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Abstract

Background: Polyclonal serum consists of vast collections of antibodies, products of differentiated B-cells. The spectrum of
antibody specificities is dynamic and varies with age, physiology, and exposure to pathological insults. The complete
repertoire of antibody specificities in blood, the IgOme, is therefore an extraordinarily rich source of information–a
molecular record of previous encounters as well as a status report of current immune activity. The ability to profile antibody
specificities of polyclonal serum at exceptionally high resolution has been an important and serious challenge which can
now be overcome.

Methodology/Principal Findings: Here we illustrate the application of Deep Panning, a method that combines the
flexibility of combinatorial phage display of random peptides with the power of high-throughput deep sequencing. Deep
Panning is first applied to evaluate the quality and diversity of naı̈ve random peptide libraries. The production of very large
data sets, hundreds of thousands of peptides, has revealed unexpected properties of combinatorial random peptide
libraries and indicates correctives to ensure the quality of the libraries generated. Next, Deep Panning is used to analyze a
model monoclonal antibody in addition to allowing one to follow the dynamics of biopanning and peptide selection. Finally
Deep Panning is applied to profile polyclonal sera derived from HIV infected individuals.

Conclusions/Significance: The ability to generate and characterize hundreds of thousands of affinity-selected peptides
creates an effective means towards the interrogation of the IgOme and understanding of the humoral response to disease.
Deep Panning should open the door to new possibilities for serological diagnostics, vaccine design and the discovery of the
correlates of immunity to emerging infectious agents.
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Introduction

Polyclonal serum consists of vast collections of antibodies, the

products of differentiated B-cells [1,2]. The B-cell repertoire can

be divided into three categories: potential, available and utilized

[1]. The total ‘‘potential B-cell repertoire’’ is derived from the

combinatorial product of the VDJ and VJ germ-line genes

amplified by the effect of junctional P and N nucleotides plus

somatic hyper mutations, leading to values as high as 1011 unique

molecules [3]. This number, however, supersedes the total amount

of B-cells in a person and thus one should consider the ‘‘available

B-cell repertoire’’ - the actual clonal diversity of B-cells that exists

in an individual (estimated to be at least 1.66105 for the light

chain and in the range of 2–206105 for the heavy chain [3,4]

where some estimates [5] are as high as 96106, for review see [6]).

Naı̈ve B-cells, go on to differentiate into antibody secreting cells

(ASC) and memory cells upon encounter with antigens recognized

by their cell surface B-cell receptor (BCR) [7,8]. Therefore, the

observed diversity of antibodies present in serum corresponds to

the ‘‘utilized B-cell repertoire’’; those B-cells of the available

repertoire that have been stimulated to produce ASCs [2,9]. The

spectrum of antibody specificities is dynamic and varies with age,

physiological status and exposure to pathological insults

[2,7,10,11]. The complete repertoire of antibody specificities in

blood, the IgOme, is therefore an extraordinarily rich source of

information – a molecular record of previous encounters as well as

a status report of current immune activity [12,13,14,15].

Antibodies provide a first line of defense, detecting invading

pathogens, neutralizing and clearing them. The surveillance and

response towards emerging malignancies relies on antibodies as
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well. Hence, measuring antibody specificity is fundamental to sero-

diagnosis. Moreover, comprehensive analysis of the activities of

serum antibodies provides insights to vaccine design as well as the

ability to evaluate vaccine efficacy [16,17,18,19,20].

Here we focus on how to profile the diversities of antibody

binding activities of serum. For this we combine the flexibility of

combinatorial phage display with the power of high throughput

deep sequencing leading to ‘‘Deep Panning’’ – a means towards

interrogating the IgOme.

Random Peptides as Probes of Antibody Specificity
Phage display is widely employed in the production of random

peptide libraries used to survey the universe of antibody

specificities [20,21]. Screening random peptide libraries generates

defining panels of the diversity of peptides that are affinity selected

by the specific antibodies used as bait. Whereas initially expression

via Protein 3 was the first mode used to display random peptides

on filamentous bacteriophages [22], applications an alternative

system, display via the phage’s major coat protein - Protein 8,

produces highly polyvalent phages that often improves the analysis

and sensitivity of antibody-peptide binding [23].

Some 2,700 copies of Protein 8 encapsidate the entire length of

the viral ssDNA. Genetic alteration of the phages’ single protein 8

gene would lead to a phage homogenously modified along its

entire shaft as all copies of the Protein 8 would contain the foreign

insert. This however, could be problematic as inserts exceeding 6–

8 residues in length interfere with the packing of the Protein 8 into

the growing filament and would thus disrupt phage assembly

[24,25]. This obstacle is routinely circumvented when expression

of longer Protein 8 fusions is performed by using two functional

protein 8 genes; one expressing the wild type Protein 8 and the other

the recombinant Protein 8 containing the foreign peptide. As a

result ‘‘chimeric phages’’ are produced where most Protein 8’s are

wild type, interspersed with copies (tens to hundreds) of

recombinant Protein 8 [26]. Affinity selection of peptides/phages

is achieved via an antibody pull-down process coined ‘‘Bio-

panning’’.

Bio-panning is in essence an affinity capture experiment where

phages displaying peptides that are recognized by the antibody are

bound and separated from those that are not. Typically, panels of

tens of affinity selected peptides are cloned and sequenced to

provide a dataset from which information pertaining to antibody

specificity can be extracted. When one bio-pans a monoclonal

antibody (mAb), tens of peptides may suffice to portray the binding

characteristics and motifs recognized by the mAb. However, the

complexity of antibodies in serum is extensive where each

antibody may bind numerous different peptides, each antigen

stimulating the production of multiple antibodies and each

pathogen being comprised of many antigens. Clearly tens of

affinity selected peptides cannot provide a comprehensive depic-

tion of the IgOme. By employing next generation deep sequencing

as a reader of affinity selected phage displayed peptides, Deep

Panning generates comprehensive and high resolution profiles of

the antibodies in serum.

Results

Adapting Phage Display to Deep Sequencing
Over the past decade we have used the chimeric phage system

producing libraries of random peptides ranging in length from 6 to

12 amino acids, with and without flanking disulfides to produce

constrained looped peptides. In order to dramatically increase the

peptide database in such experiments we adapted our Protein 8

phage display system to next generation high throughput

sequencing [27]. For most next generation deep sequencing

methods the target DNA to be sequenced is flanked by adaptor

sequences compatible with the specific system being used. As is

illustrated in Figure 1 we modified the fth1 phage display vector

[28] to contain the Illumina adaptor sequences [29] upstream and

downstream to the SfiI cloning sites of the recombinant protein 8

gene thus generating fth1-dp. The DNA adaptors were selected so

to generate compatible peptide compositions and avoid stop

codons.

To test the fth1-dp system, we cloned oligonucleotides

corresponding to the linear peptide epitope of the murine mAb

GV4H3 (221-AGFAIL-226) derived from HIV-1 gp120 [30] into

the modified fth1-dp vector. The chimeric phages successfully

displayed the insert and were selectively bound by the mAb

indicating that the recombinant Protein 8 was assembled and

amenable to affinity selection (Figure S1).

How Random are Peptide Libraries?
As a case in point,using the fth1-dp vector we constructed a

random peptide library consisting of a total of 26109 random

7 mer linear peptides (NNK codons were used to avoid UAA and

UGA stop codons). A sample of the library was subjected to direct

PCR amplification using primers corresponding to the upstream

and downstream adaptor sequences thus generating amplified

DNA segments directly ready for Illumina deep sequencing. The

PCR product was quantified and a small quantity was added to the

phi-X control channel of an Illumina GAIIx DNA sequencer

(‘‘single read’’ mode of 54 bases). A total of 155,241 DNA

sequences were obtained of which 132,887 were unique

(Figure 2A). Translating the inserts was revealing as it turned

out that .37,000 sequences contained UAA and UGA stop

codons leading to Protein 8 truncation and thus generating

phenotypically wild-type phages. This situation is curious as NNK

prohibits an A in the third position of the codon. The vast majority

of these UAA/UGA containing phages turn out to be aberrations

and result from dysfunctional oligonucleotide insertions leading to

detected frame shifts distorting the intended reading frame. Of

these stop codon containing phages, only half were unique; the rest

appeared in multiple copies where the most prevalent insert was

found 17,044 times. This indicates that truncation of recombinant

Protein 8 provides a selective advantage; phage assembly and

incorporation of recombinant Protein 8 appear to be more

demanding than that of wild-type Protein 8. A corrected pie-chart

is given in Figure 2B, in which all the frame shifted inserts were

removed (note a remaining 1% of the inserts continue to contain

UAA and UGA stop codons with no apparent frame shift in the 54

base read).

A second surprising observation was that 79% of the non-frame

shifted inserts contained at least one UAG stop codon. The

theoretical expected frequency of UAG containing phages is about

20%. A selective advantage of UAG stop codon could be

transiently realized during the initial construction of the library

which is performed in MC1061 cells chosen for their high

efficiency for electroporation. Thus for the first 24 hours of phage

library preparation, UAG functions as a stop codon leading to the

observed over representation of those phages that contain this

codon in their recombinant Protein 8. The library is then

amplified and maintained in DH5alpha cells that contain the

supE144 suppression gene translating UAG as glutamine and thus

circumventing abortive termination and ensuring the production

of functional recombinant Protein 8.

In order to test the hypothesis that the over-abundance of UAG

containing phages was due to the lack of suppression in MC1061

cells, another library was constructed, however this time the initial
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electroporation was performed using DH5alpha cells from the

start. Although the transformation efficiency was markedly less, as

expected (total complexity ca 108phages), the profile of inserts was

dramatically improved (Figure 2C). Fifty-three percent of the

sequences had no stop codons and were virtually all unique. Forty-

five percent of the library contained only UAG of the possible

three stop codons, although the bias for UAG was not completely

resolved and is currently further being investigated.

Next we turned to the copy number of the most prevalent

peptides in each library and asked if such multiplicity could be a

random event or rather indicative of peptides that have some

selective advantage? For this we performed a simulation study, as

described in the Methods section, in which we studied the

distribution of the most common peptide in a naı̈ve library, i.e., a

library that was not exposed to any prior affinity selection. Our

simulations showed that in all 100 simulations, the most frequent

peptide never exceeded 4 copies. From these simulations we

conclude that peptides that appear 4 or fewer times are expected

by chance. For the library presented in Figure 2B, the top most

frequent 38 unique peptides (205 total peptides) were in the range

of 5–8 copies. This indicates that the number of copies for 99.99%

of the peptides in this naı̈ve library is as expected from a truly

random library. We conclude that if some source of selection takes

place in naı̈ve libraries, it only affects a tiny portion of the peptides,

and even these peptides are only amplified to a very limited extent.

While this demonstrates relatively little bias towards common

Figure 1. The fth1-dp8 vector. The recombinant protein 8 gene of the fth1 vector (VIII-STS) was modified by introducing the 59 (A – orange) and 39
(B – blue) Illumina adaptors such that they flank the DNA insert (E). Reference DNA barcodes were introduced between the A adaptor and the first SfiI
site (bc, see ‘‘Pre-processing of sequence data’’ in Methods). Samples for deep sequencing are generated directly by PCR using the adaptors as PCR
primers.
doi:10.1371/journal.pone.0041469.g001
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peptides, one must consider the fact that the profile of peptides

expressed does have a distinct bias towards peptides containing

glutamine (the result from the suppression of the over-represented

UAG codon). In view of this, the following analyses were

conducted using only peptides devoid of any stop codon.

Following the Dynamics of Deep Panning
The composition of polyclonal serum is in essence a compound

mixture of mAbs, each with its signature specificity embodied by

the collection of peptides it binds. Thus it is anticipated that the

spectrum of peptides recognized by the ensemble of antibodies of

polyclonal serum will be extremely complex. Therefore, before

embarking on the analysis of polyclonal serum, we first tested

Deep Panning on a model mAb.

The murine mAb GV4H3 (mentioned above [30]) was used to

pan 1011 phages of a 7 mer random peptide library to produce

three samples: the first affinity capture (Capture #1) followed by

two consecutive rounds of biopanning (amplification and capture,

i.e., Captures #2 and #3). For each sample the captured phages

were eluted and directly amplified by PCR. Each of these DNA

samples (the PCR products) was added to the phi-X control lane of

a GAIIx flow cell and the raw data were filtered to exclude DNA

reads that would correspond to peptides containing any of the

three stop codons. The 20 top most frequent peptides for each

capture are given in Table 1 as well as the top peptides of the naı̈ve

library for comparison. It should be noted that the number of

copies obtained for each peptide in the different samples simply

reflects their relative concentration after random sampling of the

eluted phages, PCR amplification and the fortuitous level of DNA

used to spike the Illumina flow cell in each case. The total number

of reads for each sample is given along with the number of unique

peptides.

Of the total 183,451 peptides obtained in the sample of the

naı̈ve library, 92% were unique, and less than one percent (a total

of 451 peptides) appeared in .4 copies, suggesting that the library

well reflects the expectation from a naı̈ve library. Notably, the

most frequent peptide (RIRSEEL) existed in 24 copies, which is

more than two order of magnitude less than the most common

affinity purified peptide in Capture #1 (Table 1). Of the peptides

in Capture #1 only the top three peptides were further amplified

and found in the top 20 peptides of Captures #2 and #3. Of the

17 remaining peptides 1 can be found in the 4,824 unique peptides

of Capture #3. This illustrates that most of the peptides sampled

in Capture #1 are non-specific background ‘‘laced’’ here and

there with peptides that are genuinely affinity-captured by

GV4H3. However, even after a single round of amplification the

situation is markedly different. Of the top 20 peptides of Capture

#2, twelve are also among the top 20 found for Capture #3 (all of

the remaining 8 are found within the top 100 peptides of Capture

#3). Hence, there is clear evidence that the most frequent peptides

obtained after Deep Panning are indeed affinity selected.

Deep sequencing the phages obtained through various steps of

the experiment illustrates the trend for affinity selection and

amplification of phages at the expense of marked reduction of the

complexity of the random peptides present in the naı̈ve library. As

is shown in Figure S2 the vast majority of peptides are unique in

the naı̈ve library where the total number of peptide copies derived

from the 20 most frequent peptides comprise an insignificant

proportion (,0.15%). After two rounds of biopanning the top 20

peptides represent 74% of the 118,548 peptides sequenced while

the total percent of unique copies drops to 4%. Thus Deep

Panning provides a quantitative depiction of the bio-panning

process and enrichment of affinity selected phages through serial

rounds of panning.

Epitope Mapping
Epitope mapping is based on the hypothesis that the peptides

affinity-selected via panning reflect the structure of the epitope

bound by the antibody being scanned [31]. B-cell epitopes are

typically conformational and discontinuous, comprised of some

15–20 contact residues harbored within 2–3 segments of the

antigen brought together via folding [32]. Clearly a 7 mer peptide

cannot be expected to represent an epitope, nor must it

correspond to linear segments of the antigen for recognition.

Rather the panel of affinity selected peptides collectively represents

the epitope and can be used as a dataset for computational

algorithms designed to predict conformational B-cell epitopes.

Figure 2. Pie charts depicting the proportion of unique peptides in phage display libraries. A total of 155,241 inserts were read for the
random phage display peptide library (A). 24% of the peptides contained at least one UAA or UGA stop codon (red plus dark red). 58% of the
peptides were unique containing a UAG stop codon (light green) of these some exist in multiple copies (3% of the total, dark green). 15% of the
peptides were completely devoid of stop codons (blue, less than 1% had 2–5 copies). Pie Chart (B) depicts the same set of peptides devoid of all
those that had detectable frameshifted inserts (37,223 inserts leaving 118,018 functional peptides of which ca 1% contained stop codons UAA and
UGA nonetheless). A second library was constructed in DH5alpha supE144 cells (C). Values below 1% are not given.
doi:10.1371/journal.pone.0041469.g002
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Mapitope is such a predictive algorithm [31], which identifies

significant amino acid pairs present in the phage displayed

peptides that have been affinity enriched by the antibody used to

pan the random peptide library. These pairs are then used to

identify surface accessible residue clusters on the antigen, in this

case HIV-1 gp120. These clusters are predicted to be the

corresponding epitope of the antibody being studied. The output

of the algorithm is a ranked list of the 5 best predictions based on

the panel of peptides. As is illustrated in Figure 3A, the top 20

peptides of Capture #2 predict one single cluster that coincides

precisely with the GV4H3 epitope. Success in predicting the

correct epitope supports the conclusion that the peptides most

amplified are indeed the product of antibody driven affinity

selection and amplification.

Motif Analysis–multiple Patterns of mAb Recognition
A total of 4,823 unique peptides were obtained in Capture #3

(Table 1). In order to determine if these represent different

patterns of affinity recognition by mAb GV4H3, the motif search

algorithm, MEME [33] was applied to the entire dataset. Four

clear motifs were identified as are shown in Figure 3B–E. The two

main motifs (Figure 3B–C) are clearly related to the main core of

the GV4H3 epitope. In addition, two minor motifs (Figure 3D–E)

are also found. Interestingly, the weakest motif (ADGIGGG) is

actually the closest to the most amplified peptide of the experiment

(ADGIVGW), thus illustrating that the most frequent and

enriched peptide does not necessarily correspond best to the bona

fide epitope of the antigen but rather may compliment the

paratope of mAb most efficiently.

Deep Panning HIV+ Polyclonal Serum
The situation for polyclonal serum is markedly more complex

when compared with mAb analyses. Polyclonal serum is a

composite of numerous mAbs, some of which may have a

common target; such as a specific pathogen or epitope, while

others may be totally unrelated. Each antibody binds its own set of

peptides contributing to an extensive mixture of peptides

representing the ensemble of antibodies active in the serum

sample. Hence the profile of peptides isolated can be extremely

diverse and complicated. In order to simplify matters three

consecutive rounds of biopanning were performed before deep

sequencing, so to reduce the amount of irrelevant background

considerably.

The phage display 7 mer library was used to bio-pan a sample

of purified human IgG obtained from HIV-1+ individuals

(HIVIG, Nabi, Inc. Rockville, MD). After the three rounds of

biopanning against the HIVIG a total of 163,400 peptides were

obtained of which 7,799 were unique sequences. The question is

Table 1. Three rounds of panning with mAb GV4H3.

naı̈ve Capture 1 Capture 2 Capture 3

sequence copy number sequence copy number sequence copy number sequence copy number

1 RIRSEEL 24 ADGIVGW 3,105 ADGIVGW 11,489 ADGIVGW 65,003

2 TVVVAAG 17 LAAGAVW 3,039 SAGFAME 5,173 SAGFAME 6,630

3 VQLSIIV 15 SAGFAME 2,944 LAAGAVW 3,140 VGWAVLE 2,409

4 PRTTIMG 15 VSLCSSR 2,925 VTPHTGF 1,172 VTPHTGF 2,366

5 KFVVAFC 14 SVTDYVE 2,855 GAHVAGG 672 LAAGAVW 2,364

6 LAPREGA 13 RMGIRAL 2,659 LTACTGF 660 SAGVAME 2,242

7 LMTARWC 13 DDDGLDG 1,931 LGWAVLD 506 ADGIVGG 1,009

8 FWALATW 13 SAARVFM 1,723 GTASVGF 444 EVGWAVH 905

9 YCVGDGC 13 QLYGARE 1,716 SLGWAVP 355 WVGWAVQ 834

10 WVNAATC 12 NRSREMG 1,707 GVGWAVP 344 LGWAVLD 768

11 SRGVGVG 12 IVPACRG 1,646 AVGWAVP 336 AVGWAVP 536

12 RRRPGAV 12 RLVYVPS 1,335 GPGMALE 324 AGWAVLE 469

13 QLVRGRW 12 TGCSSIL 1,166 PASLVGF 300 LVGWALS 453

14 SVFIMLR 11 AFHSGLT 1,106 SAGWALP 293 SLGWAVP 445

15 VFMGGCR 11 CSWTLER 996 EVGWAVH 272 GAHVAGG 413

16 TSEGALR 11 GGGVGLL 912 LNSMVGF 226 LTACTGF 368

17 SSRSSGG 11 WHAQVGF 852 VGWAVLE 222 GVGFALD 362

18 GRLSADG 11 ERRMGSC 844 QMPNLGF 215 GVGFALE 349

19 RRAVRFM 11 SGVGATH 770 LVGWALS 202 RVSAEVW 346

20 GLCAEAC 10 RLRWWGR 738 SAGWALE 201 LAGWALD 337

sum 261 (0.1%) 34,969 (10%) 26,546 (41%) 88,608 (74%)

# 168,993 (92%) 183,451 32,301 (9%) 342,712 6,609 (10%) 64,316 4,823 (4%) 118,548

unique total unique total unique total unique total

GV4H3 mAb was used to bio-pan the 7 mer random peptide library 3 consecutive rounds of panning (Capture #1 through #3) and compared with the naı̈ve library. For
each sample the 20 top most frequent peptides are given along with the number of times they appear. The number of unique versus total peptides is shown as well.
Numbers in parentheses represent the percent value of the total peptides for each category. Bold sequences indicate peptides that are carried over from Capture #1.
Bold and Italic sequences indicate peptides carried over from Capture #2.
doi:10.1371/journal.pone.0041469.t001
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can one identify any correspondence between the most frequent

peptides and HIV? Is a pathogen related response recognizable in

analyzing the peptide sequences obtained? Therefore, we asked

whether or not any of these peptides could be aligned by a

BLASTP analysis against HIV-1HXB2 gp160 so to indicate some

HIV specificity.

As is illustrated in Figure 4, 18 peptides (8%) of the top 223

peptides (all the peptides that were $5 copies) could in fact be

aligned to HIV gp160. In order to evaluate if this is a significant

finding the same alignment was performed against 1,000 different

scrambled gp160 sequences generating an average of 2.5% 62.2

(s.d.) hits which is statistically distinct from the success when using

the native HXB2 sequence (Z-score = 2.5, p = 0.006). This further

substantiates the hypothesis that the HIVIG-captured peptides

truly represent regions of the viral gp160. Furthermore, identical

analyses were conducted using the spike proteins of eleven other

RNA viruses. The results reveal that there is no significant

similarity between the peptides and the other viral proteins

(Figure 4).

MEME analysis on all the peptides $2 copies (648 unique

peptides) identified 10 distinct motifs, each based on 14–162

unique peptides. As is illustrated in Figure 5, all 18 hits in the

previous BLASTP analysis could be ascribed to 5 of the 10 motifs

defined. This result indicates that each of the 18 peptides was not

selected by accidental alignment, but rather is part of a true motif

together with many similar peptides, all selected due to their

correspondence to the same linear segments of the gp160 envelope

protein. This result clearly illustrates that the Deep Panning of

polyclonal serum produces families of affinity selected peptides

that define disease related motifs that can reveal meaningful

epitopes of the pathogen. This can have application towards the

development of diagnostics and vaccines as is discussed below.

Discussion

Deep Panning is shown to be an effective means to sequence

and categorize panels of hundreds of thousands of affinity selected

filamentous phage displayed peptides [34]. Here we have

demonstrated the compatibility of combinatorial phage displayed

random peptide libraries with next generation deep sequencing.

Indeed, a number of studies have previously illustrated that high

throughput second generation sequencing, whether using the 454

system [3,35,36,37] or that of Illumina [38,39,40,41], can be

extremely powerful. However, in the majority of these studies

recombinant Protein 3 of filamentous phage [3,35,37,38,40] or the

10B [39,41] protein in lambda phage were used. Here we

described the use of the p88 system [42] in which the fth1 vector

contains two copies of the major phage protein - Protein 8. Hence,

two versions of Protein 8 can be expressed and assembled in the

phage without the need or use of helper phages. We have used

these chimeric systems expressing libraries of random peptides

ranging in length from 6–12 residues and have found all to be

compatible with Deep Panning. As a case in point, we describe the

use of a 7 mer library. This has led to some rather surprising

results for which we decided to first carefully examine the profile

and distribution of random peptides in our naı̈ve libraries before

conducting antibody analyses.

Figure 3. Deep Panning with mAb GV4H3. (A) Mapitope prediction of the GV4H3 epitope on HIV gp120. The top 20 peptides of Capture #2
(see Table 1) were used as the dataset for Mapitope prediction of the GV4H3 epitope. The single predicted cluster comprises two discontinuous
segments of the antigen (green and blue) brought to flank the core of the epitope (residues 221–226, pink). (B-E) MEME analysis of the GV4H3
derived peptides. The 20 top most frequent peptides of Capture #3 (see Table 1) generated a major motif ‘‘AGWAV’’. This motif (B) and three
additional motifs are identified when all 4,823 peptides are analyzed. The ‘‘VGF’’ motif (C) is a simpler version of the major motif. The two additional
minor motifs (D and E) do not have obvious similarity to the epitope of the mAb. The ‘‘ADGIGGG’’ motif clearly corresponds with the most frequent
peptide ADGIVGW (see text). The numbers in red represent the number of unique peptides that define each motif.
doi:10.1371/journal.pone.0041469.g003
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Unexpected distortions and aberrations were apparent when

extensive sets of peptide sequences were examined (see also [43]).

‘‘Silent’’ mutated phages, genotypically containing dysfunctional

inserts, were found to be enriched due to the presence of UAA/

UGA stop codons that lead to abortive translation of their

recombinant Protein 8 and ultimate presentation of phenotypically

wild type phages. The presence of the third stop codon UAG also

seems to lead to positive selection of those phages that contain this

codon in their inserts. The abundance of these phages leads to a

distinct biased proportion of UAG containing recombinants that

affects the randomness of peptides by over representation of

glutamine. At least part of this distortion can be remedied by

production of the phage library in bacteria containing the supE144

suppression tRNA which markedly improved the situation,

although not completely.

Despite the irregularities identified in the library used we have

learned much in the application of Deep Panning for both the

analyses of mAbs and polyclonal serum. In the ‘‘traditional’’

phage/biopan experiment tens of peptides are produced, which

are too few to identify and characterize structural motifs, this is

especially true when analyzing polyclonal serum. Deep Panning,

however, generates comprehensive panels of hundreds of thou-

sands of affinity selected peptides. The frequency a given peptide is

isolated is a proxy of sorts for the affinity and titer of the specific

antibody in the serum that binds it. Moreover, due to the very

large dataset one is able to identify structural motifs recognized by

the antibodies. The quality and strength of a motif stems directly

from the ability to accumulate hundreds of variant member-

peptides indicating the motif’s conserved-hallmarks vs positions

where variation is permissible.

Deep Panning provides an effective means to probe and

characterize the IgOme. As improved libraries are constructed

and more efficient computational tools are devised, detailed

profiles of the repertoire of antibody specificities will become

available. Peptide profiles will be surveyed for pathogen defining

motifs which will serve as markers in diagnostic tests. Moreover, it

has been reported that the evolution of antibody specificities in

HIV patients correlates with disease progression [44,45,46], the

ability to follow this maturation of the humoral response will

enable us to establish not only the presence of the infection but

also the stage of disease (acute vs chronic for example).

Obviously, the intent to conduct comprehensive comparative

IgOme profiles brings to question the costs of such analyses. Deep

Panning is totally compatible with multiplexing multiple serum

samples each tagged with its own defining DNA barcode. Hence

one can expect to run dozens of serum samples in parallel on a

single lane bringing costs down to very reasonable levels. The

application of Deep Panning will increase basic understanding of

Figure 4. BLASTP analysis of HIVIG-captured peptides against viral coat proteins. Of the 223 top unique HIVIG-captured peptides, 18 (8%)
scored hits in BLASTP analysis against the HIV-1HXB2 gp160 (blue). Repeating this procedure with the same protein but scrambled gives an average
value of 5.5 hits when performed 1,000 times (2.5%62.2 s.d., red). The differences between native and scrambled coat proteins BLASTP results of 11
other RNA viruses were not found to be significant. *P,0.01.
doi:10.1371/journal.pone.0041469.g004
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how B-cells respond to infection or participate in immune

surveillance. IgOmic profiles will provide substance and detail of

the dynamics of how antibody specificities change in response to

immunological insults, variations as a result of physiology and age.

This will undoubtedly impact the way disease is diagnosed as well

as produce new therapeutics and vaccines to treat disease and

prevent it.

Materials and Methods

Construction of fth1-dp Vector
The fth1-dp vector is a derivative of the fth1 vector previously

described [28]. To adapt the fth1 for Illumina deep sequencing,

Illumina adaptors A and B were inserted upstream and

downstream to the insert-flanking SfiI sites, (Figure 1 and Figure

S3). Oligonucleotides corresponding to the Adaptor sequences

were inserted by ‘SOEing’ PCR mutagenesis [47] using the

Accuzyme polymerase (Bioline, BIO-21052). Alternatively, ex-

tended PCR primers can be used to accomplish the same as has

been described previously (see for example [3,35,39]).

Library Construction
Libraries were constructed as previously described [48]. For

this, two 5’ biotinylated oligonucleotides were used. The first

contained the redundant ‘‘library’’ sequence, e.g., 76NNK

flanked by BglI sites compatible with the two SfiI sites of the

vector (61 bases). The second oligonucleotide, 18 bases, comple-

mented the 3’ end of the first and was extended to ‘‘fill-in’’ the

complementary strand using Klenow polymerase. The product

was digested with BglI, the short biotinylated segments were

removed with Streptavidin conjugated magnetic beads and the

eluent was cloned into SfiI digested fth1-dp vector. This ligation

mix was used to electroporate MC1061 or DH5alpha cells as

indicated in the text.

Biopanning
The panning procedure was carried out for the mAb GV4H3

and the polyclonal HIVIG as previously described [48]. Shortly, 6-

wells tissue culture plates (Corning, 3516) were coated with protein

G (Sigma-Aldrich, P4689) in Tris-buffered saline, 50 mM Tris-

HCl pH 7.5, 150 mM NaCl (TBS). The wells were blocked with

0.25% gelatin in TBS (TBSG), washed briefly twice with TBS,

Figure 5. Assignment of MEME motifs within HIV gp160. The 18 BLASTP hits found within HIV-1 gp160 (see text) are located at distinct sites
(indicated sequences), one within gp120 (dark blue) and 3 within gp41 (light blue) (red, yellow, cyan, green and purple squares). The genuine HIV
sequences correspond to 5 of the MEME defined motifs discovered when all 648 peptides are analyzed using this algorithm.
doi:10.1371/journal.pone.0041469.g005
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then incubated for 4 hours with the ligand - either HIVIG (350 mg)

or mAb GV4H3 (100 mg) dissolved in 1 ml of blocking solution.

Unbound ligand was washed out, and the plate was incubated

overnight at 4uC with 1011 phages of the 7 mer random peptide

library suspended in 700 ml TBSG. Subsequently, the plate was

washed and the bound phages were eluted in pH 2.2 and

neutralized in pH 9.1 (Capture #1). For Captures #2 and #3

additional rounds of amplification and biopanning were carried

out. The eluted phages were then prepared for Illumina

sequencing.

Illumina Sequencing, Sample Preparation
After biopanning the eluted phages (500 ml) were precipitated

with 200 ml PEG/NaCl for 2.5 h on ice at 4uC. Tubes were

centrifuged at 13,000 rpm for 45 min at 4uC. The phage pellets

were resuspended in 40 ml TBS and used as templates for PCR.

Parallel PCR reactions (50 ml) were prepared, each containing

phage template (10 ml), polymerase (Taq (Larova GmbH, VAR-

04)), sense (AATGATACGGCGACCACCGAGATCTA-

CACTCTTTCCCTACACGACGCTCT) and antisense (CAAG-

CAGAAGACGGCATACGAGCTCTTCCGATCT) primers

corresponding to the Illumina adaptors A and B. For the analysis

of the naı̈ve libraries, four samples of 46108 phages each were

amplified individually by the PCR reactions.

The thermal profile was:

1. 95uC 5 min

2. 95uC 1 min

3. 53uC 1 min

4. 72uC 20 sec

5. Go back to step 2634

6. 72uC 5 min

The amplified PCR products were validated for size (152 bp) by

running in 2% agarose gel. PCR samples were purified by RBC

Real Genomics HiYield TM Gel/PCR DNA Fragments kit

(RBCBioscience, YDF100 ) into 40 ml volume. All 4 PCR cleaned

products were united and their concentration was measured. The

sample was dried by speed vac and sent for Illumina sequencing.

Illumina Sequencing
The dried samples were resuspended in 20 ml of elution buffer

and analyzed using an Agilent BioAnalyzer 2100 to verify their

quantity and quality. Quantitation for sequencing was done using

qPCR, after which samples were normalized and 5 ml to 15 ml

were spiked in to 1,000 ml (1.5 pM) of the Illumina PhiX control

sample.

140 ml of the normalized samples plus PhiX control were

dispensed into strip tubes. These samples in strip tubes were

loaded on to a flowcell and bridge amplified for approximately 4 h

using a cBot and/or cluster station to obtain millions of the same

copies of DNA template. The amplified template in a flowcell was

then loaded on the Illumina HiSeq 2000 and/or Genome

Analyzer IIx and sequenced using the Illumina sequencing by

synthesis chemistry.

Simulation Study to Characterize the Distribution of the
Most Common Peptide in Naive Peptide Libraries

We estimated the expected distribution of the most frequent

peptide, for naı̈ve libraries, i.e., peptide libraries that were not

subjected to any affinity selection (e.g., biopanning). Using this

distribution, we were able to statistically determine if the observed

number of repeats for the most common peptide can be obtained

by chance alone. This random distribution was computed using a

computer simulation. Specifically, we first randomly generated

NNK sequences to equal the size of the random library before the

PCR sampling. Next, these sequences were computationally

amplified to mimic random PCR amplification. Finally, a subset

of these sequences was selected to mimic sampling for sequencing.

The frequency of the most common peptide in the generated

library was then recorded. This process was repeated one hundred

times to generate the expected distribution of the most frequent

peptide. The C++ code for this simulation scheme is freely

available from the authors upon request.

Epitope Mapping
Epitope mapping was performed using the Mapitope algorithm,

which is implemented in the Pepitope server (freely available at:

http://pepitope.tau.ac.il/[49]). Mapitope algorithm was described

before by Bublil et al [31]. Briefly, given a set of peptides derived

from a bio-panning experiment and the 3D structure model of the

antigen of interest, Mapitope maps pairs of residues that are

significantly overrepresented in the set of peptides onto the antigen

3D structure.

Pre-processing of Sequence Data
The Illumina sequences were analyzed with the assistance of

BioPerl packages [50]. For all analyses 100% fidelity for a barcode

reference sequence residing between the adaptor A and first SfiI

site (see Figure 1) was mandatory (in sequence and reading frame).

For the HIVIG peptides the sequences were further filtered, and

any sequence with more than 1 mismatch in the non-insert region

was cleared.

Analysis of Polyclonal Serum
BLASTP [51] was used to detect sequence similarity between

the HIVIG-captured peptides and HIV-1HXB2 gp160 or the spike

proteins of eleven other RNA viruses as shown in Fig. 4. All

HIVIG-captured peptides that had more than 5 copies were

considered for this analysis resulting in total of 155,206 peptides

(reflecting 223 unique peptides). The viral proteins chosen for the

analyses were the sequences from the NCBI RefSeq database.

Their UniProtKB accession IDs are: HIV1: P04578.2; HIV2:

P18094.1; HTLV: P14075.1; RSV: P03396.1; MLV: P26804.1;

Poliovirus: P03300.3 (1–881); Rabies: P06747.1, P08671.1,

P08667.1,;HCV: P27958.3 (192–746); HBV: Q76R62.2,

Q76R62.2; Influenza H1: Q9WFX3.2; Influenza H5:

Q6DQ18.1; SARS: P59594.1;.

BLASTP parameters were adjusted to deal with short peptides

(7-mers). The parameters we used are as follows: E-value threshold

(-e): 2,000; substitution matrix (-M): PAM30; Word-size (-W): 2

and without using composition-based statistics (-t 0). The BLASTP

results were further processed such as only peptides that (1) their

alignment length with the target protein is at least 5 amino acids

and (2) share more than 80% sequence identity with the viral

segment were considered as meaningful hits (true hits). To

compare these results with the expected number of random hits,

the viral amino acid sequences were scrambled and BLASTP

procedure was repeated for each scrambled sequence (repeated

1,000 times). We consider the average number of matches between

the scrambled proteins and the peptides set as the random

background (random hits). The number of true hits was compared

to the number of random hits using the Z-test and p value was

calculated under the assumption that the number of random hits is

normally distributed.
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Motif Analysis
We used the Multiple EM for Motif Elicitation (MEME)

algorithm [33] for motif discovery in order to characterize the

peptides captured by the antibodies. For MEME analysis, all

unique (protein) sequences were used while assuming that each

motif is expected to occur zero or one time in each sequence (zoop

mode).

Supporting Information

Figure S1 GV4H3 validation. The fth1-dp phage (indicated)

was spotted directly onto a nitrocellulose membrane filter along

with a phage containing a DNA insert corresponding to the

GV4H3 epitope (AGFAIL). The membrane was subsequently

immunoblotted with GV4H3 and positive clone was sequenced to

validate the presence of AGFAIL insert and Illumina adaptors A

and B.

(TIF)

Figure S2 Progressive enrichment of affinity selected
peptides. 90% of the peptides in the naı̈ve library are unique

(blue) where the 20 top most frequent peptides (red) constitute

0.15%. Each round of consecutive panning leads to a drop of the

total fraction of unique peptides accompanied by enrichment of

those most highly affinity-selected.

(TIF)

Figure S3 Construction of fth1-dp phage vector using
‘SOEing’ PCR. The fth1 vector was utilized as template (A) for

the generation of two independent PCR products; the first (B, red)

contained a BglII site at its 59 end and the adapter A sequence (A -

orange) followed by a barcode and a SfiI site at its 39 end (primers

2201s: GCTAGCCATCAGATCTGCACTG and 9602as:

GGACGTCATTACCGGCCACGTTGGCCNCCNGANCCN-

GATAAGATCGGAAGAGCGTCGTGTAGGGAAA-

GAGTGTTGCCTTCCGCCGCAAAGCTTAAC). The second

(C, purple) contained a SfiI site followed by adapter B (B - blue) at

its 59 end and an EagI site at its 39end (primers 9301s:

GGCCGGTAATGACGTCCATAATGGCCTCTGGGGCC-

CAGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTCG-

GACCCTGCGAAGGCAGCATTCG and 2301as: AAA-

CAGCGGCCGCTATCAACTGG). The primers were mixed

and further amplified (D) to generate a single product (E) which

was double digested with BglII and EagI and inserted into a fth1

digested with these two enzymes to generate the fth1-dp phage

vector (F). The ligated vectors were used to transform MC1061

cells by electroporation, colonies were picked and validated for

sequence correctness.

(TIF)
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