strongly to gp120 core,

gp120, and uncleaved gp140 forms of envelope (S15 and S16 Figs). Thus, antibody binding did

not require Env trimers, Env cleavage, or native Env folding (S15 and S16 Figs). When we

compared gp120 core binding kinetics, DH840.1 and DH842 exhibited faster off-rates than

DH845.1 and DH846.1 (S16B–S16D Fig). Compared to gp120 or uncleaved gp140, binding
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magnitudes were decreased for stabilized SOSIP gp140 forms of Env (S15A Fig). In particular,

DH840.1 and DH842 bound weakest to the CON-S stabilized SOSIP gp140 among the four

antibodies. Also, antibody binding was strongest as a bivalent IgG molecule compared to

monomeric Fab (S15D Fig). The epitope of the antibodies did not include complex glycans,

since binding to Env was unaffected by enrichment of Man5GlcNAc2, Man8GlcNAc2, or Man9-

GlcNAc2 glycans (S15B and S15E Fig). One exception was the binding of the DH842 Fab,

which was inhibited by enrichment of high mannose glycosylation (S15E Fig). We observed

stronger binding affinity to deglycosylated gp120 core (S16B–S16D Fig), thus the enrichment

for Man9GlcNAc2 may have introduced a glycoform that sterically hindered binding. Alto-

gether, the results suggested that direct glycan contact was not a principal determinant of anti-

body binding.

To determine the Env site of antibody binding, we first mutated known broadly neutraliz-

ing epitopes on HIV-1 envelope gp120. Mutation of the V1V2-glycan, V3-glycan, and CD4

binding site had no effect on antibody binding (S15F Fig). Previous studies have shown autolo-

gous nAbs can target peptide regions that are not shielded by glycans [46–48]. We predicted

the glycan coverage of CON-S to investigate the presence of rare holes in glycan coverage [49].

This analysis showed that the peptide surrounding amino acid 362 was exposed on the CON-S

trimer (Fig 3A). This area was predicted to be covered by glycan in 50–80% of HIV-1 isolates

(Fig 3A). Of note, the glycan at position 362 in global Env alignments is relatively variable, its

frequency is subtype dependent, and the precise location of the glycosylation motif can be

shifted by an amino acid or two in different linear sequences while still maintaining the glycan

shield in the structure. This variability in the glycosylation site location explains why the struc-

turally conserved glycan was not captured in the single CON-S sequence from 2002, despite

glycan shielding in the immediate region being conserved in the structure of most viruses. To

determine whether the nAbs targeted this area, we generated CON-S gp140 envelopes with a

glycosylation site introduced at N362. The CON-S nAbs bound slightly weaker to CON-S

gp140 with the addition of the N362 glycan (Fig 3B). Since recombinant, soluble HIV-1 enve-

lopes can be glycosylated differently than native Env trimers on virions [50–52], we tested neu-

tralization of CON-S with and without the N362 glycan and found between 2 and 10-fold

decreases in neutralization potency for three of the four macaque nAbs (Fig 3C). The fourth

antibody DH840.1 showed a decrease in maximum percent neutralization from 83% to 45%

(Fig 3C). These reductions in neutralization for most of the antibodies, but not complete

knockout of activity, suggested the binding site of the antibodies may be in close proximity to

amino acid 362. Therefore, we introduced glycosylation sites on the CON-S gp120 to occlude

access to sites adjacent to N362 in the envelope tertiary structure. N-linked glycosylation sites

were introduced at position 365, 389, 395, 457 and 460 (Fig 3D). The binding of each macaque

neutralizing antibody to CON-S gp120 was blocked by one or more of these glycosylation site

mutants. N365 and N457 had little effect on antibody binding, but N389, N395, and N460 gly-

cans blocked binding of the antibodies (Fig 3D). The N389 glycosylation site was flanked by

N386 and N392 N-linked glycosylation sites, which could affect the glycan processing and

occupancy at all three of these sites [53,54]. For some antibodies, the combination of 389, 395,

or 460 glycosylation sites with the 362 glycosylation site reduced antibody binding further

than the addition of any one glycan site alone. The inhibitory effects of the N389, N395, and

N457 glycans were more pronounced when either W94 or W100b amino acids in the DH840.1

paratope were mutated to encode an alanine (S17 Fig). Known V1V2-glycan antibody PG9,

CD4 binding site antibody VRC01, and V3-glycan antibody PGT128 showed binding patterns

to the CON-S gp120 glycosylation site mutants different from the CON-S nAbs (Fig 3E). This

result corroborated the finding that the epitope of the CON-S nAbs was not the V1V2-glycan,

V3-glycan, or CD4 binding site (Fig 3E).
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Fig 3. Hyperglycosylation of HIV-1 envelope determines vaccine-induced CON-S nAbs bind the distal side of the

HIV-1 envelope gp120 subunit. (A) Computational prediction of the CON-S envelope glycan coverage of HIV-1

envelope surface using the Glycan Shield Mapping tool on the Los Alamos HIV Database (https://www.hiv.lanl.gov/

content/sequence/GLYSHIELDMAP/glyshieldmap.html). Two protomers of the trimeric envelope is shown in surface

representation with potential N-linked glycosylation sites highlighted in blue. The surface potentially covered by a

glycan attached to the glycosylation site is shown in green assuming 10 angstrom radius of coverage by each glycan.
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We corroborated the effects of adding glycans to envelope regions C3 and V5 on virion-

associated Env [50,51]. We generated CON-S pseudoviruses with N-linked glycosylation sites

added at positions 365, 389, 395, 457 and 460 alone or in combination with N362 glycan to

correspond with the recombinant gp120s described above. Of the 9 CON-S pseudoviruses,

only the four viruses with N395, N460, N362/N395, and N362/N460 glycan additions pro-

duced infectious virus. Since the glycans were proximal to the CD4 binding site and inhibited

VRC01 binding, it is likely that the addition of glycans at 365, 389, and 457 blocked binding to

the CD4 binding site rendering the pseudoviruses non-infectious. Nonetheless, the introduc-

tion of N362 and N395 glycans eliminated detectable neutralization by three of four antibodies

tested (Fig 3F). Similarly, the addition of N362 and N460 glycans eliminated detectable neu-

tralization by three of the antibodies and markedly reduced neutralization by the fourth anti-

body (Fig 3F). Adding N395 or N460 glycans alone also substantially reduced neutralization

activity indicating they were sufficient for inhibiting CON-S autologous neutralizing antibod-

ies. The N395 and N460 glycans did not have an effect on PG9 or VRC01 neutralization of

CON-S (Fig 3F). Additionally, N362, N395, and N460 glycans alone or in various combina-

tions inhibited 80–12 plasma neutralization of CON-S (Fig 3G). Thus, the region of Env where

C3, V4, and V5 converge were the principal CON-S neutralization determinant for the 80–12

plasma antibody response. L999 and M172 plasma neutralization were not knocked out by

these particular glycan additions. Thus, other sites such as 365, 389, and 457 that could not be

tested here may have been important for L999 and M172 plasma neutralization. However, the

monoclonal antibodies derived from L999 and M172 showed sensitivity to N395, N460, and

N362 glycan addition on virion-associated Env trimers indicating antibodies in these

macaques targeted the C3-V5 region.

Structural convergence of HIV-1 neutralizing antibody epitope recognition

To definitively show highly similar Env binding modes for each of the CON-S nAbs, we per-

formed negative-stain electron microscopy and 3D reconstruction to map the antigen binding

fragment (Fab) of each antibody bound to stabilized soluble CON-S envelope trimer (S18 Fig).

The structures of the DH840.1, DH842, DH845.1, and DH846.1 Fab in complex with stabilized

soluble CON-S envelope trimer showed each Fab bound to the same region of Env with nearly

identical angles of approach (Fig 4). DH840.1 Fab approached the Env tilted more towards the

The gray surface in the center is receding inwards towards the trimer axis, and is predicted to be glycan unshielded;

however, it may not be easily accessible to antibodies due to conformational masking from other protomers. (Left) The

light pink indicate surface that is covered in 50–80% of group M HIV-1 isolates, but not covered in CON-S. (Right)

The addition of a glycosylation site at N362 covers the exposed surface when occupied with glycan. (B) Vaccine-

elicited neutralizing antibody binding to CON-S gp120 with or without the N362 glycosylation site. Binding titers are

shown as log AUC as described in Fig 2. 19B, a V3 region-specific antibody, was used as a positive control. Mean

values from two independent experiments are shown. (C) Monoclonal antibody neutralization of wildtype (black) and

N362 glycan-modified (green) HIV-1 CON-S infection of TZM-bl cells. Murine leukemia virus was used a negative

control. Representative results from 2 independent experiments. (D) The sites of novel glycan addition in C3, C4, V4,

and V5 to block monoclonal antibody binding to CON-S gp120 are shown on the structure of trimeric HIV-1 envelope

(PDB:5FYL). Each gp120 of the trimer is colored a different shade of gray and gp41 is colored black. (E) Antibody

binding titers as log AUC are shown for CON-S gp120 wildtype and hyperglycosylated variants. The glycosylation site

added is shown for each row. V1V2-glycan (PG9), CD4 binding site (VRC01), and V3-glycan (PGT128) bnAbs were

examined for comparison to vaccine-induced macaque antibodies. 19B is a V3 region-specific antibody. The anti-

influenza antibody CH65 was used as a negative control. Mean values of two independent measurements are shown.

(F) Monoclonal antibody neutralization of infection of TZM-bl cells with wildtype CON-S and CON-S with specified

Env glycan additions. Neutralization titers are shown as IC50 in μg/mL and color-coded based on the legend. (G)

Plasma neutralization of infection of TZM-bl cells with CON-S pseudoviruses shown in (F). Neutralization titers are

shown as ID50 reciprocal plasma dilution and color-coded based on the legend.

https://doi.org/10.1371/journal.ppat.1009624.g003
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Fig 4. Vaccine-induced CON-S antibodies bind to the outer domain of HIV-1 gp120 near the third constant and

fifth variable regions with similar angles of approach. (A-D) Top and side views of the final 3D reconstructions of

the stabilized soluble CON-S envelope trimer bound to (A) DH840.1, (B) DH842, (C) DH845.1 and (D) DH846.1. The

3D volumes are in solid gray with BG505 SOSIP.664 (PDB:4NCO; blue) and Fab (pink) fitted into the density. (E)

Stoichiometry of Fabs bound to CON-S Env trimer observed by negative stain electron microscopy. (F) Comparison of

CON-S neutralization potency, shown as the concentration (μg/mL) of antibody that inhibits 80% of virus replication
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trimer apex than the other three antibodies, but still contacted the same site on Env (Fig 4).

The differences in approach angle did not affect antibody binding since the epitope was distal

to adjacent protomers of the trimer. The structures were in agreement with the addition of

N389, N395, and N460 glycans inhibiting binding, since the attachment sites for these glycans

were within the antibody contact region on CON-S envelope trimer (Figs 3D, 3E and 4). Also,

DH840.1 bound to third variable (V3) and third constant (C3) region peptides within the iden-

tified contact region on a HIV-1 peptide microarray, which was consistent with the contact

site shown by the structure (S19 Fig). DH840.1 also bound to a subset of gp41 peptides (S19C

Fig). This binding was weaker than binding to gp120 peptides and considered to be non-spe-

cific since the antibody-trimer structures showed contact with gp120 and not with gp41.

When we examined the glycan shielding of this binding site it was surrounded by glycosylation

sites, but several of the sites have been found to be partially occupied on recombinant gp140

proteins (S20 Fig) [53]. Overall, all four antibodies bound to Env gp120 where C3, V3, and

fifth variable (V5) regions converged.

Among the four macaque nAbs, there were differences in their binding stoichiometries to

CON-S ch.DS.SOSIP. Only 33% of the stabilized soluble CON-S envelope trimer was bound

by DH840.1 Fab (Fig 4E). The complexes of DH840.1 Fab and stabilized soluble CON-S enve-

lope trimer showed only a single Fab bound to the trimer (Fig 4E). In contrast, all analyzed sta-

bilized soluble CON-S envelope trimers were bound by at least one DH845.1 or DH846.1 Fab

(Fig 4E). The most frequently observed stoichiometry was 2 Fabs per trimer, although 3 Fabs

were observed bound to Env trimer occasionally. Three DH842 Fabs were not observed bound

to stabilized soluble CON-S envelope trimer (Fig 4E). However, 34% and 53% of analyzed

Envs had one or two Fabs bound respectively. Overall, the binding stoichiometries corrobo-

rated the binding titers in ELISA, where DH840.1 and DH842 bound weakly, and DH845.1

and DH846.1 bound more strongly to stabilized soluble CON-S envelope trimers (S15A Fig).

In total, CON-S nAbs bound to the same region of HIV-1 Env with similar binding modes,

but possessed different Fab to Env binding stoichiometries. While a sample size of four anti-

bodies does not comprise a sufficiently large sample size for statistical correlations, we note

that the weakest neutralizing antibody, DH840.1, exhibited the highest number of unoccupied

trimers and lacked any trimers with 3 Fabs bound (Fig 4F). Both of the two most potent neu-

tralizing antibodies, DH845.1 and DH846.1, had no unoccupied trimers and exhibited 3 Fab

to 1 Env trimer binding stoichiometries (Fig 4F). Thus, lower Fab:trimer stoichiometry or

occupancy tended to correspond with lower neutralization potency.

The epitope of the CON-S nAbs is distinct from C3/V4-specific autologous

neutralizing antibody CP506

Next, we sought to determine whether the CON-S nAbs were structurally similar to previously

identified monoclonal autologous nAbs. In a previous guinea pig vaccine study, soluble BG505

Env trimers elicited neutralizing antibody CP506 against the C3/V4 region on Env [55]. Addi-

tionally, epitope mapping of human serum neutralizing antibody determinants showed serum

antibodies targeted the C3/V4 region [56–58]. Given that the CON-S nAbs were blocked by

glycans added in the C3 and V4 regions of Env, we compared the structure of antibody CP506

and DH840.1 bound to HIV-1 Env trimer to determine whether they bound to Env in a similar

(IC80), and trimer occupancy by at least 1 Fab in negative stain electron microscopy. Stronger neutralizing antibodies

exhibited higher stabilized CON-S SOSIP gp140 trimer occupancy in negative stain electron microscopy than weaker

neutralizing antibodies.

https://doi.org/10.1371/journal.ppat.1009624.g004
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manner. When the 3D-reconstruction of DH840.1 and CP506 were superimposed, it was evi-

dent that the angle of approach for each antibody was different (Fig 5A and 5B). While

DH840.1 bound to the Env with a perpendicular orientation, CP506 bound in a straight line

relative to a given protomer of the trimer (Fig 5B). CP506 was mapped to a novel C3/V4 epi-

tope that included the N339 glycan [55]. The N339 glycan within this region was shown to be

required for CP506 binding [55], however elimination of the N339 glycosylation in CON-S

gp120 did not knockout DH840.1 binding (Fig 5C). Thus, the angle of approach and depen-

dence on the N339 glycan were different between CP506 and DH840.1 (Fig 5), indicating their

epitopes were not the same.

Discussion

Here, we characterized the immunogenetics, structures, and Env epitopes of neutralizing anti-

bodies induced by HIV-1 vaccination in non-human primates. We identified that non-human

primates immunized by different routes with various subunits of the group M consensus enve-

lope CON-S generated genetically similar nAbs to the same epitope on HIV-1 Env. Thus, these

antibodies demonstrate clear immunologic conservation, where the primate immune system

Fig 5. DH840.1 binds to HIV-1 Env in a mode distinct from C3/V4 neutralizing antibodies. (A) 3D reconstruction of negative stain electron

microscopy of DH840.1 Fab in complex with HIV-1 stabilized soluble CON-S envelope trimer shown from the top or side of the trimer (Left and

Middle). Fitting of the HIV-1 Env trimer and DH840.1 Fab into the negative-stain EM map (Right). (B) Overlay of the negative-stain EM maps of

stabilized soluble HIV-1 CON-S envelope trimer in complex with DH840.1 (colored orange), HIV-1 BG505.SOSIP Env trimer with BG505 autologous

neutralizing antibody CP506 (blue; EMDB-9003), and HIV-1 Env with CD4 binding site bnAb VRC01 (gray; EMDB-6193). (C) Antibody binding titers

as log AUC in ELISA to CON-S gp120 with (black) and without (orange) the N339 glycosylation site.

https://doi.org/10.1371/journal.ppat.1009624.g005
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found a structural, and to a lesser extent immunogenetic, solution for recognition of the same

epitope. We term these antibodies the DH840 class of nAbs based on these similarities. A pos-

sible explanation for how such antibodies arise in response to vaccination is the presence of

common rearranged antibody variable region sequences within the antibody repertoire of dif-

ferent primates. Next generation sequencing of the human antibody repertoire estimates 0.2 to

6% of rearranged antibody variable region sequences are shared between two humans [59,60].

This percentage decreases to 0.02% when comparing antibody repertoires across ten different

people [60], but the presence of common rearranged antibody variable region sequences pro-

vides the potential for multiple individuals to make genetically and structurally similar anti-

bodies in response to HIV-1 envelope vaccination [61]. Indeed, during human HIV-1

infection, structurally and genetically-convergent nAbs against the CD4 binding site and

membrane proximal external region on Env have been isolated [28,32,33]. Similarly, shared

HIV-1 antibodies have also been found by next generation sequencing of the antibody reper-

toire of HIV-infected individuals [61]. With respect to HIV-1 vaccination, non-nAbs that uti-

lized a conserved binding motif to bind the HIV-1 Env second variable region were found in

humans and rhesus macaques [36]. Notably, this immunologic phenomena is not specific to

HIV-1, as it occurs in response to Malaria or Dengue infection [62,63], as well as Streptococcus
pneumoniae, influenza haemagglutinin, and Ebola glycoprotein 1 and 2 vaccination [64–66].

Thus, humans have the potential to generate highly similar antibodies to HIV-1 and other

pathogens, suggesting the results found in our macaque studies could translate to humans.

Monoclonal antibodies from rabbits and macaques have also shown that regions on Env

that lack glycan shielding are a major determinant for autologous neutralizing antibodies [46–

48]. Early strain-specific antibody responses in natural infection in humans also tend to focus

on such unusual glycan holes [49]. These glycan holes affect the overall nAb response, since

bnAb responses develop more rapidly in people infected with viruses that have an intact glycan

shield and do not expose strain-specific glycan hole epitopes [49]. The CON-S envelope used

here to immunize macaques is predicted to have a nearly complete glycan shield, with only

one missing glycan at N362. As noted above, there are two reasons that the relatively conserved

glycan shielding around N362 is not represented in the CON-S M group consensus sequence.

First, the exact position of the glycosylation motifs among group M HIV-1 isolates shifts rela-

tive to HXB2 in a sequence dependent way, and second it is not the most common form in all

subtypes. The nearly complete glycan shield of CON-S is analogous to previous glycosylation

analyses for another related consensus envelope ConM [67]. Both of these envelopes are group

M consensus sequence envelopes, but were inferred from available sequences two years apart.

Thus, despite the sequence diversity in group M, deriving a consensus sequence from such a

multitude of Envs does not create large glycan-bare holes. This feature of CON-S is in com-

plete agreement with the design expectation and intent; common glycosylation motifs outside

of the hypervariable regions are generally readily aligned, with the exception of N355 and

N362, and so they are necessarily captured in M group consensus and ancestral immunogens,

and a consensus sequence should recapitulate the consensus common glycan shield. While the

HIV-1 Env glycan shield remains a difficult challenge for inducing neutralizing antibodies,

increasing the completeness of the CON-S glycan shield may further increase the probability

of vaccine induction of nAbs that tolerate the full HIV-1 Env glycan shield. Indeed, previous

vaccine studies have suggested covering glycan-bare regions on Env can direct the elicited

immune response to target desired epitopes [68,69].

The characterization of the DH840 class of antibodies provided new insight into the epi-

topes targeted by autologous neutralizing antibodies. We mapped the neutralizing epitope to

the C3-V5 region, including direct binding to peptides within the V3-C3 junction regions.

While this epitope was not a glycan-exposed site, multiple glycosylation sites in this region
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have low occupancy frequencies on recombinant gp140 proteins [53]. While glycosylation is

different on recombinant Env proteins and virion-associated Env [52], underoccupancy of gly-

cosylation sites on virions could facilitate binding to this epitope. In previous vaccine studies,

serum antibodies from vaccinated macaques were sensitive to mutations in HIV-1 Env at 332,

160, 356, and 465 [67,70] It is plausible that the antibodies that have mapped to amino acids at

356 and 465 [70] would bind to a very similar epitope. Furthermore, negative stain electron

microscopy of polyclonal serum Fabs from BG505 SOSIP gp140-immunized macaques

showed that vaccination elicited antibodies against the C3-V5 region of envelope where

DH840 class antibodies bound [1]. In a later study, four neutralizing antibodies were isolated

from BG505-immunized macaques and shown to bind to the C3-V5 region [71]. The autolo-

gous BG505-neutralizing antibodies were derived from a VH4 and VK1 pairing similar to

DH845.1. Thus, the similarities between CON-S and BG505 neutralizing antibodies raises the

hypothesis that DH840-like antibodies may be a common vaccine-elicited antibody response.

The existence of a common antibody class in the macaque germline antibody repertoire capa-

ble of binding the C3-V5 region may explain why this antibody response is found in both

BG505-immunized and CON-S immunized macaques.

Two of the autologous CON-S neutralizing antibodies exhibited binding stoichiometries

less than 3 Fabs per HIV-1 Env trimer. Unoccupied protomers of the Env trimer have been

seen in structures of PGT151 and VRC01 bound to HIV-1 Env trimers [72–75]. Although it

remains unclear why the CON-S neutralizing antibodies displayed different stoichiometries,

possible explanations include antibody-antigen off-rate, conformational changes in unbound

protomers, reorientation of the HIV-1 envelope glycan network, or technical artifact due to

negative stain electron microscopy buffers and grid preparation [72–75]. Among these poten-

tial explanations, antibody-antigen off-rate is supported by our current results. DH840.1 and

DH842 exhibited the lowest binding to Env trimer, fastest off-rate, and also the lowest trimer

occupancy. The binding stoichiometry of CON-S neutralizing antibodies may be important

for neutralization potency, since DH840.1 exhibited the lowest trimer occupancy and the low-

est neutralization potency. These results are consistent with previous observations that indi-

cated the proportion of occupied Env trimer directly correlates with increased neutralization

[76].

Currently, our structural comparisons suggest autologous neutralization can be conferred

by at least three different C3-dependent antibody responses. The first response is a DH840-like

antibody response that is focused on the V3-C3 junction and V5 and does not require N339

glycan. The second response is composed of antibodies like CP506, which focus on the C3 and

V4 region and require the N339 glycan [55]. A third type of C3-region-dependent antibody

response arises during clade C infection, and is inhibited by the presence of a N339 glycan

and positive charge at amino acid 350 [56, 57, 58]. Monoclonal antibody CAP88-CH06 is an

example of this antibody response [56]. Thus, the effect of the N339 glycan on antibody bind-

ing and antibody binding angle distinguish these different antibody responses into 3 distinct

categories.

The C3-V5 neutralizing epitope was distinct from the known eight conserved broadly neu-

tralizing epitopes defined by bnAbs from natural infection [9]. It remains to be determined

whether antibodies against the C3-V5 epitope can attain neutralization breadth. Despite,

there being a small number of relatively conserved amino acids within each of these contact

regions, the high degree of sequence variability in these two regions would suggest it would be

challenging.

The reproducible elicitation of DH840 class antibodies with vaccination of macaques sup-

ports the premise behind B cell lineage design and reverse vaccinology [9,34,35]. These vaccine

design strategies aim to elicit in most vaccine recipients the same types of antibodies previously
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identified in a subset of HIV-infected individuals. Reverse vaccinology identifies an antibody of

interest and then designs an immunogen that optimally interacts with that antibody or its pre-

cursors in hopes of eliciting such antibodies with vaccination [34]. While this approach relies

on structure-based design to optimize the immunogen for binding to the antibody of interest,

it also relies on individuals from diverse genotypes generating antibodies that bind in an identi-

cal manner as the original antibody of interest. B cell lineage vaccine design has similar require-

ments for a stereotyped antibody response. This vaccine strategy aims to use a series of

immunogens that can stimulate neutralizing antibody precursors and select antibodies under-

going affinity maturation in a manner analogous to the evolution of a known broadly neutraliz-

ing antibody [35]. We show here, with vaccine-induced monoclonal antibodies from three

different macaques that nAbs can have conserved Env binding modes and genetic characteris-

tics. The antibodies elicited here were strain-specific neutralizing antibodies, and not the

bnAbs sought in the reverse vaccinology and B cell lineage design approaches. The next step

for a HIV vaccine will be to elicit such phenotypically and genotypically conserved responses

against a broadly neutralizing epitope, instead of a strain specific epitope. Such an achievement

would allow for consistent engagement of bnAb B cell lineages and subsequent vaccine-

induced antibody maturation to produce bnAbs. Thus, vaccine induction of DH840 class anti-

bodies provides a rationale for reverse vaccinology and B cell lineage design approaches that

rely on relatively uniform antibodies being elicited by vaccination in diverse individuals.

Materials and methods

Animals and immunizations

The rhesus macaque vaccinations were performed as previously described [40,41]. Briefly,

Indian origin rhesus macaques were administered intramuscularly CON-S gp140ΔCFI Env

DNA (5 mg) at weeks 0, 4, and 8. At week 24, each macaque was immunized with 1011 PFU of

recombinant adenovirus serotype 5 encoding CON-S gp140ΔCFI Env. Beginning at week 64,

the macaques received a series of fifteen 100 μg intramuscular immunizations with CON-S

gp140ΔCFI protein formulated with emulsigen and oligo CpG 4–6 weeks apart. Two weeks

after the eighth CON-S gp140ΔCFI protein immunization, peripheral blood mononuclear

cells (PBMCs) were collected from whole blood for B sorting and cell culture from macaque

L999. PBMCs were obtained from macaque M172 two weeks after the thirteenth CON-S

gp140ΔCFI protein immunization for B cell sorting. The NYVAC gp120/recombinant gp120

boost consisted of intramuscular immunizations using 108 PFU of NYVAC expressing HIV-1

CON-S gp120 at weeks 0 and 4. At weeks 20, 24, 28, 50, and 82 the macaques were adminis-

tered intramuscular immunizations with CON-S gp120 protein formulated in a TLR 7, 8, and

9 agonist STR8-C. Whole blood was obtained two weeks after the third gp120 immunization,

from which PBMCs were isolated for single B cell sorting. All study procedures were approved

by the Duke IACUC and performed at an AAALAC-accredited facility.

Antigen-specific single B cell sorting

Cryopreserved PBMC were washed, counted, and stained with NK, T, and B cell surface mark-

ers and fluorophore-labeled envelope protein for 1 hour at 4 ˚C [36]. Antibodies used for stain-

ing were CD20 FITC clone L27 (BD Biosciences Cat No. 347673), CD3 PerCP Cy5.5 clone

SP34-2 (BD Biosciences Cat No. 552852), IgD PE polyclonal (Southern Biotech Cat No. 2030–

09), CD8 PE Texas Red clone 3B5 (Invitrogen Cat No. MHCD0817), IgM PE Cy5 clone G20-

127 (BD Biosciences Cat No. 551079), CD16 PE Cy7 clone 3G8 (BD Biosciences Cat No.

557744), Live / Dead Aqua (Invitrogen Cat No. L34957), CD14 BV570 clone M5E2 (BioLegend

Cat No. 301832), and CD27 APC Cy7 clone O323 (BioLegend Cat No. 302816). Envelope
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reactive, live, IgD- single B cells were sorted into individual wells of a 96-well PCR plate that

contained cell lysis buffer and 5X first-strand synthesis buffer. Plates were frozen on dry ice

and ethanol and stored at -80 ˚C until reverse transcription of RNA. In one case, memory B

cells were sorted and cultured at limiting dilution to induce in vitro differentiation into anti-

body-secreting cells using feeder cells and stimulants as previously described [77]. Two weeks

later, cultured B cells were transferred into RNALater and culture supernatants were screened

for CON-S neutralization. RNA was isolated from B cells that secreted neutralizing antibodies

using the RNAeasy kit (Qiagen Cat No. 74181) and stored at -80 ˚C until used for reverse

transcription.

Rhesus Immunoglobulin RT-PCR

Superscript III (ThermoFisher Cat No. 18080044) and immunoglobulin constant region-spe-

cific reverse primers were used to reverse transcribe B cell RNA [36,78,79]. Five microliters of

complementary DNA were subjected to two rounds of nested PCR for heavy and light chain

variable region amplification. PCR reactions yielding immunoglobulin variable region ampli-

cons were identified by agarose gel electrophoresis. PCR amplicons were purified using the

PCR clean-up kit (Qiagen). Purified PCR amplicons were sequenced with 4 μM of forward

and reverse primers. Contigs of the amplified immunoglobulin sequences were made, and

gene segment usage was inferred with the rhesus library in IMGT V-quest [80] and Clonana-

lyst [36, 81]. The unmutated common ancestor (UCA) antibodies and antibody phylogenetic

trees were inferred using the rhesus library in Cloanalyst [36, 81]. Gene inferences were also

determined using the rhesus library in IMGT V-quest [82]. Somatic mutations of the antibod-

ies were determined by aligning nucleotide or amino acid sequences using the program BioE-

dit (Informer Technologies, Inc.). A second aliquot of the purified PCR amplicon was used for

overlapping PCR to generate a linear expression cassette. The expression cassette was trans-

fected into Expi293F cells (ThermoFisher, Cat No. A14527) with Expifectamine (Thermo-

Fisher, Cat No. A14526). Three days after transfection, cell culture media was cleared of cells

and secreted recombinant antibodies in the cell culture media were tested for binding to HIV-

1 envelope. The variable regions of selected heavy and light chains were synthesized and

cloned into gamma, kappa, or lambda expression vectors (GenScript). Plasmids were prepared

for transient transfection of Expi293F cells using the MegaPrep plasmid plus kit (Qiagen).

Recombinant IgG production

Recombinant IgG1 was expressed in Expi293F cells (ThermoFisher, Cat No. A14527) by tran-

sient transfection with Expifectamine (ThermoFisher, Cat No. A14526) [11,40]. Five days after

transfection cell culture media was cleared of cells by centrifugation and 0.8 μm filtration. IgG1

was purified from cell culture supernatant with protein A (ThermoFisher Cat No. 20334) and

antigen binding fragments were purified with KappaSelect or LambdaSelect (GE Healthcare Cat

No. 17548201 and 17545801) affinity chromatography. Purified protein was buffer exchanged

into PBS with successive rounds of centrifugation, filtration, followed by storage at -80˚C.

Direct ELISA

HIV-1 envelope protein (2 μg mL-1) in sodium bicarbonate buffer was incubated in sealed

384-well Nunc immunoassay plates (ThermoFisher, Cat no. 464718) overnight at 4˚C [40].

Unbound protein was washed away, and the plates were blocked with SuperBlock for 1 h.

Superblock was aspirated and 10 μL of serially diluted antibodies were added to the plate for

90 min. Plates were washed with SuperWash, and binding antibodies were detected with

1:30,000 dilution of horse radish peroxidase-labeled anti-IgG Fc antibody (Southern Biotech,
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SB108a, Cat no. 4700–05). Horseradish peroxidase was detected with 3,3’,5,5’-Tetramethylben-

zidine for 15 min and the reaction was stopped by the addition of 1% HCl. The absorbance at

450 nm of each well was read with a Spectramax plate reader (Molecular Devices). Binding

titers were analyzed as area-under-the-curve for log-transformed antibody concentrations.

Monoclonal antibody competition ELISA

Nunc Maxisorp plates were coated with HIV-1 envelope, washed and blocked with Superblock

[40,79]. Non-biotinylated monoclonal antibodies were serially diluted in SuperBlock starting

at 100 μg mL-1 and incubated with envelope in triplicate wells for 90 min. A subset of wells was

left without any antibody competitor. As a negative control, an anti-influenza antibody CH65

was added to the Env prior to addition of the biotinylated monoclonal antibodies. As a positive

control, non-biotinylated DH840.1 IgG was used. After 90 min the non-biotinylated antibody

was washed away and biotinylated DH840.1 IgG was incubated in the wells for 1 h at a concen-

tration approximating its 50% effective concentration. Each well was washed, and binding of

biotinylated antibodies was determined with a 1:30,000 dilution of HRP-conjugated streptavi-

din. HRP was detected with 3,3’,5,5’-Tetramethylbenzidine and stopped with 1% HCl. The

absorbance at 450 nm was read with a Spectramax plate reader (Molecular Devices). Binding

of the biotinylated DH840.1 antibody to HIV-1 envelope in the absence of competing antibody

was compared to binding in the presence of competing antibody to calculate percent inhibi-

tion of binding. Assays were considered valid if the positive control antibodies blocked greater

than 20% of the biotinylated antibody binding [40,79].

HIV-1 Env peptide array

HIV-1 peptide libraries were generated from group M, clade A, clade B, clade C, clade D,

CRF01, and CRF02 consensus gp160s [83]. In addition to these gp160s, we also generated pep-

tides from the gp120 of HIV-1 vaccine strains MN, A244, TH023, TV-1, ZM651, and 1086C.

Each peptide spanned 15 amino acids and overlapped with neighboring peptides by 12 amino

acids. Array slides were obtained from JPT Peptide Technologies GmbH (Germany) by print-

ing a library of peptides onto epoxy glass slides (PolyAn GmbH, Germany). Three identical

subarrays were blocked for 1 h, followed by a 2-h incubation with monoclonal antibody, and a

subsequent 45-min incubation with anti-monkey IgG conjugated with AF647 (Jackson Immu-

noResearch, PA). Array slides were scanned at a wavelength of 635 nm using an InnoScan 710

scanner (InnopSys, Denmark) and images were analyzed using Magpix V8.1.1 and visualized

with R statistical package (R Foundation for Statistical Computing).

HIV-1 sequence analysis

The prevalence of amino acids at each position between 326–346 was determined using Analy-

zeAlign (https://www.hiv.lanl.gov/content/sequence/ANALYZEALIGN/analyze_align.html).

LOGO plots were generated by AnalyzeAlign.

Recombinant HIV-1 gp140 SOSIP production

Soluble HIV-1 Env trimers were expressed, purified and characterized as previously described

[11,84]. The soluble CON-S envelope trimer was designed as a stabilized CON-S SOSIP gp140

and was expressed in Freestyle293 cells (ThermoFisher Cat No. K900001) by transient trans-

fection with plasmid DNA complexed with 293Fectin (ThermoFisher Cat No. 12347019).

650 μg of SOSIP expressing plasmid and 150 μg of furin expressing plasmid were used for

each 1L of cells. Cell-free culture supernatant was 0.8 μm filtered and concentrated to
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approximately 100 mL. The SOSIP protein was purified from the cell culture supernatant with

PGT145 affinity chromatography. Cell-free supernatant was applied to the column at 2 mL

min-1 using an AKTA Pure (GE Healthcare Cat No. 29018224), washed, and protein was

eluted off the column with 3M MgCl2. The eluate was immediately diluted in 10 mM Tris pH

8, 0.2 μm filtered, and concentrated down to 2 mL for size exclusion chromatography.

Trimeric protein was purified with a Superose6 16/600 column (GE Healthcare Cat No.

29323952) in 10 mM Tris pH 8, 500 mM NaCl. Trimeric HIV-1 Env protein was sterile-fil-

tered, snap frozen, and stored at -80˚C. The formation of trimers was determined by negative

stain electron microscopy, blue native-PAGE, and analytical size exclusion chromatography.

Recombinant gp120, gp140ΔCFI, and gp120 core production

Each HIV-1 envelope construct was expressed by transient transfection using Freestyle 293F

(ThermoFisher Cat No. K900001) cells and 293Fectin (ThermoFisher Cat No. 12347019). To

modify envelope glycosylation, cells were treated with 5 μM kifunensine. Additionally, envelope

was expressed in 293S GnT1-/- cells (ATCC, Cat No. CRL-3022) to restrict glycan processing.

HIV-1 gp120 and gp140ΔCFI were purified by lectin chromatography followed by Superdex200

(GE Healthcare Cat No. 28989335) or Superose6 (GE Healthcare Cat No. 29323952) size exclu-

sion chromatography respectively. The CON-S extended core (coree) gp120 was designed as

described by Kwong and colleagues [85]. Briefly, a gp120 molecule was constructed using Env

residues 44–492 with deleted V1, V2, and V3 loops that were replaced by glycine/serine-linkers.

The CON-S gp120 core was purified by nickel chromatography. The HIV-1 CON-S gp120

coree was deglycosylated using endoglycosidase H, and purified with Con A-Sepharose (Milli-

pore Sigma Cat No. GE17-0440-01) negative-selection, followed by Superdex200 (GE Health-

care Cat No. 28989335) size-exclusion chromatography. CON-S coree 3c-His8 sequence (signal

peptide is underlined): MDSKGSSQKGSRLLLLLVVSNLLLPQGVVGQVWKEANTTLFCAS

DAKAYDTEVHNVWATHACVPTDPNPQEIVLENVTENFNMWKNNMVEQMHEDIISL

WDQSLKPCVKLTggSAITQACPKVSFEPIPIHYCAPAGFAILKCNDKKFNGTGPCKNVST

VQCTHGIKPVVSTQLLLNGSLAEEEIIIRSENITNNAKTIIVQLNESVEINCTRPNNggsgsgG

DIRQAHCNISGTKWNKTLQQVAKKLREHFNNKTIIFKPSSGGDLEITTHSFNCRGEFFYC

NTSGLFNSTWIGNGTKNNNNTNDTITLPCRIKQIINMWQGVGQAMYAPPIEGKITCKS

NITGLLLTRDGGNNNTNETEIFRPGGGDMRDNWRSELYKYKVVKIEGSLEVLFQGPGH

HHHHHHH��

Site-directed mutagenesis

Single mutations were introduced into the DH840.1 variable regions or CON-S gp120 using

the QuikChange Lightning Multi Site-Directed Mutagenesis Kit (Agilent). Oligonucleotides

were synthesized and purified by standard desalting (Integrated DNA Technologies). Fifty

nanograms of purified DNA was used as the template for mutagenesis. Mutagenesis reactions

were conducted per the manufacturer’s instructions except the volume of DpnI was doubled

and the digestion was conducted for 1 h.

In vitro HIV-1 neutralization

Antibody-mediated HIV-1 neutralization was measured using Tat-regulated luciferase (Luc)

reporter gene expression in TZM-bl cells as described previously [86]. TZM-bl cells were

obtained from the NIH AIDS Research and Reference Reagent Program, as contributed by

John Kappes and Xiaoyun Wu. Pseudoviruses were produced by transient transfection of

293T cells. [87,88]. The monoclonal antibody was pre-incubated with virus (~150,000 relative

light unit equivalents) for 1 h at 37 ˚C, and TZM-bl cells were subsequently added. After 48 h,
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cells were lysed and Luc activity determined with BriteLite Plus Reagent (Perkin Elmer) and a

microtiter plate luminometer. Neutralization titers are the inhibitory concentration at which

relative luminescence units (RLU) were reduced by 50% compared to RLU in virus only con-

trol wells after subtraction of background RLU in uninfected cell only control wells (IC50).

Octet biolayer interferometry

Affinity assays were performed on an Octet RED96 instrument at 30˚C with kinetics buffer

used for all dilution, baseline and dissociation steps. Anti-Penta-HIS (HIS1K) biosensors (Pall

ForteBio), loaded with CON-S coree or Deglycosylated CON-S coree at ~50% of maximum

binding capacity (30 μg/ml for 100 s), were dipped into wells containing serial dilutions of the

DH840 class antibodies ranging from 2.8 μM to 115 nM for 30–60 s. Antibody-coree com-

plexes were then allowed to dissociate for 30–90 s in kinetics buffer. After reference subtrac-

tion, binding kinetic constants were determined, from at least 4 concentrations of DH840 class

antibodies, by fitting the curves to a 1: 1 Langmuir binding model using the Octet Data Analy-

sis software v10.0 (Pall ForteBio).

X-ray crystallography

Purified DH840.1 Fab and DH846 Fab were concentrated to 10 mg/ml and used for crystalliza-

tion screening. A set of 1200 crystal growth conditions prepared using an Art Robbins Scor-

pion robot, were assessed by mixing 0.2 μL of protein with 0.2 μl of reservoir solution using

the sitting-drop vapor diffusion method at 20˚C. Once initial crystal conditions were observed,

further crystallization trials to improve crystal size and shape were carried out by hand, using a

1:1 ratio of protein and reservoir solution. DH840.1 Fab crystals were obtained with a reservoir

solution containing 20% PEG 8000, 0.2M sodium chloride, 0.1M phosphate-citrate (pH 4.2),

and DH846 Fab crystals were obtained with a reservoir solution containing 12.5% MPD,

12.5% PEG1000, 12.5% PEG3350, 0.06M Magnesium chloride hexahydrate, 0.06M calcium

chloride dehydrate, 0.1M imidazole-MES pH 6.5. Optimized crystals were briefly soaked in

mother liquor supplemented with 20% glycerol for DH840.1 Fab, and with 20% ethylene glycol

for DH846 Fab, and cryo-cooled in liquid nitrogen prior to x-ray diffraction data collection.

X-ray diffraction data for DH840.1 Fab crystals were collected at 0.98 Å wavelength at APS,

ANL (Advanced Photon Source, Argonne National Laboratory) beamline 22-BM, and data for

DH846 Fab crystals were collected at 0.98 Å wavelength at beamline 19-BM. Data collection

and refinement statistics are provided in S1 Table. All diffraction data were processed with the

HKL2000 suite [89]. Structures were solved by molecular replacement using PHASER with the

heavy chain of 6C6X and light chain of 5I16 PDBs as search models for DH840.1 Fab, while

the refined structure of DH840.1 Fab was used as a search model for DH846 Fab. Iterative

model building and refinement were performed in COOT [90] and Phenix [91], respectively.

Prior to refinement, a cross validation (Rfree) test set consisting of 5% of the reflections was

selected and used to assess the model accuracy throughout the refinement process. The Rama-

chandran plot as determined by MOLPROBITY [92] showed 95% of all residues in favored

regions and 99% of all residues in allowed regions. Crystal structures were deposited in the

Protein Database under identification numbers 6U6M and 6U6O. Structure figures were pre-

pared using PyMOL (The PyMOL Molecular Graphics System (DeLano Scientific).

Negative stain electron microscopy (NSEM)

The purified HIV chimeric CON-S DS.SOSIP-664 trimers were incubated with DH840,

DH842, DH845 and DH846 Fab using a 10-fold molar excess of the Fab. These 4 mixtures

were incubated for 1h at room temperature and were analyzed by NSEM. A 3 μL aliquot

PLOS PATHOGENS HIV-1 vaccination elicits convergent neutralizing antibodies

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009624 June 4, 2021 21 / 29

https://doi.org/10.1371/journal.ppat.1009624


containing ~0.01 mg/mL of the sample was applied for 20 s onto a carbon-coated 200 Cu mesh

grid (Electron Microscopy Sciences, Protochips, Inc.) that had been glow discharged at 30 mA

for 30 s (Pelco easiGlow, Ted Pella, Inc.), then negatively stained with 0.7% (w/v) uranyl for-

mate for 40 s. Data for the 4 complexes was collected using a Tecnai FEI T20 electron micro-

scope operating at 200 kV, with an electron dose of ~40 e-/Å2 and a magnification of 100,000 x

that resulted in a pixel size of 2.19 Å at the specimen plane. Images were acquired with an

Eagle 2kx2k CCD camera (FEI) using a nominal defocus of 1100 nm and the SerialEM soft-

ware [93]. For electron microscopy data processing, particles were selected from the micro-

graphs, extracted, and a reference-free 2D class averages were obtained using RELION 2.1.0

[94]. After 2D sorting, particles were subject to 3D classification, requesting 4 classes, and

starting with an initial model of the trimer unliganded and filtered to 60 Å resolution without

imposing symmetry. In case of the trimer bound to DH840 and DH842, all 4 classes showed

only 1 Fab bound to the trimer. For the complexes with DH845 and DH846, all 4 classes

showed 2 Fabs bound to the trimer. The best class for every complex was selected for final

refinement without imposing symmetry in RELION. The resolutions for the 3D final recon-

structions were 29 Å for the trimer bound to DH840.1 (EMDB: EMD-21448), 17 Å for the tri-

mer bound to DH842 (EMDB: EMD-21449), 21 Å for the trimer bound to DH845.1 (EMDB:

EMD-21450) and 20 Å for the trimer bound to DH846.1 (EMDB: EMD-21451).

Statistical analyses

Descriptive statistics were calculated using Prism version 8 (GraphPad). Prism version 8

(GraphPad) was used to perform group comparisons with Exact Wilcoxon tests. Peptide array

data were visualized with R statistical package (The R foundation).
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