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Abstract 

Background:  Biological experiments have demonstrated that circRNA plays an essential role in various biological 
processes and human diseases. However, it is time-consuming and costly to merely conduct biological experiments 
to detect the association between circRNA and diseases. Accordingly, developing an efficient computational model 
to predict circRNA-disease associations is urgent.

Methods:  In this research, we propose a multiple heterogeneous networks-based method, named XGBCDA, to 
predict circRNA-disease associations. The method first extracts original features, namely statistical features and graph 
theory features, from integrated circRNA similarity network, disease similarity network and circRNA-disease associa-
tion network, and then sends these original features to the XGBoost classifier for training latent features. The method 
utilizes the tree learned by the XGBoost model, the index of leaf that instance finally falls into, and the 1 of K coding 
to represent the latent features. Finally, the method combines the latent features from the XGBoost with the original 
features to train the final model for predicting the association between the circRNA and diseases.

Results:  The tenfold cross-validation results of the XGBCDA method illustrate that the area under the ROC curve 
reaches 0.9860. In addition, the method presents a striking performance in the case studies of colorectal cancer, gas-
tric cancer and cervical cancer.

Conclusion:  With fabulous performance in predicting potential circRNA-disease associations, the XGBCDA method 
has the promising ability to assist biomedical researchers in terms of circRNA-disease association prediction.
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Introduction
CircRNA is a covalently closed loop structure [1], and its 
downstream 5’ splice site is connected to the upstream 3’ 
splice site [2]. In recent decades, the researches regarding 

circRNA have entered into a stage of rapid development. 
Emerging evidence indicates that plenty of circRNAs 
are related to critical biological processes. Among these 
processes, one of the significant aspects is the associa-
tions between circRNA and diseases, with the gradu-
ally increasing numbers of circRNA-disease associations 
verified by biological experiments. Jelenia et  al. discov-
ered that circRNA plays a paramount role in the evolve-
ment of cancer. Specifically, their study manifested that 
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cancer-related chromosomal translocations cause fusion 
circRNA(f-circRNA), and F-circRNAs show tumor-pro-
moting effects in vivo models [3]. Wang et al. conducted 
a study showing that heart-related circRNA(HRCR) is 
an antihypertrophic molecule that can inhibit cardiac 
hypertrophy and heart failure by targeting miR-233 and 
ARC [4]. Liu et  al. detected a new circRNA involved in 
the process of cartilage damage, and further proposed 
that circRNA-CER may be used as a potential target for 
osteoarthritis OA [5]. Moreover, circRNA also has a close 
relationship with bladder cancer, colorectal adenocarci-
noma, esophageal squamous cell carcinoma, lung adeno-
carcinoma and other cancers [6–9]. Although circRNA 
has become a marker for the diagnosis of specific dis-
eases, traditional experiments cost substantial time and 
resources. Thus, a fast and economical method to detect 
the connection between circRNA and human diseases is 
of great significance.

To start the analysis of the association between cir-
cRNA and diseases, it is necessary to establish a circRNA 
database first. Currently, multiple databases storing cir-
cRNA information have been constructed. The circBase 
database collects information such as the sequence, gene 
and genome location of circRNA and its latest update 
was in July 2017 [10]. The Circ2Traits database is the first 
disease-circRNA association database [11]. The CircNet 
database accumulates expression profiles, genome anno-
tations and sequences of circRNA subtypes, and provides 
circRNA-miRNA gene regulatory networks [12]. The Cir-
cR2Disease gathers experimentally verified circRNA-dis-
ease associations and contains 725 associations between 
661 circRNAs and 100 diseases in its latest version [13]. 
The CircInteractome database includes a search function 
for possible interactions between circRNA and RBP and 
miRNA [14]. The exoRBase database visualizes the col-
lection of circRNA, lncRNA and mRNA derived from the 
analysis of human blood exosomal RNA-seq data [15]. 
The CSCD database developed by Xia et al. is designed to 
study the function of cancer-specific circRNA [16].

There are many methods proposed to predict cir-
cRNA-disease associations. For example, Deng et al. pre-
dicted circRNA-disease associations based on the KATZ 
method and the integration between circRNA, protein 
and disease [17]. Lu et  al. proposed a method for pre-
dicting circRNA-disease associations based on sequence 
and ontology representations of convolutional neural 
networks and recurrent neural networks [18]. Li et  al. 
used a deep learning method called DeepWalk to extract 
features, and then used a network consistent projection 
method for circRNA-disease association prediction [19]. 
Wang et  al. used stacked autoencoders to extract fea-
tures, and carousel forest (RF) classifiers for circRNA-
disease association prediction [20]. Zheng et al. proposed 

the iCDA-CGR model to predicate circRNA-disease 
associations based on chaotic game representation [21]. 
Wang et  al. proposed a calculation method based on 
multi-source information combined with deep convolu-
tional neural network (CNN) to predict circRNA-disease 
association [22].

In this article, we propose an effective method, named 
XGBCDA, to predict circRNA-disease associations. Ini-
tially, we construct a circRNA similarity matrix com-
posed of circRNA expression profile similarity and 
Gaussian interaction profile kernel similarity, and a dis-
ease similarity matrix composed of disease semantic 
similarity and Gaussian interaction profile kernel simi-
larity. Besides, we also integrate the circRNA similarity 
network, the disease similarity network and the known 
circRNA-disease association network. Then, We utilize 
the aforementioned data to calculate original features, 
namely statistical features and graph theory features, and 
send extracted original features to the XGBoost classi-
fier to obtain latent features. Finally, we input the fused 
features into the XGBoost classifier again to predict the 
circRNA-disease association. As a result, our method 
achieves outstanding performance on the circR2disease 
dataset, and with the tenfold cross-validation, the area 
under the curve (AUC) is 0.9860. Figure 1 illustrates the 
flowchart of our method.

Methods
Human circRNA–disease associations
In this study, we obtain human circRNA-disease associa-
tions dataset from the CircR2Disease database, including 
660 circRNA-disease associations between 604 circRNAs 
and 88 diseases. CircR2disease provides experimentally 
verified circRNA-disease associations, which is of great 
help to our further research in this field. Here, we use 
adjacency matrix A to represent the circRNA-disease 
association. If a certain circRNA ci is related to the dis-
ease dj, then we assign the element A(ci, dj) to 1, other-
wise to 0.

circRNA similarity
circRNA expression profile similarity
We download 49 human circRNA expression profile data 
from the exoRbase database [13], whose current version 
contains 58,330 circRNAs. Then we unify the circRNA 
id in exoRbase with the circRNA id in the aforemen-
tioned circR2disease. Next, we use the person correlation 
coefficient to calculate the similarity of the expression 
profile between two circRNAs, represented as element 
CS_EP(X,Y). If the person correlation coefficient of cir-
cRNA X and circRNA Y is higher than the threshold, the 
element CS_EP(X,Y) is assigned to 1, otherwise 0. In this 
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method, we assign the threshold to 0.4. The similarity of 
two circRNA is defined as follows:

circRNA GIP kernel similarity
Based on the hypothesis that similar diseases may be 
related to similar circRNAs, we calculate the similar-
ity of the Gaussian interaction profile kernel of cir-
cRNAs [23]. The Gaussian kernel function is a scalar 
function that is symmetric along the radial direction 
and it is widely used in constructing the kernel with 
eigenvectors [24]. In 1964, Aizermann et  al. applied 
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Fig. 1  The Flowchart of the XGBCDA method. The XGBCDA method includes the following steps: extract statistical features and graph theory 
features from an integrated circRNA similarity network, an integrated disease similarity network and circRNA-disease association network; input 
these original features into the XGBoost classifier to further obtain latent features; integrate the latent features with the original features to train the 
final XGBoost classifier for predicting circRNA-disease association
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circRNA similarity integration
Finally, we integrate the obtained circRNA expression 
profile similarity with the circRNA Gaussian interaction 
profile kernel similarity, using the following formula:

Disease similarity
Disease functional similarity
We gather the phenotypic similarity moment data of dis-
eases from Zhang et  al. [17]. And we extract the diseases 
names from the circRNA-disease association in the circR2d-
isease database and employ them to search for the most 
similar phenotype ID for each disease within the OMIM 
database. For the sake of ensuring the accuracy of the data, 
we delete the diseases that do not match the disease pheno-
type ID in the OMIM database. Eventually, we collect the 
qualified phenotypic similarity data of the diseases.

Disease GIP Kernel similarity
The computational process of disease GIP kernel simi-
larity is analogous to that of disease Gaussian interac-
tion profile kernel similarity. Based on the hypothesis 
that similar diseases may constantly be related to similar 
circRNAs [23], we calculate the kernel similarity of the 
Gaussian interaction profile kernel of a certain disease by 
following formula:

The parameter γd limits the bandwidth. Here we define 
the value of γd as follows:

where nd represents the number of all diseases.

Disease similarity integration
We utilize a similar way, as depicted in the integration 
of circRNA similarity, to integrate the obtained disease 
semantic similarity with the disease Gaussian interaction 
profile kernel similarity by the following formula:

XGBCDA method
In the XGBCDA method, we construct three matri-
ces, the integrated circRNA similarity matrix CS, the 
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integrated disease similarity matrix DS, and the circRNA-
disease association matrix A. Inspired by Tong He et al.’s 
research [26], we calculate the statistical characteristics 
of each circRNA/disease similarity score, including the 
histogram distribution and the mean of similarity scores, 
according to the circRNA similarity matrix CS and the 
disease similarity matrix DS respectively. Besides, we 
construct a network whose nodes are circRNA/disease, 
according to the circRNA/disease similarity matrix. In 
the network, if the similarity score between two nodes is 
higher than the average similarity score, then there is an 
edge between two nodes. We also calculate the number 
of neighbors that each node has, and nodes’ graph the-
ory characteristics, namely degree centrality, closeness 
centrality, betweenness centrality. Then, we select the 10 
nodes closest to the node’s similarity score as neighbors, 
and calculate the average and histogram distribution of 
their similarity scores. In addition, we design a network 
whose nodes are circRNA and disease, according to the 
circRNA-disease association matrix A, and use the NMF 
(Non-Negative Matrix Factorization) algorithm to cal-
culate the latent vector. We then combine the above fea-
tures to construct a composite feature vector to train the 
XGBoost model. Subsequently, we use the tree learned by 
the XGBoost model to form new features. Finally, these 
new features accompanied with the original features are 
added to the model for training. After finishing all the 
procedures, we put the trained XGBoost model into pre-
dicting potential circRNA-disease associations. The com-
plete process is illustrated in Fig. 2.

Results
Performance evaluation
In order to comprehensively assess the prediction per-
formance of our method, we implement the method on 
the CIRCR2Disease dataset by fivefold cross-validation. 
Our data set contains positive samples, namely all 660 
pairs of known circRNA-disease associations, and nega-
tive samples, namely the same amount of unknown asso-
ciations. Based on the fivefold cross-validation, the area 
under the curve (AUC) of our method is 0.9935, 0.9913, 
0.9996, 0.9968 and 0.9660 respectively, and the average 
AUC is 0.9861. The experimental results are summarized 
in Fig. 3.

Comparison with different classifiers
To verify the XGBoost classifier’s performance in the 
model, we compared it with other four popular classi-
fier models(SVM, Decision Tree, KNN, Naive Bayes). 
These five classifiers all share the same data set, and to 
ensure the validity of the comparison, we use the default 
parameters for training and prediction. The evaluation 
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criteria includes accuracy(ACC), Area under the ROC 
curve(AUC), precision(PRE), recall(REC). With tenfold 
cross-validation, all parameters of the XGBoost model 
are ahead of other classifier models’, and the verifica-
tion results of the remaining four classifier models were 
shown in Table 1. For an apparent comparison, we pre-
sent the results of these five models in the form of the 
histogram. From Fig.  4, it is evident that the XGBoost 
exhibits the first-rate competence in the evaluation. 
The comparative experiment results fully prove that the 
XGBoost classifier is superior to other classifier models 
in every aspect.

Selection of optimal parameter values
In order to further understand the robustness of our pro-
posed method, we analyze the optimal values of 5 param-
eters in the XGBoost classifier that have the main impact 
on the performance of tenfold CV, including learning_
rate, n_estimators, max_depth, min_child_weight and 
gamma. We use the cv function in the python package of 
xgboost to calculate the best values of the learning_rate 
and n_estimators parameters, which are 0.1 and 463, 
respectively. We apply the grid search method to deter-
mine the parameters max depth and min child weight to 
be 5 and 4, respectively. We try 5 representative values to 
test the optimal value of gamma, which are 1e−5, 1e−2, 
0.1, 1, 100. Table 2 below proves that 1 is the best value of 
gamma.

Comparison with other methods
To thoroughly confirm the best performance of the pro-
posed model, we compare XGBCDA with other state-
of-art methods. In comparison with LncRDNetFlow 
[27], TPGLDA and BiRW [28] and KATZ [29], we use all 

Fig. 2  We input the statistical features and graph theory features into 
XGBoost. The two trees in the figure were learned by XGBoost. For an 
input sample, if it falls on the first leaf node of the first tree and the 
second leaf node of the last tree, the new feature vector obtained by 
XGBoost is [1, 0, 0 … 0, 1]. The first three digits in the vector refer to 
the three leaf nodes of the first tree, and the last two digits refer to 
the two leaf nodes of the second tree

Fig. 3  ROC curves from fivefold cross-validation performed with 
XGBCDA model on circR2Disease dataset

Table 1  Compare with other classifier models in tenfold cross-
validation on the same dataset

Method ACC​ AUC​ PRE REC F1

XGBoost 0.9541 0.9860 0.9844 0.9307 0.9517

SVM 0.7626 0.8696 0.8995 0.5519 0.7217

Decision Tree 0.8242 0.9146 0.8266 0.8124 0.8138

KNN 0.8618 0.9147 0.8885 0.8247 0.8509

Naive Bayes 0.7031 0.7469 0.7214 0.6485 0.6766
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human circRNA-disease associations in the circR2dis-
ease database, defined as positive samples, and the same 
number of unproven circRNA-disease, defined as nega-
tive samples, to form the data set. The Fig. 5 presents that 
under tenfold cross-validation, the performance of our 
method significantly exceeds that of the other four meth-
ods, and the AUC of our method is 0.9860.

Latent features extracted from XGBoost
We compare the model that uses XGBoost to gener-
ate new features with the model that does not. XGBoost 
is also known as eXtreme Gradient Boosting package 
[30], and has applied to handle multiple tasks, such as 
regression, classification, and sorting. Furthermore, its 
advantages involve fast training speed and marvelous 
prediction performance. Given the aforesaid traits and 
the work of He et  al. [31], we used XGBoost to extract 
latent features based on original features. We consider 
each tree as a classification feature and use the leaf index 
that the instance finally falls into as a value. And the ulti-
mate latent features are coded by 1 Of K coding. Figure 6 
depicts that based on tenfold cross-validation, the model 
using the latent features generated by XGBoost has better 
performance.

Case studies
To further evaluate the performance of our method in 
predicting potential circRNA-disease associations, we 
select the top 20 associations by prediction scores for 
verification. The results are presented in Table 3. In addi-
tion, we choose three diseases, which are rectal cancer, 
gastric cancer and cervical cancer, to conduct case stud-
ies. We pick 660 known human circRNA-disease asso-
ciations from circR2Disease as training data. In terms 
of prediction results, the prediction scores of potential 
circRNA-disease associations range from 0 to 1, where 
1 refers to the highest possibility of the association, and 
0 refers to the lowest. In the method, we assume that 

Fig. 4  Compare with other classifier models in tenfold cross-validation on the same dataset

Table 2  The tenfold CV prediction performance of various 
parameter values ranging from 1e−5 to 100 for gamma

gamma 1e−5 1e−2 0.1 1 100

AUC​ 0.9849 0.9852 0.9860 0.9844 0.9018

Fig. 5  ROC curves of different methods
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circRNA-disease associations with a score higher than 
0.9 have a high degree of confidence, and we select all 
circRNA-disease associations, which are not included in 
the circR2disease database, with predictive scores higher 
than 0.9 in the three diseases of rectal cancer, gastric can-
cer and cervical cancer. Among the obtained ten pairs of 
associations, three pairs of circRNA-disease associations 

have been confirmed in the literature. However, it is 
worth noting that this does not mean that the other 7 cir-
cRNA-disease pairs must not be related. The results are 
summarized in Table 4.

Discussion
We suppose that one of the possible approaches to 
improve the performance is utilizing other biological 
information as bridge, given the fact that the researches 
of the direct association between the circRNA and dis-
ease are in the infant stage. For instance, with the grow-
ing researches of circRNA-miRNA associations and 
miRNA-diseases associations, it is worth trying to use 
miRNA as an intermediary to enhance the performance 
of our method. Moreover, because the circRNA-RBP data 
increases exponentially, RBP may be another domain for 
us to explore.

Conclusion
In this paper, we proposed an effective method to predict 
circRNA-disease associations by integrating the semantic 
similarity of diseases, the similarity of circRNA expres-
sion profiles, and the Gaussian interaction profile kernel 
similarity of circRNA and disease, and using XGBoost to 
construct latent features. Based on the circR2disease data 
set, we predict ten pairs of unknown circRNA-disease 
associations, of which three pairs have been confirmed 
in the literature. Although our method has achieved 
extraordinary performance, there is scope for improve-
ment in the future. With the continuous development of 
ncRNA research by researchers, circRNA-disease associ-
ations and lncRNA-disease associations have been grad-
ually discovered, and we can use the valuable information 
to develop circRNA-disease association predictions.

Fig. 6  AUC results of XGBCDA with latent feature and that without 
latent feature under tenfold cross-validations

Table 3  Based on the known association predictions in the 
circR2disease database, the 20 circRNA-disease pairs with the 
highest scores

Disease circRNA Source

Coronary artery disease has_circRNA6510_1 CircR2Disease

Coronary artery disease hsa_circRNA11783_2 CircR2Disease

Coronary artery disease hsa_circRNA11806_28 CircR2Disease

Osteosarcoma hsa_circ_0092509 CircR2Disease

Hepatocellular carcinoma circC3P1 CircR2Disease

Osteosarcoma hsa_circ_0009910 CircR2Disease

Major depressive disorder hsa_circ_0001410 CircR2Disease

Major depressive disorder hsa_circ_0001907 CircR2Disease

Major depressive disorder hsa_circ_0005620 CircR2Disease

Major depressive disorder hsa_circ_0056048 CircR2Disease

Major depressive disorder hsa_circ_0005620 CircR2Disease

Bladder cancer hsa_circ_0041103 CircR2Disease

Bladder cancer hsa_circ_0007158 CircR2Disease

Bladder cancer hsa_circ_0082582 CircR2Disease

Bladder cancer hsa_circ_0072088 CircR2Disease

Hepatocellular carcinoma circRNA_000839 CircR2Disease

Bladder cancer hsa_circ_0061265 CircR2Disease

Hepatocellular carcinoma hsa_circRNA_104135 CircR2Disease

Primary hepatic carcinoma hsa_circRNA_100571 CircR2Disease

Coronary artery disease hsa_circRNA5974_1 CircR2Disease

Osteosarcoma hsa_circ_0056288 CircR2Disease

Hepatocellular carcinoma hsa_circ_005075 CircR2Disease

Table 4  Validation results of circRNA-disease associations, which 
are not included in circR2disease, with predicted scores of rectal 
cancer, stomach cancer, and cervical cancer greater than 0.9 
points

Disease circRNA Score Source

Colorectal cancer has_circ_0000504 0.9990 Unknown

hsa_circ_0001821 0.979671 PMID: 31616472

Gastric cancer hsa_circ_0001313 0.990974 PMID: 32253030

hsa_circ_0001141 0.990562 Unknown

Cervical cancer hsa_circ_0001649 0.965188 Unknown

hsa_circ_0001313 0.958534 Unknown

hsa_circ_0001445 0.942731 PMID: 30575898

hsa_circ_0001946 0.911142 Unknown

hsa_circ_0001821 0.903885 Unknown

hsa_circ_0001141 0.903885 Unknown
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