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In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission
yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find
that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex.
However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates
expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing
either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of
histone methylation, and their correlation with gene expression, upon deletion of the swm1+ gene. Using hyper-geometric
probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the
chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1
and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show
that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels
of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1
deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated
in the swm1D strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller
Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an
unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone
demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression.
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INTRODUCTION
Post-translational modifications of histones regulate gene transcrip-

tion either by recruiting other proteins/complexes or by altering the

underlying chromatin structure. Until recently one such modifica-

tion, lysine methylation, which can either activate or repress gene

transcription [for a review see ref. 1], was thought to be irreversible.

However, two classes of protein demethylase, that specifically remove

methyl groups from lysine, have now been identified [2–6]. One of

these, represented by lysine-specific demethylase 1 (LSD1), also

known as BHC110, is a flavin adenine nucleotide-dependent (FAD)

amine oxidase that removes methyl-groups from mono- and di-

methylated lysine 4 of histone H3 (H3K4) [2]. LSD1 is a component

of various complexes that repress transcription and which often

contain HDAC1/2 and CoREST [7–10]. Recent studies show that

the specificity and activity of the enzyme is modulated by its associa-

tion with different proteins [11–13]. Metzger et al., (2005) [13], have

interestingly shown that LSD1 when associated in a complex with the

androgen receptor specifically demethylates H3K9 (instead of

H3K4). The activity of LSD1 is also modulated by association with

a SANT domain from the CoREST protein, which recruits the

demethylase to nucleosomal substrates [11–12]. In addition, it has

also been suggested that demethylation of nucleosomes by the LSD1-

CoREST complex is inhibited by BHC80, a PHD domain protein

[11], as well as by histone acetylation [12]. These results suggest

a model whereby demethylase activity can be targeted in alternative

ways to different sites and that it is regulated by other modifications,

e.g. acetylation, to coordinate different activities.

RESULTS AND DISCUSSION

Identification of the members of the Swm

complexes
Strains expressing C-terminally TAP-tagged Swm1 and Swm2

(from their endogenous promoters) were used to affinity purify

complexes of the two proteins. The associated proteins were

subsequently identified by mass spectrometry (MS). The results of
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the MS analysis are presented in Table S1 in the Supplementary

Information and are summarized in Figure 1. In brief, our data

confirm the results of Nicolas et al., (2006) [14] and show that the

Swm1 complex contains Swm2 and two new PHD domain

containing proteins (S. pombe DB CDS: SPCC4G3.07 and

SPAC30D11.08c), hereafter referred to as Swp1 (Swm associated

PHD1) and Swp2 (Swm associated PHD2). Surprisingly, the

purified Swm2 complex contained only Swm1 and Swp1, but not

Swp2, suggesting that the Swm proteins may exist in more than

one complex. However, in contrast to the results of Nicolas et al.,

(2006) [14] we did not detect either Hrp1 or SPBPJ758.01 (an

RNA recognition motif protein), suggesting that these proteins

have weaker affinities or are more transiently associated with the

complexes. Alternatively, the use of different tags in the two studies

may also explain the discreprency.

The S. pombe Swm complex demethylates lysine-9

of histone H3
Previous studies have shown that human LSD1 can demethylate

either lysine residues 4 or 9 in histone H3, depending on the

presence or absence of associated proteins [13]. To determine

whether the S. pombe Swm complex can also demethylate histones,

we carried out a series of demethylation assays using purified TAP-

tagged complexes.

Initial assays for histone demethylase activity were attempted

using similar methods to those described by Shi et al., (2004) [2],

involving MS and synthetic peptide substrates. However, when

comparing the detection limits (assuming a similar level of activity

to the E. coli expressed human LSD1 as a control) we found that

we were not able to purify sufficient quantities of the TAP-tagged

Swm1 and Swm2 complexes from S. pombe to reliably detect

demethylase activity in MS assays. We therefore turned to a more

sensitive histone demethylase assay, in which purified histone

methylases are used to radiolabel histone substrates [5,15]. In this

work we used human Set7, S. pombe Clr4 and S. cerevisiae Set2 to

specifically methylate K4, K9 and K36 in histone H3, either in

bulk histones or in polynucleosomes. Because FAD-dependent

amine oxidases should demethylate both mono- and di-methylated

substrates [2], we used Set7 to monomethylate H3K4 (and not the

Set1 complex which leads to trimethylation). We also tried to

ensure that the Clr4 reaction (which can also lead to trimethyla-

tion of H3K9) was partial – by carrying out the labelling reaction

for short periods of time.

Interestingly, only methylated H3K9 was found to be a substrate

for the S. pombe Swm1 and Swm2 complexes (Figure 2a). Similar

levels of activity were detected regardless of whether the complex

was purified using TAP-tagged Swm1 or Swm2. Moreover, similar

levels of activity were found for histone H3 substrates in the form

of either purified bulk histones or nucleosomes. By contrast, in the

human LSD1 control we observed specific demethylation of

H3K4 as previously reported (Figure 2b) [2]. We next tested

whether the S. pombe Swm1 and Swm2 complexes were able to

demethylate K9 in isolated histone H3. While both TAP-tagged

complexes were found to have similar activity towards histone H3

purified from calf thymus (in comparison to nucleosomal sub-

strates), neither complex was active on recombinant histone H3

(Figure 2c). It is currently unclear why the S. pombe demethylase

complex is inactive on recombinant methylated histone H3, but

one possibility is that an additional post-translational modifica-

tion(s) is needed for the complex to effectively recognise its

substrate. Finally, to rule out the possibility that a contaminant was

responsible for the H3K9 demethylase activity, we demonstrated

that recombinant E. coli expressed Swm1 has the same pattern of

activity/specificity as that of the intact complex (Figure 2d). This

experiment demonstrates that Swm1 is a catalytically active sub-

unit. However, because we have not so far been able to express/

purify recombinant Swm2, this PAO domain protein may also be

catalytically active. Structure-based sequence analysis suggests that

Swm2 also has the appropriate FAD-binding and catalytic residues

required for demethylase activity (data not shown).

Swm1 both up- and down-regulates gene

expression
To determine if the Swm1 and Swm2 proteins are involved in

regulation of gene expression, we constructed strains of S. pombe in

which either the Swm1 or Swm2 genes were deleted. Consistent with

the results obtained by Nicolas et al., (2006) [14], we found that swm2

is an essential gene and that deletion of swm1 markedly increased the

cell doubling time (data not shown). Thus, gene expression profiling

could only be carried out in cells lacking Swm1.

Our global analysis of gene expression shows that somewhat

more genes are up-regulated in the swm1 deletion (swm1D) strain

(265 genes) than are down-regulated (173 genes) (using a 1.5 fold

cut-off; see Table S2 in the Supplementary information). In

Figure 3, the moving average (calculated over 150 genes) of the

swm1D/wild-type expression ratio vs the level of wild-type gene

expression is plotted. If the swm1 deletion had no effect on gene

expression one would expect a global moving average ratio of 1.0.

As can be seen, however, the swm1D/wild-type expression ratio is

generally high for non-expressed and weakly expressed genes,

suggesting that (globally) Swm1 represses these non-expressed and

weakly expressed genes.

We emphasise, however, that Swm1 also has an activating role

at 173 genes. The effect of swm1 deletion on these genes appears to

be direct. In hyper-geometric distribution tests, we found a statisti-

cally significant overlap when comparing the published genome-

wide Swm1/2 localisation data [14] with the list of genes that are

down-regulated in swm1D cells (P = 3.18610-7), but not those that

are up-regulated (compare Figure 4c bottom, left and right).

Further analysis, using hyper-geometric distribution tests, with

a database of genes affected by histone modifications, showed that

there is a very significant similarity of up-regulated genes in the

swm1D strain to up-regulated genes in the clr6-1 strain (see Table 1).

clr6-1 is a loss of function mutant of Clr6, a histone deacetylase

Figure 1. Schematic representation of Swm1/2 complex members:
Swm1 (SPBC146.09c), Swm2 (SPAC23E2.02), Swp1 (SPCC4G3.07) and
Swp2 (SPAC30D11.08c) are annotated with domain borders as in the
SMART sequence analysis database (http://smart.embl-heidelberg.de).
doi:10.1371/journal.pone.0000386.g001
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(HDAC) and known transcriptional repressor, which is similar to

HDAC1/2 in higher organisms [16–17]. Consistent with Swm1

acting in concert with Clr6, there is also a significant overlap of genes

that are up-regulated in the swm1D strain with genes whose

promoters lack acetylation in wild-type cells [18] (see Table 1).

Our analyses extend the observations of Nicolas et al., (2006) [14].

Thus, it is now clear that the S. pombe Swm1/2 complex has dual

roles in gene regulation, up-regulating some 173 genes and down-

regulating some 265 others. The correlation between Swm1/2

localisation and down-regulated genes in swm1D cells, suggests that

the complex might have a more direct role in stimulating gene

expression than it does in repression. Moreover, the imposition of

a repressed state by Swm1/2 involves one of the HDACs – Clr6.

The effects of Swm1 deletion on K4 and K9-

methylation of histone H3
We next measured levels of H3K4 and H3K9 dimethylation using

ChIP-chip experiments in both inter-genic (IGR) (including all pol

II promoters) and open-reading frame (ORF) regions in the swm1D
strain [see Ref. 18 for details of the microarray platform]. (Our

studies focussed on the levels of dimethylation, as opposed to

monomethylation, because of the availability of suitable anti-

bodies. In addition, levels of trimethylation are known to be low in

S. pombe.) In agreement with our finding that the fission yeast Swm

complex demethylates H3K9 (Figure 2), deletion of swm1 resulted

in increased levels of H3K9me2 in a large part of the genome –

8.2% of genes showed increased H3K9me2 in either the ORF or

IGR regions. H3K4me2 levels, however, were also increased in

a smaller part of the genome (3.8%). Interestingly, there appears to

be a bias towards increased levels of H3K4me2 in ORF regions (as

compared to IGR regions), whereas H3K9me2 levels were increased

in both the ORF and IGR regions (compare Figures 4a, 4b). (See

Table S3 in the Supplementary information for lists of the IGR and

ORF regions with high levels of H3K4me2 and H3K9me2 in the

swm1D strain.) (Note that the S. pombe genome is composed of

roughly equal amounts of IGR and ORF regions.)

Globally, overall levels of H3K9me2 were not significantly

changed in genes whose expression is either up- or down-regulated

in the absence of Swm1 (Figure 4a). However, on closer examina-

tion of the genes that are activated by Swm1, a few have increased

H3K9me2 levels in the absence of Swm1. Within this group of 10

genes, sti1+ and SPCC1620.06c were previously identified as

Swm1/2 binding targets [14]. This data suggests that in wild-type

Figure 2. Histone demethylase activity of TAP tagged Swm1 and Swm2 complexes (A&C), recombinant human LSD1 (B), and GST-Swm1 (D), with
various methylated histone substrates. The substrates: calf thymus bulk histones (BH), chicken polynucleosomes (Nuc), calf thymus histone H3 (H3)
and recombinant H3 (rH3) along with their sites of lysine (K) methylation are indicated below the panels. Control indicates a mock TAP-tag
purification from the wild type strain. hLSD1 was recombinant E. coli expressed human LSD1 protein and GST-Swm1 was recombinant E. coli
expressed Swm1.
doi:10.1371/journal.pone.0000386.g002
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cells Swm1 may have an activating function at some genes, which

involves demethylation of H3K9me2 in ORF regions, consistent

with the general role of H3K9me2 in gene repression and silencing

in S. pombe [19–21]. However, due to the small number of genes

involved, this does not appear to be the major role of the Swm1/2

complex.

In genes that are repressed by Swm1, and therefore up-regulated

in the swm1D strain, levels of H3K4me2 were seen significantly more

frequently (CHI square, P,0.01). The bias towards increased levels

of H3K4me2 in ORF regions (as compared to the IGR regions) was

again apparent (Figure 4b). However, no difference in H3K4me2

levels was observed in genes that are activated by Swm1, and

therefore repressed in the swm1D strain.

The bias towards increased H3K4me2 levels in ORF regions of

genes that are up-regulated in swm1D cells, when taken together

with the lack of in-vitro H3K4 demethylase activity of the Swm1/2

complex (see above), suggests that the increased H3K4me2 levels

results from either increased H3K4 methylation via Set1, or the

incorporation of H3K4 methylated histones during transcription.

Correlation of H3K9me2 or H3K4me2 levels with

other post-translational modifications
The changes in H3K9me2 or H3K4me2 levels observed at genes in

the swm1D cells may correlate with other post-translational modifi-

cations associated with the same genes. To test this we compared the

lists of IGR and ORF regions showing either high H3K9me2 or

H3K4me2 in swm1D cells with our database of genes affected by

histone modifications using hyper-geometric distribution tests.

The regions which show increased H3K4me2 in the swm1D cells

were very significantly similar to regions where histone acetylation

is low in wild-type cells. They were also significantly similar to

regions with increased acetylation in the clr6-1 mutant [18]

(Table 2). These findings are consistent with the observation that

there is a very significant similarity of up-regulated genes in the

swm1D strain to up-regulated genes in the clr6-1 strain (see above

and Table 1). The functional link to Clr6 is also interesting given

that LSD1 (a human homologue of Swm1) physically and

functionally interacts with HDAC1/2 [7–10]. Moreover, the

regions associated with increased H3K4me2 in swm1D cells tend to

be the 39 regions of longer genes (.1000 bp), which in wild type

cells normally have low levels of both histone acetylation and

H3K4me2, and which are hyperacetylated in clr6-1 cells [22]. These

findings again suggest that Swm1 and Clr6 may collaborate to

maintain repressive chromatin in both IGR and ORF regions, to

influence both transcriptional initiation and elongation. Further-

more, the affected IGR regions in the swm1D cells also overlap

significantly with Clr3 and Sir2 HDAC binding data (Table 2).

The lists of IGR regions which show increased levels of

H3K4me2 in the swm1D strain also overlapped significantly with lists

of genes representing IGR binding of the Hrp1 chromatin

remodelling factor and its closely related (64% identical) paralogue

Hrp3 (P = 9.01610-6 and 5.64610-4, respectively; see Table 2).

Moreover, the lists of up-regulated genes in the swm1D strain showed

significant similarity to lists of IGR regions bound by Hrp1 and Hrp3

(P = 5.48610-6 and 1.33610-5, respectively; See Table 1).

Possible targeting of the Swm complex via Clr6?
Given the finding that loss of function of either the Swm1 histone

demethylase or Clr6 HDAC, results in up-regulation of genes and

altered levels of histone modifications in the same regions of the

Figure 3. Global analysis of the gene expression profile in swm1 vs wild type cells. A moving average plot (window size = 150 genes, step size = 1
gene) of the median gene expression ratio, swm1D/wt, plotted as a function of the average transcription levels of 11 wild-type cell cultures in mid-
logarithmic growth.
doi:10.1371/journal.pone.0000386.g003
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Figure 4. Genome wide analysis of histone methylation and gene expression in swm1 cells, and binding of Swm1/2. A) A comparison of increased
H3K9me2 and altered gene expression in swm1 deletion cells. The Venn diagrams illustrate the degree of overlap between lists of IGR and ORF
regions having high H3K9me2 in swm1 deletion cells (using a cutoff value of 2.0 ), and a list of genes, which showed altered expression in swm1D
(using a cutoff value of 1.5). Left: 8.2% of total S. pombe genes showed high IGR or ORF H3K9me2 levels in swm1D. Middle: The Venn diagram shows
the fraction of genes up-regulated in swm1D having high IGR or ORF H3K9me2. Right: The Venn diagram shows the fraction of genes down-regulated
in swm1D having high IGR or ORF H3K9me2. The inserted table shows a list of 10 genes down-regulated in swm1 deletion cells, which also show high
H3K9me2 ORF levels in swm1D (Swm1/2 binding targets are indicated in bold). B) A comparison of increased H3K4me2 and altered gene expression
in swm1 deletion cells. The Venn diagrams illustrate the degree of overlap between lists of IGR and ORF regions having high H3K4me2 in swm1
deletion cells (using a cutoff value of 2.0 ), and a list of genes, which showed altered expression in swm1 (using a cutoff value of 1.5). Left: 3.8% of
total S. pombe genes showed high IGR or ORF H3K4me2 levels in swm1D. Middle: The Venn diagram shows the fraction of genes up-regulated in
swm1D having high IGR or ORF H3K4me2. 9.8% of swm1 up-regulated genes showed high IGR or ORF H3K4me2 levels, which is significantly more
than expected from the genome average (CHI square, P,0.01; indicated). Right: The Venn diagram shows the fraction of genes down-regulated in
swm1D having high IGR or ORF H3K4me2. C) Comparison of Swm1/2 binding targets (determined by Nicolas et al., (2006)), H3K4me2 and H3K9me2
levels, as well as gene expression changes in swm1 deletion cells. Top: The Venn diagrams illustrate the degree of overlap between lists of IGR and
ORF regions having high H3K4me2 and H3K9me2 levels (as indicated) in swm1 deletion cells, and a list of Swm1/2-binding targets. 13.4% of Swm1/2
binding targets showed high IGR or ORF H3K4me2 levels, which is significantly more than expected from the genome average (CHI square, P.0.001;
indicated). Bottom: The Venn diagrams illustrate the degree of overlap between the list of Swm1/2-binding targets and gene expression changes in
swm1 deletion cells. Bottom right: A significant proportion of swm1 down-regulated genes (hypergeometric P value indicated) were defined as
Swm1/2-binding targets. (Note that our microarray contains only 143 of the 175 targets published by Nicolas et al., (2006).)
doi:10.1371/journal.pone.0000386.g004
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genome, and the knowledge that human LSD1 physically and

functionally interacts with HDAC1/2 [7–10], we wondered whether

there was a physical interaction between the S. pombe Swm1 and Clr6

complexes? Because we had not identified any of the Clr6 complex

components in TAP-tagging/MS studies of Swm1 and Swm2, we

also TAP-tagged components of the Clr6 complex, to see if we could

identify any of the Swm partner proteins. These studies, however,

only identified the same proteins found in previous work [23],

namely: Clr6, Alp13, Prw1 and Pst2 (data not shown). In preliminary

experiments we have found that Hrp1 and Hrp3 co-purify in affinity

purification experiments (Walfridsson, Khorosjutina, Gustafsson,

Ekwall et. al. manuscript in preparation). Our results, therefore,

indicate that there is a conserved functional interaction between the

Swm1 histone demethylase and the Clr6 histone deacetylase that is

also found in mammalian cells. They also provide further support for

a model in which deacetylation of nucleosomes sets the stage for

demethylation [12]. In S. pombe, however, despite the suggested

functional association, and unlike the situation in higher organisms,

any interaction between the two complexes appears to be of a more

transient character.

Possible targeting of the Swm complex via Hrp1/3?
Previously, Nicolas et al (2006) [14] showed that the Swm1/2

complex physically interacts with Hrp1. The putative functional

links to the Hrp1 and Hrp3 chromatin remodelling factors that we

identify here suggest that this interaction may provide a mechanism

for targeting of the Swm demethylase. The double chromo

domains of human CHD1, but not those of S. cerevisiae Chd1p, have

been shown to bind directly to methylated H3K4 [24–25]. Although

the S. pombe Hrp1, does not have all the consensus residues required

for methyl-lysine binding, Hrp3 does (data not shown). Because

Hrp1 and Hrp3 co-purify we speculate that Hrp1/Swm complex

interactions might target some Swm complexes to perform

demethylation through the interaction with Hrp3.

Table 1. Hyper-geometric probability comparisons of genes
either down- or up-regulated in swm1 deletion cells.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HIGH Expression in swm1D vs wild-type, cut-off 1.5 (3 of 4), 265 genes

P value Similar list Name

1.25610-33 stress up .2 fold

3.34610-29 HIGH expression in clr6-1 clr3 deletion (1.5 fold)

4.99610-29 wild type meiosis up .2 fold

6.30610-28 HIGH expression in clr6-1 (1.5 fold)

3.82610-11 LOW IGR WT H4K5Ac H3 Cter corr (1.5 fold)

8.42610-09 LOW IGR WT H4K12Ac H3 Cter corr (1.5 fold)

1.00610-06 LOW IGR WT H3K9Ac H3 Cter corr (1.5 fold)

5.48610-06 IGR binding of Hrp1 (0.90 percentile)

8.92610-06 HIGH expression in clr3 deletion (1.5 fold)

1.33610-05 IGR binding of Hrp3 (0.94 percentile)

7.14610-05 LOW IGR WT H4K16Ac H3 Cter corr (1.5 fold)

0.000185 LOW IGR WT H3K14Ac H3 Cter corr (1.5 fold)

0.00022 Process-Carbohydrate Metabolism

0.0196 ORF binding Clr3-myc (0.86 percentile)

LOW Expression in swm1D vs wild-type, cut-off 1.5 (3 of 4), 173 genes

P value Similar list Name

2.03610-07 HIGH expression in wild type

0.00014 Process-Amino Acid Metabolism

0.00418 GO: 0006531: Process: aspartate metabolism

0.0101 GO: 0006555: Process: methionine metabolism

0.0117 Process-Sulfur Metabolism

0.0496 Process-Transporters

doi:10.1371/journal.pone.0000386.t001..
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Table 2. Hyper-geometric probability comparisons of IGR and
ORF lists with high H3K4me2 in swm1 deletion cells.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HIGH IGR H3K4me2 in swm1D, 41 genes

P value Similar list Name

1,64610-19 High IGR clr6-1 H4K5ac H3 cter corr (2 fold )

2,33610-18 LOW IGR WT H3K14Ac H3 Cter corr (1.5 fold)

2,82610-16 High IGR clr6-1 H4K12ac H3 cter corr (2 fold )

1,82610-15 High IGR clr6-1 H3K14ac H3 cter corr (2 fold)

5,59610-15 LOW IGR WT H4K5Ac H3 Cter corr (1.5 fold)

7,23610-15 LOW IGR WT H3K9Ac H3 Cter corr (1.5 fold)

7,31610-13 LOW IGR WT H4K12Ac H3 Cter corr (1.5 fold)

7,64610-13 High IGR clr6-1 H4K16ac H3 cter corr (2 fold )

6,45610-12 LOW IGR WT H3K4me2 H3 cter corr (1.5 fold)

2,11610-9 LOW IGR WT H4K16Ac H3 Cter corr (1.5 fold))

6,05610-8 High IGR clr6-1 H3K9ac H3 cter corr (2 fold )

9,01610-6 Hrp1 IGR binding (0.9 percentile)

0,000564 Hrp3 IGR binding (0.94 percentile)

0,00058 HIGH expression in wild type meiosis (2 fold)

0,00303 IGR Binding Sir2-myc (0.91 percentile)

0,0497 IGR binding Clr3-myc (0.86 percentile)

HIGH ORF H3K4me2 in swm1D, 162 genes

P value Similar list Name

2,65610-28 LOW ORF WT H3K14Ac H3 Cter corr (1.5 fold)

2,4610-23 LOW ORF WT H4K5Ac H3 Cter corr (1.5 fold)

3,07610-20 LOW ORF WT H4K16Ac H3 Cter corr (1.5 fold)

3,65610-20 Gene length (.1000)

6,06610-18 LOW ORF WT H4K12Ac H3 Cter corr (1.5 fold)

1,1610-9 Gene length (.2000)

4,31610-6 Hrp3 ORF binding (0.92 percentile)

6,66610-6 LOW ORF H3K4Met H3 Cter corr (1.5 fold)

2,99610-5 LOW IGR WT H4K12Ac H3 Cter corr (1.5 fold)

5,46610-5 LOW ORF WT H3K9Ac H3 Cter corr (1.5 fold)

0,000123 Swm1/2 binding targets

0,000535 High ORF clr6-1 H4K12Ac H3 cter corr (2 fold)

0,0249 High ORF clr6-1 H4K16Ac H3 cter corr (2 fold)

0,0324 High ORF clr6-1 H4K5Ac H3 cter corr (2 fold)

0,0455 High ORF clr6-1 H3K14Ac H3 cter corr (2 fold)

HIGH IGR or ORF H3K4me2 in swm1D, combined list 199 genes

P value Similar list Name

0,0032 Swm1/2 binding targets

0,0133 HIGH Expression in swm1D (1.5 fold)

No similar gene lists were found for ‘HIGH IGR H3K9me2 in swm1D’ and ‘HIGH
ORF H3K9me2 in swm1D’
doi:10.1371/journal.pone.0000386.t002..
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Concluding remarks
In conclusion, the data presented here demonstrate that in fission

yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are

associated in complexes that can remove methyl groups from

lysine 9 methylated histone H3. Interestingly, recognition of the

H3K9 substrate appears to require an as yet unidentified

modification. In vivo, loss of Swm1 increases the global levels of

H3K9me2 and H3K4me2, and it results in a significant

accumulation of H3K4me2 at genes that are up-regulated in the

swm1D strain. The bias towards increased H3K4me2 levels in

ORF regions of genes that are up-regulated (as compared to IGR

regions), suggests that this increase results from either increased

methylation by Set1, or incorporation of H3K4 methylated

histones, during transcription.

An alternative explanation for the increased levels of H3K4me2

is that Hrp1/3 might act as coregulators, and influence the

specificity of the Swm1 complex. In a similar manner to that of

human LSD1, which when complexed with the androgen receptor

switches from a H3K4 to a H3K9 demethylase [13], it is possible

that K4 demethylation is favored over K9 in the functional context

of the chromatin remodelling factors Hrpl and Hrp3. However,

the bias to increased levels of H3K4me2 in ORF regions, suggests

(as discussed above) that the increased levels at these genes results

in some way from increased transcription.

Aside from at a few genes, where in the swm1 deletion increased

H3K9me2 levels are correlated with reduced levels of gene

expression, the functional role of the Swm1/2 H3K9 demethylase

activity is not yet clear. Our results, however, highlight complex

interactions between histone demethylase, histone deacetylase and

chromatin remodelling activities in the regulation of gene

expression. The in vivo data indicate that Swm1 acts in concert

with the HDAC Clr6 and the chromatin remodeller Hrp1 to

repress gene expression, but further work is necessary to uncover

the nature of these functional interactions.

Supplementary information is available on line.

METHODS

Reagents
IgG Sepharose was from Amersham, Ni-magnabeads were from

Promega and the Dynabeads M280 were from Dynal Biotech.

Rabbit anti-mouse immunoglobulin protein used for coating the

beads was from DAKO, A/S Denmark. Calf thymus bulk histones

and histone H3 were purchased from Roche. Chicken poly-

nucleosomes were purchased from Abcam and recombinant

Xenopus laevis H3 was from Upstate.

Construction of strains
Strains expressing TAP-tagged Swm1 and Swm2, and the swm1

knockout strain, were constructed using previously described

protocols [26–28]. In brief, the TAP-tagging constructs for

homologous recombination were made using fusion PCR of 500

base pair genomic DNA fragments and the C-terminal TAP-

tagging cassette. The resulting DNA fragment was transfected into

S. pombe strain 501 (leu1-32; ura4-D18; ade6-704;h2). Homologous

recombination was confirmed by PCR with primers inside and

outside the incorporated TAP-tag. Expression of the construct and

fusion protein solubility was checked by Western blots with anti-

protein A antibodies. Strain viability was compared to that of the

wild type strain in normal growth and under stress conditions

(37uC). The swm1D knockout strain was constructed by homolo-

gous integration of Clonat, replacing the ORF. The integration

was confirmed by PCR using primers 59 and 39 to the recombined

region together with primers internal to the Clonat gene.

Cells growth and affinity purification of the

complexes
The published TAP-purification procedure [29] was followed with

minor changes. The wild type and TAP-tagged strain cells were

harvested and washed in ice-cold water, resuspended in 20 mM

HEPES pH 8.0, 150 mM NaCl, 0.1% Tween 20 and broken in

liquid nitrogen using a SPEX CertiPrep 6850 Freezer Mill. The

soluble fraction was bound to either IgG coated Sepharose or IgG

coated Dynabeads, washed extensively, cut with His-tagged TEV

protease and eluted from the beads. Excess IgG and TEV were

removed by incubation with protein A and Ni-agarose beads. The

eluate was bound to calmodulin-binding beads and eluted with

EGTA containing buffer. To avoid loss of protein the complex was

not further purified by SDS-PAGE. Instead, the eluted complex

was directly digested with trypsin and the resulting peptides

identified by mass- spectrometry.

Purification of hLSD1
Human LSD1 (residues 72-852) was subcloned into the pET30

vector (Novagen). Protein expression was carried out in the E. coli

Rossetta 2 strain (Novagen). To induce expression 0.5 mM IPTG

was added to cultures at OD600 of 0.6 and incubated at 25uC for

4 hours. Harvested cells were disrupted in lysis buffer (40 mM Tris

pH 8.0, NaCl 300 mM, 0.5% NP40, protease inhibitors (Sigma))

using an Emulsiflex-05 (Avestin) at up to 8000 psi. hLSD1 was

purified from the clarified lysate with Ni-NTA agarose (Qiagen)

and further purified by anion exchange chromatography (MonoQ

column (Pharmacia Biotech)) and gel filtration (Superdex 200

(Pharmacia Biotech)) using standard protocols.

Purification of GST-Swm1
Full length GST-Swm1 was subcloned into pGEX-2T. Protein

expression was carried out in the E.coli Rossetta strain. To induce

expression 0.5 mM IPTG was added to cultures at an OD600 of

0.5 and incubated at 15uC for 16 hours. Harvested cells were

disrupted in lysis buffer (25 mM Tris-HCL pH 8.0, 150 mM

NaCl, 0.1% Triton-X-100, protease inhibitors (Roche)) by

sonication. Glutathione sepharose resin (Pharmacia) was added

to the clarified lysate and incubated with rotation for 2 hrs at 4uC.

The resin was then extensively washed with lysis buffer without

Triton-X-100. Bounds proteins were finally eluted in 50 mM Tris

pH 8.0, 10 mM glutathione.

In-vitro demethylase assays
3H-labelled methyl histone substrates were prepared using the

following histone methyltransferases (HMT): GST-Set7, MBP-

Clr4 and GST-Set2 as previously described [15]. Briefly, 100 ul

labelling reactions were carried out in methylase buffer (50 mM

Tris pH 8.0, 1 mM DTT, 10% glycerol and 10 mM ZnCl2)

containing 1–5 ug HMTs, 5 ml S-adenosyl-[3H]methyl-methio-

nine (70 Ci/mmol, NEN) and substrate (50 mg calf thymus bulk

histones, 10 mg chicken poly-nucleosomes, 10 mg calf thymus

histone H3 or 10 mg recombinant Xenopus laevis H3). After

a 5 minute incubation at 37uC, reactions were immediately

dialysed into demethylase buffer (50 mM Tris pH 8.8, 0.5 mM

DTT and 5% glycerol) at 4uC.

For demethylase assays labelled histone substrates containing

5,000–50,000 cpm were incubated with 25 ul of either TAP-

tagged Swm complex, mock purifications from wild-type cells, or

5 ug hLSD1 or GST-Swm1 in a final volume of 100 ul with

demethylase buffer at 37uC for 1 hr. The Nash method was then

used to detect the formation of 3H-labelled formaldehyde [30].

S. pombe Homologues of LSD1
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After precipitation with 10% TCA an equal volume of Nash

reagent (3.89 M ammonium acetate, 0.1 M acetic acid and 0.2%

2,4-pentanedione) was added to the supernatant and incubated at

37uC for 50 minutes, followed by extraction with an equal volume

of 1-pentanol. The extracted supernatant was then subjected to

scintillation counting.

Genome wide analysis
The microarray analysis in this study was performed essentially

as outlined in [18]. cDNA expression profiling was carried out

according to Xue et al., (2004) [31]. We used S. pombe ORF and

combined IGR+ORF spotted microarrays from Eurogentec

custom DNA microarray services (Belgium). For histone

methylation maps, ChIP-chip experiments were carried accord-

ing to Robyr and Grunstein (2003) [32]. Antibodies recognising

specific methylation marks were employed: H3K9me2 and

H3K4me2 (a kind gift from Prof. David Allis). For Hrp1 and

Hrp3 binding studies we used the ChIP-chip procedure described

by Kurdistani et al. (2002) [33]. For expression profiling and

analysis of histone methylation levels, two microarray experi-

ments were performed using two independent ChIP samples and

including Cy3/Cy5 dye swops. Because each Eurogentec

microarray yields two data points we thus measured four data

points for each experiment. Expression profiling and histone

methylation in mutant vs. wild-type data sets were normalized

using the GeneSpring software and Lowess (per spot, per chip)

intensity-dependent normalization, which corrects for nonlinear

rates of dye incorporation. Cut off values of 1.5 (for gene

expression) and 2.0 (for histone methylation levels) in at least 3

out of 4 data points were used to generate the ‘high’ and ‘low’

gene lists. For Hrp1 and Hrp3-binding experiments three

microarrays were used, yielding six data points. Here we first

used the GeneSpring software for a ‘per chip’ normalization and

then employed a statistically determined cut-off for binding

according to the median percentile ranking method [34]. Similar

gene lists were identified using the automatic hyper-geometric

distribution tests in the Gene List inspector function of Gene

Spring. The hyper-geometric distribution test calculates the

probability of overlap corresponding to k or more IGR or ORF

fragments between an IGR or ORF list of n fragments compared

against another gene list of m fragments when randomly sampled

from a universe of u genes:

1

u

m

� �Xn

i~k

m

i

� �
u{m

n{i

� �

The significantly overlapping gene lists were illustrated using

Venn diagrams.

SUPPORTING INFORMATION

Table S1 a) Identification of peptides in the Swm complex

purified using TAP-tagged Swm1 (SPBC146.09C) b) Identification

of peptides in the Swm complex purified using TAP-tagged Swm2

(SPAC23E2.02)

Found at: doi:10.1371/journal.pone.0000386.s001 (0.16 MB

DOC)

Table S2 A list of genes either down- or up-regulated in swm1

deletion cells

Found at: doi:10.1371/journal.pone.0000386.s002 (0.17 MB

DOC)

Table S3 Genes that have either increased levels of H3K4me2

or H3K9me2 in swm1 deletion cells

Found at: doi:10.1371/journal.pone.0000386.s003 (0.31 MB

DOC)
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