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d Universit�e Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284 INSERM U1081, 06107 Nice, France
A R T I C L E I N F O

Article History:
Received 7 October 2019
Revised 21 November 2019
Accepted 22 November 2019
Available online 17 December 2019
* Corresponding authors.
E-mail addresses:miguel-godinho.ferreira@unice.fr (

rita.fior@research.fchampalimaud.org (R. Fior).
1 B.C. and S.F. contributed equally to this work.

https://doi.org/10.1016/j.ebiom.2019.11.039
2352-3964/© 2019 The Authors. Published by Elsevier B.
A B S T R A C T

Background: Whereas the role of neoadjuvant radiotherapy in rectal cancer is well-established, the ability to
discriminate between radioresistant and radiosensitive tumors before starting treatment is still a crucial
unmet need. Here we aimed to develop an in vivo test to directly challenge living cancer cells to radiotherapy,
using zebrafish xenografts.
Methods:We generated zebrafish xenografts using colorectal cancer cell lines and patient biopsies without in
vitro passaging, and developed a fast radiotherapy protocol consisting of a single dose of 25 Gy. As readouts
of the impact of radiotherapy we analyzed proliferation, apoptosis, tumor size and DNA damage.
Findings: By directly comparing isogenic cells that only differ in the KRASG13D allele, we show that it is possi-
ble to distinguish radiosensitive from radioresistant tumors in zebrafish xenografts, even in polyclonal
tumors, in just 4 days. Most importantly, we performed proof-of-concept experiments using primary rectum
biopsies, where clinical response to neoadjuvant chemoradiotherapy correlates with induction of apoptosis
in their matching zebrafish Patient-Derived Xenografts-Avatars.
Interpretation: Our work opens the possibility to predict tumor responses to radiotherapy using the zebrafish
Avatar model, sparing valuable therapeutic time and unnecessary toxicity.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Background
Colorectal cancer (CRC) is the third most common cancer world-
wide, with 1.8 million new cases diagnosed in 2018 [1]. Rectal cancer
accounts for approximately 30% of CRC and is associated with worse
clinical outcome [2]. Neoadjuvant radiotherapy (nRT) is the preferred
approach to down-size and down-stage locally/advanced rectal can-
cer (LARC). Short-Course Preoperative Radiotherapy (SCRT) or combi-
nation of long-course radiotherapy with chemotherapy (CRT) are the
established approaches for intermediate stage or LARC [3]. SCRT con-
sists of the delivery of 5 Gy over five consecutive days (5 £ 5 Gy),
while CRT consists of 25�28 fractions of 1.8�2 Gy [4�6]. After a stan-
dard interval of 6�12 weeks after nCRT, tumor response can be
assessed and graded as: complete response (8%�20% of patients),
partial response (40%�60%) or no response to therapy (20%) [2].
Therefore, ~20% of patients are exposed to unnecessary side effects
and to a delay in more effective therapeutic strategy. This 20% may
be even underestimated, since some studies point to 40%�45% of
patients that do not respond to neoadjuvant CRT [3].

Response to treatment is highly heterogeneous. Therapies that are
efficient and successful for some patients, may be relatively ineffec-
tive for others [4]. Thus, the ability to discriminate patients that will
benefit (responders) from those who will not (non-responders)
remains a challenge. With the aim to provide pre-clinical insights
and to guide treatment decisions, studies have been conducted with
mice Patient-Derived Xenografts (PDX) as a model for drug screening
[5]. However, it is a time-consuming and costly model, where the
required time for sample engraftment and treatment is typically
about 2�4 months, which makes it unfeasible for clinical decision-
making [6] (see Table S1). In vitro clonogenic assays have been also a
topic of extensive research. However, primary cells are difficult to
grow in vitro and due to the clonal selection that these cells are sub-
jected to, phenotypes that no longer represent the initial tumor
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Research in Context

Evidence before this study

To date, there is no robust method of predicting whether a tumor
will respond to radiotherapy or not. Neoadjuvant radiotherapy or
chemoradiation (nRT), followed by total mesorectal excision sur-
gery represent the standard of care in selected patients with locally
advanced rectal cancer (LARC). Clinical and pathological response
or TNM down-staging reported after nRT are currently the stron-
gest markers of favourable oncological outcomes in LARC. Poor
response with persistently involved lymph nodes (ypN+) is associ-
ated with adverse outcomes. Yet there are no effective methods to
identify patients who will most likely benefit from nRT. Therefore,
a biomarker that predicts response to nRT at an early time point to
reduce unnecessary toxicities associated with ineffective treat-
ments is a critical unmet need.

Added value of this study

Here, we developed the zebrafish larvae xenograft model as a
cost-effective and fast in vivo biomarker of response to radio-
therapy. Our results show that, in just 4 days it is possible to
distinguish radiosensitive from radioresistant tumors in zebra-
fish xenografts, even in polyclonal tumors. We also performed
proof-of-concept experiments that demonstrate the feasibility
of using fresh rectal cancer biopsies to generate zebrafish Ava-
tars. In two case studies patient clinical response correlated
with its matching Avatar.

Implications of all the available evidence

Future work will be aimed at increasing the number of patients
to test the predictive power of the zebrafish Avatar model.
Moreover, since we use freshly cryopreserved samples, it is
possible to receive out-patient’ samples for a multi-center
study. Therefore, our work has the potential to revolutionize
clinical practice in the future by providing a timely assessment
of predicted radio-sensitivity, thus enabling personalized treat-
ment, while sparing valuable therapeutic time and unnecessary
toxicities.
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might become over-represented, impairing the accurate prediction of
the patient outcome [7]. More importantly, in vitro clonogenic assays
take several weeks to perform, which is not compatible with the
time-frame of treatment decision [7].

The use of zebrafish larvae xenografts has developed into a prom-
ising in vivo model for human cancer studies [8�18], [41]. Recently,
we showed that in just 4 days, several hallmarks of cancer such as
proliferation, metastatic and angiogenic potentials can be recapitu-
lated in zebrafish larvae tumor xenografts. As a proof-of-principle,
we screened the current standard of care guidelines for CRC from 1st
to 3rd lines of treatment, and showed similar drug responses
between zebrafish and mouse xenografts. We generated zebrafish
Patient-Derived Xenografts (zPDX) and compared response to che-
motherapy with actual clinical response in patients, with promising
results [11].

Here, we assessed the possibility of using zebrafish xenografts to
distinguish between radiosensitive and radioresistant tumors. To this
end, we developed a Single Dose Radiotherapy (SDRT, 1£ 25 Gy) pro-
tocol to assess in vivo sensitivity in just 4 days. This SDRT protocol is
time- and cost-effective. In addition, we compared our SDRT protocol
to a hypofractionated short-course radiotherapy (SCRT 5 £ 5 Gy) pro-
tocol similar to the one applied in the clinic. Our results suggest that
our SDRT protocol provides a good proxy of tumor response.
Moreover, we generated polyclonal xenografts by mixing radiosensi-
tive cells with their isogenic radioresistant clones and show that we
can distinguish both phenotypes in the same xenograft. By directly
comparing isogenic cells, we also show that KRAS sensitizes cells to
radiotherapy in HCT116 CRC cells. Finally, we performed proof-of-
concept experiments using patient biopsies, setting the ground for a
future personalized radiotherapy assay.

2. Methods

2.1. Human colorectal cancer cell lines

HCT116 (KRASG13D) and Hke3 (KRASWT) were donated by Dr.
Ângela Rel�ogio (Institute for Theoretical Biology, Berlin). Cell lines
were tested for mycoplasma and authenticated through Short Tan-
dem Repeat (STR) profiling.

2.2. Cell culture

CRC cell lines were expanded and maintained in Dulbecco’s Modi-
fied Eagle Medium (DMEM) High Glucose (Biowest) supplemented
with 10% (v/v) Fetal Bovine Serum (FBS) (Sigma-Aldrich) and 1% (v/v)
Penicillin-Streptomycin 10,000 U/mL (Hyclone) in a humidified
atmosphere containing 5% CO2 at 37 °C.

2.3. Zebrafish care and handling

In vivo experiments were performed using zebrafish (Danio rerio),
nacre, casper and Tg(Fli1:eGFP), which were handled according to
European animal welfare Legislation, Directive 2010/63/EU (Euro-
pean Commission, 2016).

2.4. Cell labelling

CRC cell lines were labelled with Vybrant CM-DiI (VybrantTM CM-
DiI, Thermo Fisher Scientific), at 4mL/mL concentration, or with Deep
Red dye (CellTrackerTM, Thermo Fisher Scientific), at a concentration
of 1 mL/mL. Staining was performed according to manufacturer’s
instructions. Cells were resuspended to final concentration of
0.25 £ 106 cells/mL. The polyclonal CRC xenografts consisted in a
mixture of 1:1 of HCT116 and Hke3 cells.

2.5. CRC primary samples processing

The study was approved by the Ethics Committee of the Champa-
limaud Foundation. CRC patient samples were provided by Champa-
limaud Clinical Center's (CCC) Digestive Unit, after signed informed
consent. Primary tissue from surgical resected rectal cancer samples
and biopsies were collected (Table S3) and cryopreserved (90% FBS
and 10% DMSO). For microinjection, samples were thawed and
minced in Mix1 (Table S3) with subsequent mechanic tissue frag-
mentation and centrifugation (150xg, 4 min). The remaining tissue
fragments were enzymatically digested in Mix2 (Table S3), passed
through a 70 mm cell strainer and labeled with DiI or Deep Red for
8 min at 37 °C. Cell suspension was resuspended in Mix3 to a final
concentration of ~0.25 £ 106 cells/mL and viability was assessed by
trypan blue exclusion method. Prior injection, a small aliquot of the
processed/dissociated tumor sample was stained with MGG Grun-
wald-Giemsa (Bio-Optica) method according to the manufacturer’s
instructions.

2.6. Zebrafish xenograft microinjection

Labelled cells were injected into the perivitelline space (PVS) of
anesthetized 2 days post fertilization (dpf) zebrafish larvae. Following
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microinjection, all larvae were maintained at 34 °C until the end of
the experiments in E3 medium.

The tumor implantation percentage was calculated as follows:

% implantation ¼ nBxenografts at 4dpi with tumor mass
nB total xenografts at 4dpi

x 100

2.7. Xenografts irradiation and drug administration

At 1 day post injection (dpi) all zebrafish xenografts were
screened regarding the presence of successfully injected tumor mass
and grouped according to their tumor size. All non-successful xeno-
grafts were discarded and ethically euthanized. At 1dpi zebrafish
xenografts were anesthetized and randomly distributed into the sev-
eral experimental conditions. Single doses of 0, 2, 4, 6, 10, 14, 20 or
25 Gy were delivered to zebrafish xenografts, ending the assay at
4dpi, 6dpi or at 8dpi, according to the experiment. 5FU was adminis-
tered at 4.2 mM in E3 medium during three successive days. In the
end of each experiment, xenografts were sacrificed and fixed in 4%
(v/v) formaldehyde (Thermo Scientific) and transferred to 100%
methanol for long-term preservation. Irradiation procedures and reg-
imens were adapted for zebrafish xenografts by the Champalimaud
Foundation Radiation Oncology Department. The 6MV X-rays beams
with the corresponding prescription dose (Gy) were calculated with
the same algorithm used in clinical practice (ECLIPSE, Varian Medical
System, CA) and was delivered via a linear accelerator (Truebeam,
Varian Medical Systems, CA). Irradiation was targeted to the center of
a defined area of 30 £ 30 cm where the 6-well plates with the anes-
thetized zebrafish were placed (6 mL of E3 medium per well). The
well plates were positioned with a source-to-surface distance of
100 cm. No build up material was needed.

2.8. Xenograft whole-mount immunofluorescence

Primary antibodies: anti-Activated Caspase3 (rabbit, Cell signal-
ing, 1:100, code#9661), anti-Human mitochondria (mouse, Merck
Millipore, 1:100, cat#MAB1273), anti-gH2AX, serine 139 (mouse,
Merck Millipore, 1:1000, cat#05-636), anti-Ki67 (mouse, Leica-Novo-
castra, 1:100, cat#NCL-Ki67-MM1), and anti-phospho Histone H3
(rabbit, Merck Milipore, 1:100 cat#06-570). Secondary antibodies:
Alexa goat anti-rabbit 488 (Molecular probes, 1:400), anti-mouse 488
(Molecular probes, 1:400), and anti-mouse 647 (Molecular probes
1:400) were applied simultaneously with DAPI. Xenografts were
mounted with Mowiol.

2.9. Xenografts imaging and quantification

All xenografts were acquired in Zeiss LSM 710 fluorescence confo-
cal microscope with a 5 mm interval z stacks. Images were analyzed
using ImageJ software, using the Cell Counter plugin [19]. Total num-
ber of cells / tumor = AVG (3 slices Zfirst, Zmiddle, Zlast) x total n° sli-
ces/1.5. Mitosis and activated Caspase 3 were quantified in all slices.
Nuclear size was assessed by: AVG ((Zfirst ROI/ Zfirst
DAPI) + (Zmiddle ROI/ Zmiddle DAPI) + (Zlast ROI/Zlast DAPI)). zPDX
quantifications were performed in all tumor depth.

2.10. Statistical analysis

Statistical analysis was performed using GraphPad Prism soft-
ware. Data sets were challenged by normality tests (D’Agostino &
Pearson and the Shapiro-Wilk). Data with Gaussian distribution were
analyzed by unpaired t-test. Datasets that did not pass the normality
test were analyzed by the Mann�Whitney-test. All normalised data
(fold induction or tumor size normalised) were analyzed by Man-
n�Whitney test. Differences were considered significant at P < .05
and statistical output was represented by stars as non-significant
(NS)> 0.05, *� .05, **� .01, ***� .001. All graphs presented the results
as AVG § standard error of the mean (SEM).

3. Results

3.1. Zebrafish xenograft dose-response curve to ionizing radiation

A dose response curve to test the survival and tumor response to
increasing doses of ionizing radiation (IR) was generated. First, we
determined larvae survival rates after irradiation under our experi-
mental conditions, i.e., irradiation at 3 days post fertilization (dpf).
Our results show no significant differences in larvae survival com-
pared to non-irradiated controls (Fig. 1i). In agreement with previous
studies in zebrafish [20], our results show that zebrafish larvae are
highly resistant to IR during this stage of development (from 3dpf
to 8dpf).

We next generated human CRC xenografts using the HCT116CRC
radiosensitive cell line [21,22]. As in our previous studies, HCT116
tumor cells were fluorescently labeled and injected into the perivitel-
line space (PVS) of 2dpf zebrafish larvae [11]. At one day post injec-
tion (dpi), xenografts were irradiated with single doses of 0, 2, 4, 6,
10, 14, 20 and 25 Gy, and evaluated 5 days later, at 6dpi (Fig. 1a�h’).
To study the in vivo tumor response dynamics in the zebrafish xeno-
graft model we analyzed the impact of radiation on tumor size (num-
ber of cells per tumor). The tumor size curve of irradiated xenografts
showed almost a linear relationship with radiation dose between
2Gy and 6 Gy, with 6 Gy leading to a ~50% reduction of the tumor
mass. This curve is consistent with previous studies using the same
CRC cell line HCT1116 [21,22]. Between 6 and 14 Gy the effect seems
to stabilize, followed by a drop to 63% reduction of tumor size with
20 Gy and 73% in 25 Gy. Our results are consistent with previous
studies in spheroids, which show a higher survival rate than the clas-
sical adherent 2D in vitro cell cultures [23].

3.2. The SDRT protocol distinguishes sensitive from resistant tumors

Our goal is to develop a fast in vivo protocol to distinguish radio-
sensitive from radioresistant tumors. This would allow to spare non-
responders from unnecessary toxicities and explore alternative treat-
ment strategies. We selected a high dose to maximize the effect.
Since SDRT (1 £ 25 Gy) leads to a ~73% shrinkage of HCT116 tumors
after 5 days (Fig. 1) with no significant impact on xenograft survival,
we reduced the duration of the assay to a total of 4 days, to have a
practical and quick protocol for future translation into the clinical
setting.

Previous studies suggest that KRAS may sensitize tumors to radio-
therapy [2]. HCT116 tumor cells harbor a KRASG13D mutation, rendering
them highly proliferative in comparison to the isogenic KRASWT Hke3
cell line [11,24] (see Table S2). Since radiosensitivity is highly correlated
with proliferation, we hypothesized that Hke3, with a lower prolifer-
ative potential, could be considered as a negative control (i.e., a radiore-
sistant isogenic control). We generated HCT116 and Hke3 xenografts
and, at 1dpi, xenografts were subjected to a single dose of 25 Gy. Three
days after IR (and 4dpi), we assessed the impact of radiation on prolifer-
ation, apoptosis, and tumor size. As expected, a 25 Gy radiation leads to
a significant reduction of proliferation of HCT116 (Fig. 2i, P < .0001, see
Fig. S1 for comparison with pHH3 and Ki-67), a significant increase of
apoptosis (Fig. 2j, 7.4-fold, P < .0001, see a’-d’ for maximal Z projection
of Activated Caspase3) accompanied by a ~55% reduction of tumor size
(Fig. 2k, P< .0001). In contrast, although radiation reduced proliferation
of Hke3 cells, it neither induced apoptosis nor did it reduce tumor mass
(Fig. 2e, g, i�k).

Since neoadjuvant therapy often consists of a combination of radi-
ation with 5FU-based chemotherapy (CRT) [25], we tested the impact
of its addition to radiation in our model, using 5FU alone as control,
on HCT116 and Hke3 xenografts. As expected, CRT induced a
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significant reduction of proliferation (Fig. 2i) and induction of apopto-
sis (Fig. 2j, 10.3-fold increase, P < .0001), as well as a significant
shrinkage of HCT116 tumors (Fig. 2k, P < .0001). Combination of 5FU
and radiotherapy resulted in an additive effect (Fig. 2i,j), clearly
observed in the reduction of mitotic figures and induction of cell
death, but not in tumor shrinkage. CRT in Hke3 cells had no effect on
apoptosis or tumor size (Fig. 2e, g, i�k).

There are several reports from in vivo and in vitro experiments
suggesting that ionizing radiation may stimulate the metastatic pro-
cess. Clinical observations do not directly confirm these data, leaving
open the question whether or not radiotherapy enhances metastasis
[26].Taking advantage of the zebrafish xenograft model we analyzed
whether radiation could alter the metastatic potential of HCT116 and
Hke3 tumor xenografts. However, no significant differences were
observed (Supplementary Fig. S2).

As a note, despite of being widely used and accepted in radiation
studies [10,27�31], HCT116 and Hke3 are colon cancer cells lines and
different responses may occur in rectal cancer cells.

Overall, our results show that the zebrafish xenograft model has suf-
ficient resolution to distinguish between CRC HCT116/Hke3 radiosensi-
tive and radioresistant cells in vivo in just 4 days. Also, our results
highlight how KRASmutations may sensitize cells to radiotherapy.
3.3. Zebrafish xenografts show resolution to distinguish radiosensitivity
in polyclonal heterogeneous tumors

To confirm the difference in HCT116 and Hke3 clones radiosensi-
tivity profiles, we co-injected the two cell lines in the same host, each
labeled with a different lipophilic dye. By co-injecting, we can
directly compare response under the same experimental conditions.
With this experiment, we intended to reproduce a common charac-
teristic of CRC tumors: their clonal heterogeneity.

At 1dpi, mixed xenografts (HCT116+Hke3) were exposed to
1 £ 25 Gy and compared to non-irradiated controls. The two popula-
tions were analyzed separately at 4dpi. Similar to the monoclonal
tumors, HCT116 tumors reduced their proliferation index upon radia-
tion (Fig. 3c, P = .017), apoptosis was induced (Fig. 3d, P = .0001), and
the number of HCT116 cells per tumor reduced to half (Fig. 3e,
P< .0001). In contrast, radiation did not impact on survival of Hke3 cells
within the heterogenous tumor mass (Fig. 3c, P = .1; d-P = .5; e-P = .36).
Interestingly, in control non-irradiated tumors, HCT116KRASG13D cells
become dominant over Hke3KRAS-WT given their higher proliferative
capacity, representing ~70% of the tumors (Fig. 3f). However, upon
1 £ 25 Gy, HCT116 significantly reduced its frequency (P < .0001) in
relation to controls, while Hke3 increased its presence (P< .0001).

Indeed, tumor clonal heterogeneity may represent a potential
caveat for our assay, as we could miss response to treatment. To
directly test this idea, we compared the response of monoclonal
sensitive tumors (HCT116) to the polyclonal tumor overall
response (mix HCT116+Hke3) without distinguishing the two
populations. Strikingly, even in this hypothetical situation of a
1:1 mixture of both clones, we can detect the response of the
sensitive clone in terms of apoptosis and tumor size (Fig. 3g, h,
apoptosis P = .0056; tumor size P = .0307), although tumor size
response was more heterogeneous.

All together, these results demonstrate that zebrafish xenografts
and our new SDRT-25 Gy protocol completed in 4 days, can distin-
guish radiosensitive from radioresistant tumors even in the same
xenograft. In heterogeneous tumors, our data illustrates how KRAS
mutations, which provide a proliferative advantage, can be an “Achil-
les heel”, making cells more sensitive to therapy. On the other hand a
minor resistant clone, unaffected by treatment, may become more
representative, or even dominant.
3.4. Direct comparison between SDRT and fractionated radiotherapy
protocols

SCRT or long-course fractionated (25-28 £ 1.8 Gy) are recom-
mended neoadjuvant treatment approaches delivered routinely in
the clinic for selected patients with LARC cancer [32]. We therefore,
sought to compare our SDRT protocol with one of the protocols given
in the clinic, namely the SCRT-5 £ 5 Gy, since the fractionated
25�28 £ 1.8 Gy is not practical as an assay. HCT116 and Hke3 zebra-
fish xenografts were generated and randomly distributed in three
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experimental conditions at 1dpi: control (non-irradiated xenografts),
SCRT (5 £ 5 Gy), and SDRT (1 £ 25 Gy). To directly compare the two
protocols, the same time after treatment was given in all conditions:
xenografts were analyzed 3 days post treatment (3dpT), i.e., at 4dpi
for the SDRT and 8dpi for SCRT (Fig. 4a).

In HCT116 radiosensitive tumors (Fig. 4b�i), both regimens
reduced the number of cells undergoing mitosis (SDRT: 88%
reduction, ****P < .0001, SCRT: 61% reduction, *P = .0194, Fig. 4r).
However, only the SDRT showed a significant 2-fold induction of
apoptosis (**P = 00018, Fig. 4s). Nevertheless, quantification of
tumor size revealed an anti-tumor effect of both protocols: SDRT
elicited a 59% reduction of tumor size (Fig. 4t, ****P < .0001)
whereas SCRT induced 80% reduction (Fig. 4t, ***P < .0001).
Therefore, our results suggest that the SDRT regimen exhibits a
stronger effect than SCRT regarding proliferation and apoptosis,
but not in tumor shrinkage.
IR increases the size of the nuclei due to chromatin modification,
and arrest in G2 phase of the cell cycle [33]. Thus in order to investi-
gate this, we analysed the nuclear area size of irradiated cells. Our
results show that both RT protocols induced the enlargement of
HCT116 cells nuclei (****P < .0001). However, the impact was supe-
rior in the fractionated regimen (SCRT AVG = 1.9 vs. SDRT AVG=1.4-
fold increase, ****P < .0001, Fig. 4i).

Of note, in the Hke3 xenografts, we could not detect induction of
apoptosis or reduction of tumor size, independently of the protocol
used (Fig. 4j-m, s, t, note that AVG apoptosis is reducing with IR).
Nevertheless, an increase in nuclear area size was detected with the
SDRT protocol but not with the SCRT, suggesting that DNA damage
and alterations on chromatin structure are being triggered. It also
suggests that SDRT protocol is more efficient when used with resis-
tant tumor cells. Similarly to the effect on the proliferation previously
observed, there was a reduction of mitotic figures in both RT
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regimens (SCRT: 61% reduction, *P = .0194; SDRT: 88% reduction,
****P < .0001, Fig. 4r). The impact on cell proliferation and nuclear
size shows that radiation damage is being inflicted. However, Hke3
cells are possibly more efficient at repairing or coping with the dam-
age than HCT116. This is also reflected in differential amount of phos-
phorylation of gH2AX, a histone variant involved in the DNA damage
response (Supplementary Fig. S3).

Overall, our results show that both RT protocols can elicit CRC
cells proliferation arrest, trigger cell death through apoptosis, and a
subsequent reduction of tumor size. Moreover, the nuclei enlarge-
ment observed in cancer cells is consistent with the described radia-
tion effect in chromatin [33], which is considered an indicator of
radiosensitivity. Thus, our data suggests that the SDRT (1 £ 25 Gy) is
an appropriate and efficient regimen to discriminate radiosensitive
from radioresistant zebrafish xenografts, as well as convenient and
less time-consuming.
3.5. Zebrafish Patient-Derived Xenografts respond to the SHD-RT protocol

To optimize and test the feasibility of our protocol, we first
used surgical resected rectum cancer samples without in vitro
passaging to generate zebrafish Patient-Derived Xenografts
(zPDX) (Fig. 5). The average implantation rate obtained for the
total of samples tested was ~43% (Fig. 5a, N = 19 patient samples).
Next, we tested our radiotherapy protocol in two of these patient
samples. Tumor tissue was prepared for injection (see Methods)
and at 1dpi zPDX were subjected to the SDRT (1 £ 25 Gy) proto-
col. Activated Caspase 3 and tumor size were analyzed at 4dpi
(Fig. 5b�e). Although we were unable to observe a reduction of
the tumor size, we detected a significant increase in apoptosis in
both zPDX (zPDX#1, 3.6-fold increase, P = .0025; zPDX#2, 2.8-
fold induction, P = .0006). These results gave us confidence to
proceed to more challenging biopsy samples.
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3.6. Comparison of patient response to nCRT treatment with their
matching zPDX

In order to compare responses to radiotherapy between the zPDX-
Avatars and the corresponding patient clinical response, we initiated
a prospective observational study in patients subjected to neoadju-
vant chemoradiotherapy (nCRT). For this end we started receiving
rectal cancer biopsy samples, where a mirror was sent to pathology
assessment. From the seven samples we had access in our institute
from February to May 2019, three were necrotic, one was diagnosed
as an adenoma, one did not implant and two we were able to
proceed.

We present the findings from two patients with low rectal cancer
(Fig. 6, P#B1 and P#B2) enrolled in the study, both with confirmed
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colorectal carcinoma and candidates to neoadjuvant treatment with
nCRT under Multidisciplinary Board recommendations.

A 69-year-old male, herein Patient#B1, presented with a low
rectal tumor staged with Magnetic Resonance Imaging (MRI) as
mrT4N1, showing involved mesorectal fascia and extramural
venous invasion (Fig. 6b�b’’). The tumor was anteriorly invading
the prostate gland and inferiorly the anal canal. An abdominal
MRI showed four synchronous liver metastases at segments IV, V,
transition of segments IV/VII and segment III (M1). Patient#B2, a
50-year-old male, presented also with a low rectal tumor in con-
tact with the internal anal sphincter, staged as an mrT2N1 and
no distant metastasis found when full staging was completed
(M0) (Fig. 6d�d’’). Patient#B1 was treated with LC-CRT (RT plus
Capecitabine) followed with immediate consolidation with
CAPOX. An image guided � volumetric modulated arc therapy
technique (IGRT-VMAT) was used, boosting the RT dose simulta-
neously to the areas of gross tumor detectable by planning
images (simultaneous integrated boost-SIB). A total dose of 45 Gy
was delivered to the pelvis and a SIB dose of 56 Gy to the
involved areas with tumor. The RT dose was delivered concomi-
tantly with Capecitabine 1250 mg/m2 (prodrug of 5FU), five days
per week during 5 weeks. Two weeks after the end of LC-CRT,
patient started with consolidation with CAPOX every three weeks.
Patient#B2 was proposed for LC-CRT only and the same RT tech-
nique and doses were delivered concomitantly with Capecitabine.
Both patients were treated at the Champalimaud Clinical center
between February and March 2019.

In order to compare the patient clinical response with their
matching zPDX, before starting the nCRT, fresh biopsies were col-
lected for pathology and for the zebrafish clinical study. Samples
were processed for injection (see Fig. S4 and Methods) and zPDX
generated. One day after, successfully injected xenografts were
randomly distributed into the two conditions (control and
25 Gy + 5FU). Importantly, the results from this experiment were
obtained and analyzed before knowing the patient�s clinical
response to treatment.
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Upon CRT of zPDX#B1, we could not detect a statistically signifi-
cant induction in Caspase3 levels (P = .06) or in the tumor size
(Fig. 6f�i). In contrast, zPDX#B2 showed a significant induction of
activated Caspase3 (1.6-fold induction, P = .0007), indicating that
apoptosis was triggered by CRT (Fig. 6j�m).
Both patients were assessed for clinical response at around 10 weeks
after the end of CRT. A pelvic MRI and a rectosigmoidoscopy (RS) were
performed. Consistent with the zPDX results, Patient#B1 achieved an
overall poor MRI response, with an MRI tumor regression grade
(mrTRG) of 4, a Diffusion-Weighted Imaging (mrDWI) grade 3, and a
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decrease in tumor size (Dimensional D) around �32%. Endoluminal
response was also poor, classified with a grade 3 (Fig. 6c�c’’). In con-
trast, Patient#B2 presented a major initial clinical response to CRT
achieving an mrTRG1, mrDWI 1 with a DimensionalD of �76%, and the
tumor was not palpable or visible by RS (Fig. 6e�e’’). Albeit with only
two patients our results constitute a proof-of-principle that the zebra-
fish Avatar assay was able to predict the clinical response to CRT.

4. Discussion

The zebrafish Avatar model coupled with a single radiation
exposure of 25 Gy is able to identify radioresistant CRC clones
and its predictive accuracy in the clinical setting is being explored
in a prospective study. Neoadjuvant radiotherapy followed by
total mesorectal excision surgery is the standard of care in
selected patients with LARC. Response to treatment varies widely
with ~20% of tumors exhibiting resistance. Since pathological
complete response (pCR) is associated with improved prognosis,
alternative approaches such as the “watch and wait” [34] pro-
gram or transanal local excision are being considered to avoid
the adverse effects of surgery (urinary, bowel, and sexual dys-
function) [2]. In contrast, patients whose tumors are resistant are
subjected to potentially unnecessary side effects, with a delay on
more effective treatment strategies. Therefore, a biomarker that
predicts response to nRT at an early time point has long been a
critical need in clinical decision-making to tailor the adequate
therapy for each individual patient. Despite its widespread use in
cancer treatment, in fact, radiotherapy has not yet entered the
era of precision medicine, with limited approaches to predict
radiosensitivity and adjust dose based on biological differences
between or within tumors. Early efforts to develop assays for
measuring human tumor radiosensitivity involved clonogenic
assays, such as the surviving fraction at 2 Gy (2SF2) [35]. The use-
fulness of these assays in prospective clinical trials, however, has
proven to be limited due to the inherent tumor heterogeneity,
which is inadequately accounted for by these models [36]. More
recently, the advent of high-throughput profiling approaches
have led to an attempt to associate gene expression signatures
with tumor radiosensitivity. A signature of 10 genes related to
SF2 was used to build a rank-based linear regression algorithm to
predict radiosensitivity (a radiosensitivity index, RSI) [3]. The RSI
has been shown to be prognostic in several tumor types cancer
[37,38,3] constituting a very promising assay.

Several other molecular biomarkers, either tissue- or blood-based,
have been proposed to predict response to nCRT at an early time
point [2]. However, none has reached the clinical use due to lack of
robustness or inherent practical limitations. Dayde and colleagues
proposed there should be an integration of several biomarkers such
as clinicopathological and imaging features, identification of mecha-
nisms of tumor biology, to develop such a robust cost-effective
molecular biomarker [2]. However, the vast tumor genetic heteroge-
neity found in CRC [39,40] may account for the difficulty in identify-
ing a specific molecular biomarker of response. Therefore, a test that
directly challenges in vivo the patient-derived tumor cells, indepen-
dent of their genetic profile, may prove more robust and complement
other strategies. Here, we tested whether the fast zebrafish larvae
xenograft model could be used as an in vivo biomarker of response to
radiotherapy. The zebrafish-larvae model provides a reduction of
scale that enables to inject tumor cells directly into multiple zebrafish
larvae (statistical analysis), without in vitro passaging and to obtain
single cell resolution. This reduction of scale also allows a reduction
of the time, enabling us to swiftly evaluate the impact of therapy on
tumor cells, in a clinically relevant time-frame, prior to treatment.
In addition, since we use freshly cryopreserved samples, it is possible
to receive out-patient’ samples for a multi-center study in the future
(Fig. 7).
5. Conclusion

We developed a SDRT (1 £ 25 Gy) protocol delivered at one day
post-injection to the zebrafish xenografts and analysis at 3 days post-
radiation. We analyzed the impact of radiation on mitosis, apoptosis,
tumor and nuclear area size, and showed that HCT116KRASG13D cells
are sensitive to radiation, whereas their isogenic cells, Hke3KRASwt are
resistant. This demonstrates that our assay is able to distinguish
radiosensitive from radioresistant tumors, even in polyclonal-hetero-
geneous tumors. We performed proof-of-concept experiments that
demonstrate the feasibility of using rectal cancer biopsies with prom-
ising results, suggesting that zebrafish Avatars may indeed predict
clinical response to neoadjuvant therapy (see summary Supplemen-
tary Fig. S5). Preliminary patient clinical response data appears to
correlate with induction of apoptosis upon treatment in their match-
ing zPDX. In summary, this work opens a new avenue to study the
predictive power of the zebrafish Avatar model as a radiotherapy
sensor for future personalized medicine and potentially change clini-
cal practice.
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