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Abstract 

Germline and somatic genomic variation represent the bulk of ‘omics data available for precision medicine research.  

These data, however, may fail to capture the dynamic biological processes that underlie disease development, 

particularly for chronic diseases of aging such as chronic kidney disease (CKD).  To demonstrate the value of 

additional dynamic precision medicine data, we sequenced somatic T-cell receptor rearrangements, markers of the 

adaptive immune response, from genomic DNA collected during a clinical encounter from 15 participants with 

CKD and associated co-morbidities.  Participants were consented as part of a larger precision medicine research 

project at the MetroHealth System, a large urban public hospital in Cleveland, Ohio.  Despite the limited sample 

size, we observed reduced T-cell receptor diversity in relation to biomarkers (creatinine and BUN) of CKD status 

in this older and mostly African American sample.  Overall, these data suggest a relationship between advanced 

CKD and premature aging of the adaptive immune system and highlight the potential of dynamic ‘omic data to 

generate novel hypotheses about disease mechanisms and unique opportunities for precision medicine applications. 
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Introduction 

The full vision of precision medicine in the United States is the integration of clinical data with ‘omic data all in the 

context of lifestyle and the environment [1].  The adoption of electronic health records (EHR) by hospitals, spurred in 

part by the 2009 American Recovery and Reinvestment Act (ARRA) and the associated Health Information Technology 

for Economic and Clinical Health (HITECH) Act [2], makes the aggregation and analysis of clinical data, as well as 

delivery of clinical decisions based on these data, possible.  Lifestyle and environmental data collection, while lagging 

behind clinical data collection, is rapidly evolving with the availability of “wearables” and other portable devices that 

can upload or stream data automatically into personal health records and eventually EHRs [3]. 

On the ‘omic front, advances in sequencing and array technology has made the generation of genomic data 

routine and cost effective in both research settings and clinical settings, the latter of which requires Clinical Laboratory 

Improvement Amendments (CLIA) certification by the state and the Center for Medicare and Medicaid Services.  

Currently, more than 28,000 clinical tests offered in the United States are registered in NCBI’s Genetic Testing Registry 

[4], including 100 described as whole exome or whole genome sequencing.  Germline whole exome and whole genome 

sequencing are routinely ordered in the clinic for the undiagnosed diseases and screening for germline mutations in high 

risk patients (e.g., BRCA1 and hereditary breast cancer).  Somatic sequencing typically describes tumor sequencing in 

cancer patients to help determine treatment options and course of disease.  Mitochondrial sequencing is also ordered in 

a clinic setting.  While these germline, somatic, and mitochondrial sequencing efforts capture and characterize much of 

the human (and interacting mitochondrial) genome, they do not capture the dynamic somatic variability of the adaptive 

immune system.  

 

Adaptive Immune System  

The human immune system is broadly divided into the first line of broad defense (innate) and a second line of pathogen-

specific defense (adaptive).  As its name suggests, the adaptive immune response reacts or adapts to specific pathogens 

or autoantigens, thereby providing a means for the organism to defend against a diverse and constantly evolving array 
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of pathogens.  The adaptive immune system also prevents future infections by the same pathogen through the production 

of memory cells. 

The adaptive immune response is initiated and regulated by the binding between T-cell receptors (TCRs) and 

antigens presented by major histocompatibility complex (MHC) class I molecules.  TCRs are complexes of alpha/beta 

chains or delta/gamma chains as well as a cluster of differentiation 3 (CD3) and zeta chains.  Most TCRs contain 

alpha/beta chains, encoded by TRA and TRB on chromosomes 14 and 7, respectively, and consist of a variable (V) 

domain, a constant (C) domain, and a joining (J) domain [5, 6].  The beta chain also includes a diversity (D) domain.  

Germline sequence variation at TRA and TRB differs by population, with a higher number of variant sites and higher 

nucleotide diversity estimates in African-descent populations compared with other populations [5, 7, 8]. 

While germline sequence-level diversity is evident at these loci, the diversity of adaptive immune responses is 

driven by capability of somatic cells to randomly shuffle the gene segments that make the alpha and beta chains early 

in TCR development.  This somatic shuffling event, or V(D)J recombination, coupled with additional insertion and 

deletion events, results in novel amino acid sequences in the antigen-binding region of the TCRs (the complementarity 

determining regions or CDRs) and hence a diverse repertoire of TCRs unconstrained by the static and constant germline 

sequence.   

In healthy individuals, the TCR repertoire is polyclonal with an estimated 1013 unique receptor nucleotide 

sequences [9] or clonotypes [10].  Activation of TCRs occurs when the receptors bind to antigens, resulting in clonal 

expansion of T cells preparatory to mounting an immune defense against a specific antigen.  At the other extreme, 

monoclonal or oligoclonal T-cell populations may be the result of infectious disease (HIV, Epstein-Barr virus), cancer, 

autoimmunity, or other diseases that result in immune deficiency (e.g., severe combined immunodeficiency).  Within 

healthy individuals, TCR repertoires also differ by age, with older age associated with decreased diversity [11-15] and 

an increase in infections and poor response to vaccinations [16].  Recent evidence suggests that TCR repertoires are 

reduced among individuals with chronic non-autoimmune diseases or conditions such as cardiovascular disease [17], 

hypertension [18-20], type 2 diabetes [21, 22], and chronic kidney disease (CKD) [23, 24]. 

 

Chronic kidney disease and the premature aging phenotype 

CKD is common, affecting 26 million adults in the US alone [25].  CKD stage is primarily monitored by measuring 

kidney function (estimated glomerular function or eGFR) [26] and is categorized as mild (eGFR = 60-89 mL/min; stage 

2), moderate (eGFR = 30-59 mL/min; stage 3), severe (eGFR = 15-29 mL/min; stage 4), and end stage (eGFR <15 

mL/min; stage 5).  End stage renal disease requires dialysis or renal transplant.  The prevalence of CKD stages 1-5 in a 

general adult US population is ~15%, with stages 3 (10.8%) and 5 (1.5%) representing the most and least prevalent 

CKD stages [27]. 

Known risk factors for the development of CKD include female sex, increased age, hypertension, and type 2 

diabetes [28-30].  CKD risk is also associated with race/ethnicity [28], with African Americans disproportionally 

representing kidney disease patients as well as those who progress to end stage disease.  A proportion of the health 

disparity can be attributed to the higher rates of hypertension and type 2 diabetes among African Americans compared 

with other populations.  The observed health disparity is also a result of genetic variants within APOL1 common in 

African-descent populations and rare or absent in non-African-descent populations [31].   

CKD patients develop a premature aging phenotype marked by an increased risk of cardiovascular disease 

(CVD) [32], osteoporosis, hip fractures, and other conditions associated with aging such as muscle wasting and 

suppressed immunity [33].  At the cellular level, the CKD premature aging profile is associated with chronic 

inflammation, decreased T-cell receptor (TCR) activation, and altered TCR diversity profiles [34] including skewed 

variable(V)beta repertoire [24].  This dynamic premature aging profile among CKD patients differs by sex, 

race/ethnicity, and chronological age [35-37].   

Previous studies of TCR repertoire in CKD patients have been limited to end stage renal disease (ESRD) patients 

[24] or to patients with primary human cytomegalovirus infection and/or Epstein Barr Virus infection after renal 

transplantation [38], both representing extreme, less prevalent CKD stage 5.  Also, previous studies employed 

spectratyping assays which, coupled with polyacrylamide gel electrophoresis, result in data that describe the proportion 

of CDR3 amplicons of each length, informing whether or not the repertoire distribution is skewed (or oligoclonal) [39].  

Here we used next-generation sequencing technology to characterize TCR repertoire in 15 patients with CKD stages 2, 

3, and 4.  In these cross-sectional data, we observed decreased TCR diversity with worsening CKD stage.  More broadly, 

these data demonstrate the potential of adding an additional layer of ‘omics to precision medicine research to better 

understand the impact of a disease state as well as to identify potential risk factors in its development.   
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Methods 

Population 

Patients were ascertained from the MetroHealth Medical Center’s Division of Nephrology and Hypertension in 

Cleveland, Ohio.  All patients participating in this pilot study provided written, informed consent as well as whole blood 

for DNA extraction.  The MetroHealth Institutional Review Board approved this study. 

 

T-cell receptor beta sequencing and bioinformatics 

DNA was extracted on the Qiagen QIAsymphony (Hilden, Germany) using standard protocols.  For each genomic DNA 

sample, the CDR3 regions were amplified and barcoded in a two-step multiplex PCR [40] using Adaptive 

Biotechnologies’ immunoSEQ kit per manufacturer’s protocol.  Amplicons were sequenced with six replicates using 

Illumina’s (San Diego, California) NextSeq sequencing platform.  Amplification and sequencing were performed by 

the University of Miami’s Center for Genome Technology.  Sequencing data were transferred to Adaptive 

Biotechnologies (Seattle, Washington) for quality control, alignment, and further processing using their bioinformatics 

pipeline ANALYZER.   

We extracted data and metrics from ANALYZER, including total templates, total productive templates for all 

productive rearrangements, fraction of productive templates, the number of rearrangements, the number of unique 

rearrangements, productive clonality, and the maximum productive clonality frequency.  Productive rearrangements are 

defined as the count of unique rearrangements (nucleotide sequence generated through V(D)J recombination) that are 

in-frame and do not contain a stop codon (i.e., rearrangements that can produce a functional protein receptor).  

Productive clonality is a Shannon entropy-based measure of clonality for the sample calculated over all productive 

rearrangements, providing an estimate of both richness (number of unique sequences summarized by entropy, which 

estimates of the distribution of sequences based on information theoretic measurement of a probability distribution) and 

evenness (relative abundance of each unique sequence) [41].  Productive clonality ranges from 0 (polyclonal or many 

rearrangements) to 1 [ one (monoclonal) or a few (oligoclonal) predominant rearrangements] and is calculated as 1-

entropy/log2(# productive unique rearrangements), with entropy accounting for clone frequency.          

  

Electronic phenotyping 

We accessed the electronic health records of participating patients from MetroHealth Medical Center in Cleveland, 

Ohio.  The MetroHealth System is a non-profit public healthcare system encompassing 25 locations in the greater 

Northeast Ohio community of Cuyahoga County.  The MetroHealth System installed Epic Electronic for clinical care 

in 1999, and MyChart, Epic’s personal health record, in 2011.  In 2014, the MetroHealth System became the first safety-

net healthcare system in the United States to achieve the Healthcare Information Management and Systems Society 

(HIMMS) Stage 7.  As of 2015, there were approximately 1.03 million annual outpatient visits and 500,000 covered 

lives in the EHR.   

We extracted billing (ICD-9-CM and ICD-10-CM) codes and laboratory measures recorded in the patients’ 

EHRs from a clinic visit date closest to the time of blood draw.  Extracted laboratory measures included those from the 

basic metabolic panel [creatinine, blood urea nitrogen (BUN), glucose, sodium, calcium, carbon dioxide (bicarbonate), 

chloride, potassium] and complete blood count [white blood cells (WBC), red blood cells (RBC), platelets (PLT), 

hemoglobin (HGB), hematocrit (HCT), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular 

hemoglobin (MCH), mean corpuscular volume (MCV), mean platelet volume (MPV), and red cell distribution width 

(RDW_CV)].  We also extracted height, weight, vital signs (temperature, pulse, and respiration rate) as well as systolic 

and diastolic blood pressures.  Estimated glomerular filtration rate was calculated using the Chronic Kidney Disease 

Epidemiology Collaboration (CKD-EPI) equation [26] available from the National Institute of Diabetes and Digestive 

and Kidney Diseases online calculator (https://www.niddk.nih.gov/health-information/health-communication-

programs/nkdep/lab-evaluation/gfr-calculators/adults-conventional-unit-ckd-epi/Pages/default.aspx).  The CKD-EPI 

equation requires serum creatinine, sex, age, and race/ethnicity.  CKD stages were classified according to eGFR:  > 

90mL/min (stage 1); 60-89 mL/min (stage 2); 30-59 mL/min (stage 3); 15-29 mL/min (stage 4); and <15 mL/min (stage 

5 or end stage).   

 

Statistical analyses 

Descriptive statistics (proportions, means, standard deviations, and ranges) were calculated for demographic and clinical 

variables considered.  Statistical differences were assessed using unpaired t-tests, where appropriate.  Tests of 

association were performed as linear regressions between demographic and clinical measures presented in Table 1 (as 

dependent variables) and productive clonality (independent variable). 
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Results 

Population characteristics 

A total of 15 participants ascertained from MetroHealth’s Division of Nephrology and Hypertension consented and 

donated biospecimens for TCRB sequencing.  Of the 15 participants, three were European American (20%).  More 

than half of the participants were female (60%), and the average age for all participants at the time of ascertainment 

was 61.73 years (range:  41-77 years) (Table 1). 

 

Table 1. Study population characteristics 

Variable Mean (±SD) or % 

Female 60% 

Race/ethnicity 

African American 

European American 

 

80% 

20% 

Age (years) 61.73 

(10.79) 

BMI (kg/m2) 30.79 

(8.54) 

Systolic blood pressure (mm Hg) 131.53 

(16.92) 

Diastolic blood pressure (mm 

Hg) 

71.33 

(9.07) 

eGFR (mL/min/1.73m2) 38.07 

(17.01) 

CKD stage 

2 

3 

4 

 

13.33% 

53.33% 

33.33% 

 

As expected, all participants had CKD at the time of ascertainment, with 13.33% at stage 2, 53.33% at stage 3, 

and 33.33% at stage 4 (Table 1).  The distribution of ICD-9-CM and ICD-10-CM billing codes mostly reflected CKD 

status or its risk factors (hypertension and type 2 diabetes) with the exception of one participant who had ICD-9-CM 

and ICD-10-CM codes 719.45 and M25.551 for “pain in joint, pelvic region and thigh” and “pain in right hip,” 

respectively (Table 2).  The average body mass index was in the obese range (30.79 kg/m2), and the average systolic 

and diastolic blood pressures were 131.53 mm Hg and 71.33 mm Hg, respectively, with five participants (33%) in the 

hypertensive range (systolic blood pressure ≥140 mm Hg) (Table 1). 

We sequenced the T-cell receptor beta CDR3 regions from the genomic DNA of the 15 participants.  In this 

sample, we observed 1,154,792 total templates and an average of 41,508 unique productive rearrangements (Table 3).  

T-cell receptor diversity, represented by productive clonality, ranged from 0.0151 (Figure 1A) to 0.2565 (Figure 1B) 

with an average of 0.1030 (Table 3).  For comparison, Adaptive Biotechnologies reports a median clonality of ~0.075 

for an adult T-cell repertoire in blood (http://www.adaptivebiotech.com/immunoseq/knowledge-center). 

Consistent with previous reports [24], average productive clonality was lower in females (0.0811) compared with males 

(1.358), but this difference was not statistically significant (p=0.125).  Productive clonality was not correlated with age 

(R2 = 0.0045; p=0.81) as might have been expected [14, 15], possibly reflecting both the small sample size and limited 

age range of this dataset (67% of these patients were born in the 1940s or 1950s). 

We then tested for correlations between T-cell receptor diversity and biomarkers of CKD, including disease 

status calculated using the CKD-EPI equation.  Reduced T-cell diversity was observed with increased creatinine 

(R2=0.0995; p=0.25), increased BUN (R2=0.0258; p=0.57), and decreased eGFR (R2=0.066; p=0.36), but not with white 

blood cell count (R2=0.0004; p=0.95).  Reduced T-cell diversity was also noted with worsening CKD status (R2=0.2362; 

p=0.07; Figure 2), with a higher on average productive clonality (0.0488) among stage 4 patients (n=5) compared with 

stage 3 (0.0330; n=8) and stage 2 patients (0.0149; n=2). 
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Table 2.  Study population ICD-9-CM and ICD-10-CM codes and their descriptions. 

ICD-9-CM 

codes 

Description ICD-10-

CM codes 

Description 

250.4 

 

Diabetes with renal manifestations, 

type II or unspecified type, not stated 

as uncontrolled 

E11.21 Type 2 diabetes mellitus with diabetic 

nephropathy 

250.42 Diabetes with other manifestations, 

type II or unspecified type, 

uncontrolled 

E11.22 Type 2 diabetes mellitus with diabetic 

chronic kidney disease 

250.8 Diabetes with other specified 

manifestations, type II or unspecified 

type, not state as uncontrolled 

E11.29 Type 2 diabetes mellitus with other diabetic 

kidney complication 

401.9 Unspecified essential hypertension E11.59 Type 2 diabetes mellitus with other 

circulatory complications 

403.90 Hypertensive chronic kidney disease, 

unspecified, with chronic kidney 

disease stage I through stage IV, or 

unspecified 

E11.65 Type 2 diabetes mellitus with 

hyperglycemia 

583.81 Nephritis and nephropathy, not 

specified as acute or chronic, in 

diseases classified elsewhere 

I10 Essential (primary) hypertension 

585.3 Moderate with decreased GFR (30-59) 

Stage III 

I12.9 Hypertensive chronic kidney disease with 

stage 1 through stage 4 chronic kidney 

disease, or unspecified chronic kidney 

disease 

585.4 Chronic kidney disease, Stage IV 

(severe) 

M25.551 Pain in right hip 

585.9 Chronic kidney disease, unspecified N18.3 Chronic kidney disease, stage 3 (moderate) 

719.45 Pain in joint, pelvic region and thigh N18.4 Chronic kidney disease, stage 4 (severe) 

V58.67 Long-term (current) use of insulin N18.9 Chronic kidney disease, unspecified 

  Z79.4 Long-term (current) use of insulin 

 

Conclusion 

To our knowledge, we report here the first survey of TCR diversity in CKD patients stages 2-4 using next-generation 

sequencing technology.  Overall, we found that TCR diversity is not strongly associated with age or sex in this sample 

but reduced TCR diversity was observed with biomarkers of CKD status (creatinine).  We also observed a potential 

relationship between a reduction in TCR diversity and worsening CKD stage.  These observations are tempered by the 

small sample size and limited power, with post-hoc power calculations suggesting that only very large effect sizes 

(R2>0.40) could be detected with 80% power for an association between TCR diversity and the continuous variables (at 

p<0.05).  Nevertheless, these observations are consistent with observations that reduced kidney function results in a 

uremic mileu that adversely impacts the adaptive immune system [23, 42].  These data further establish the premature 

aging phenotype of CKD at the cellular level and warrant larger studies to establish its association, if any, with CDK 

progression. 
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Figure 1.  T-cell receptor diversity for two participants.  For each participant, V genes detected by 

sequencing are labeled and color coded, and the pie slices represent the percent of templates represented in 

each patient’s sample.  These two participants represent the lowest (most diverse repertoire) (A) and highest 

(least diverse repertoire) (B) productive clonality values among the 15 participants. 
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Figure 2.  Decreased T-cell receptor diversity and worsening chronic kidney disease status.  The x-axis 

represents CKD stage (CKD-EPI equation) and the y-axis represents the TCR diversity (productive clonality).  

Productive clonality ranges from 0 to 1 (monoclonal or oligoclonal).  

 

Table 3.  Sample-level TCRB sequencing statistics 

Variable 
Mean (±SD) or 

% 
Range 

Total templates 
76,986  

(23,196.93) 
35,844 – 115,146 

Total productive templates 
64,730  

(20,541.88) 
29,674 – 102,800 

Fraction productive 
0.8381  

(0.03) 
0.8013 – 0.8928 

Rearrangements 
49,782  

(17,673.24) 
27,826 – 81,617 

Productive rearrangements 
41,508  

(15,044.55) 
22,708 – 68,645 

Productive clonality 
0.1030  

(0.07) 
0.0151 – 0.2565 

Maximum productive frequency 
3.59% 

(0.02%) 
0.53% - 10.36% 

 

Our observations in this limited dataset are somewhat consistent with the previous literature.  As already noted, 

the expected association between reduced TCR diversity and increased age was not apparent in this sample set, possibly 

reflecting both the limited age range and sample size of this study.  While we did note that females have higher average 

TCR diversity compared with males, these differences were not statistically significant.  Adaptive immune system sex 

differences such as higher number of activated T cells and higher counts of specific T cells among females have been 

noted in some studies [43] but not all [24], and it is unclear if these sex differences impact TCR repertoire.  Our data 

are in agreement with previous reports of altered TCR repertoire in ESRD patients albeit at different resolutions [24]. 

Next-generation sequencing has heralded a new era of TCR characterization with both research and diagnostic 

applications.  Although these CKD studies are in their infancy, potential precision medicine applications could include 

TCR sequencing for improved risk prediction, including prognosis for CKD progression and the eventual need for renal 

replacement therapy or renal transplant.  Previous reports suggest that TCR activation is important in developing 

hypertension [18-20] and type 2 diabetes [21, 22], both major risk factors for the development of CKD, suggesting the 

disease’s early impact on the adaptive immune system.  Periodic TCR clinical sequencing could also identify CKD 

patients most at risk for infection or could identify a subset of CKD patients who would benefit from altered vaccination 

schedules or optimized vaccines [44]. 
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This study has several limitations and strengths.  The main limitation is sample size.  With only 15 patients, we are 

limited in power to detect statistical differences in TCR repertoire by demographic or clinical variables.  Also, this is a 

cross-sectional study where TCR repertoire is characterized from whole blood at a single point in time.  Therefore, 

longitudinal studies are needed to assess the impact TCR diversity may have on CKD progression and eventual 

progression to ESRD and its sequelae (e.g., cardiovascular disease).  Major strengths of the study include the resolution 

of TCR repertoire characterization using next-generation sequencing as well as access to the deep clinical data from 

EHRs.  Together, these data suggest an association between advanced CKD and premature aging of the adaptive immune 

system and highlight the potential of dynamic ‘omic data to generate novel hypotheses about disease mechanisms. 
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