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Abstract

One of the fundamental questions in neuroscience is how brain structure and func-

tion are intertwined. MRI-based studies have demonstrated a close relationship

between the physical wiring of the brain (structural connectivity) and the associated

patterns of synchronization (functional connectivity). However, little is known about

the spatial consistency of such a relationship and notably its potential dependence

on brain parcellations. In the present study, we performed a comparison of a set of

state-of-the-art group-wise brain atlases, with various spatial resolutions, to relate

structural and functional connectivity derived from high quality MRI data. We aim to

investigate if the definition of brain areas influences the relationship between struc-

tural and functional connectivity. We observed that there is a significant effect of

brain parcellations, which is mainly driven by the number of areas; there are mixed

differences in the SC–FC relationship when compared to purely random

parcellations; the influence of the number of areas cannot be attributed solely to the

reliability of the connectivity estimates; and beyond the influence of the number of

regions, the spatial embedding of the brain (distance effect) can explain a large por-

tion of the observed relationship. As such the choice of a brain parcellation for con-

nectivity analyses remains most likely a matter of convenience.
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1 | INTRODUCTION

One of the fundamental questions in neuroscience is how brain struc-

ture and function are intertwined. In that context, thanks to lightning

technological and analytical progress and its noninvasiveness, MRI has

upset the field by highlighting the architecture of structural connections

and of functional interactions of the brain. Pioneer studies have demon-

strated a tight intricate association between the patterns of structural

and functional connectivity (Greicius, Supekar, Menon, & Dougherty,

2009; Hagmann et al., 2008; Koch, Norris, & Hund-Georgiadis, 2002;

Vincent et al., 2007). However, it remains unclear whether this relation-

ship is spatially consistent or if it depends on brain parcellation or atlas.

In contrast to other organs, the brain has a peculiar topographic

organization. This organization has led to the concept of brain area or

region (Amunts & Zilles, 2015; Eickhoff, Constable, & Yeo, 2017).

Beyond theoretical aspects, the concept of brain area has practical

considerations, allowing a meaningful reduction in dimension and

noise. To date, there exists a multitude of definitions of what consti-

tute a brain region, each featuring specific aspects of the brain. Brain

regions can be defined by microstructural properties including cyto-

or myeloarchitectonic information (Brodmann, 1909; Von Economo &

Koskinas, 1925; Zilles, Palomero-Gallagher, & Amunts, 2015a, 2015b),

as well as by more global macroscopic features, such as connectivity

patterns (Passingham, Stephan, & Kotter, 2002). Consequently,
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numerous connectivity-based parcellations from MRI data have been

proposed (e.g., Fan et al., 2016; Glasser et al., 2016; Gordon et al.,

2016; Joliot et al., 2015; Power et al., 2011; Shen, Tokoglu,

Papademetris, & Constable, 2013; Thomas Yeo et al., 2011), with a

large range of granularity and ambiguous overlap between methods

(Eickhoff et al., 2017). Little is known about the potential conse-

quences of such a variety in terms of subsequent connectivity

analysis.

In the present study, we performed a comparison of a set of state-

of-the-art group-wise brain atlases to relate structural and functional

connectivity (SC and FC, respectively) derived from high quality MRI

data. The set of brain atlases comprises various levels of assumption

and spatial resolution (i.e., number of regions). We aim to investigate

if the definition of brain areas influences the relationship between SC

and FC and to establish the potential factors driving it. One of the

main influential factors in brain connectivity analysis is the size of the

areas, and, consequently their number. While fine-grained areas may

be prone to low signal-to-noise ratio and hence a lack of reliable con-

nectivity estimates, large areas may overlook some details by averag-

ing out disparate signals (Stanley et al., 2013). The SC–FC relationship

was quantified via the use of three main criteria: SC–FC correlation

(i.e., the correlation between the patterns of SC and FC), SC–FC parti-

tion (i.e., the overlap between communities extracted from SC and

FC), and SC–FC fingerprint (i.e., the proportion of subjects who can be

identified from their SC–FC correlation).

We observed that (a) there is a significant effect of brain

parcellations on the SC–FC correlation and fingerprint, which is

mainly driven by the number of areas; (b) the overlap between SC and

FC partitions is virtually not influenced by the choice of the atlas nor

by any normalization; (c) there are mixed differences in the SC–FC

relationship when compared to purely random parcellations; (d) the

influence of the number of areas cannot be attributed solely to the

reliability of the connectivity estimates; (e) and beyond the influence

of the number of regions, the spatial embedding of the brain (distance

effect) can explain a large portion of the observed relationship.

2 | MATERIALS AND METHODS

2.1 | HCP data

The study included MRI data from the publicly available

Human Connectome Project repository (HCP; http://www.

humanconnectome.org/; Van Essen, U�gurbil, et al., 2012). The scan-

ning protocol was approved by the Washington University in

St. Louis's Human Research Protection Office. Data for a total of

94 young adults (age: 29.1 ± 3.5 years; 45 females) of the HCP S1200

public data release with complete diffusion MRI (dMRI), resting-state

functional MRI (rfMRI), and MEG data were included in this study. We

investigated functional connectivity extracted from resting-state fMRI

acquisitions. All subjects provided written informed consent and were

scanned on a 32-channel 3T Siemens Skyra scanner (Siemens,

Erlangen, Germany).

Resting-state functional MRI images were acquired while the par-

ticipants relaxed with eyes open using a gradient-echo EPI sequence

with multiband factor 8, time repetition (TR) 720 ms, time echo

(TE) 33.1 ms, flip angle 52�, 104 × 90 matrix size, 72 slices, 2 mm iso-

tropic voxels, and 1200 time points. Scans were repeated twice using

different phase-encoding directions (RL and LR) during 2 sessions

(REST1 and REST2). Diffusion MRI data were recorded using a spin-

echo EPI sequence with multiband factor of 3, TR 5.52 s, TE 89.5 ms,

flip angle 78�, 168 × 144 matrix size, 111 slices, 1.25 mm isotropic

voxels. Two hundred and seventy encoding directions distributed over

three diffusion shells of b-values 1000, 2000, and 3000 s/mm2 and

18 non-weighted images (b = 0) were acquired for each subject. A

structural 3D MPRAGE T1-weighted volume was also acquired (TR:

2.4 s, TE: 2.14 ms, TI: 1000 ms, flip angle 8�, 320 × 320 matrix size,

voxel size: 0.7 mm isotropic). For further details about the MRI proto-

cols see Moeller et al., 2010; Feinberg et al., 2010; Setsompop et al.,

2012; Sotiropoulos et al., 2013; Smith et al., 2013; U�gurbil

et al., 2013.

We used the “minimally preprocessed” dataset together with the

denoised rfMRI data. The minimal preprocessing pipelines include spa-

tial preprocessing: artifact and gradient distortion correction, field

map processing, subcortical segmentation, surface generation (includ-

ing pial and gray-white matter boundary), cross-modal registration,

and spatial normalization to the Montreal Neurological Institute stan-

dard space; as well as dedicated preprocessing steps for rfMRI and

dMRI data. All data were mapped to a standard gray ordinates space,

composed of a set of gray matter cortical vertices and subcortical

voxels (≈2 mm spacing), providing a one-to-one correspondence

between individuals (Glasser et al., 2013). The rfMRI data were

smoothed with a 2 mm FWHM Gaussian kernel, high-pass filtered

(1/2000 Hz frequency cut-off) and denoised using FIX a method

based on independent component analysis (Salimi-Khorshidi et al.,

2014; Smith et al., 2013). Fiber orientations density function from the

multi-shell dMRI data were inferred using the ball & stick model

implemented in FSL (Behrens, Johansen-Berg, Jbabdi, Rushworth, &

Woolrich, 2007; Jbabdi, Sotiropoulos, Savio, Graña, & Behrens, 2012).

The parameters included up to 3 fibers per voxel.

2.2 | Brain parcellations

We used a set of 24 publicly available state-of-the-art group-wise cor-

tical brain parcellations recently investigated in Arslan et al., 2018.

Among these atlases, 10 were pre-computed and retrieved from the

literature, and the remaining were computed from rfMRI acquisitions

of 100 unrelated HCP subjects in Arslan et al., 2018 and possessed

multiple levels of spatial resolution (i.e., number of regions).1 These

brain atlases are defined on the standard cortical surfaces and freely

available (https://biomedia.doc.ic.ac.uk/brain-parcellation-survey/).

Furthermore, we added subcortical gray matter structures provided

by the minimal preprocessing pipelines, including the thalamus, cau-

date, putamen, pallidum, hippocampus, amygdala, accumbens, dien-

cephalon ventral, and the cerebellum, all bilaterally. In total, 144 state-

of-the-art group-wise cortical brain parcellations were used.
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We also generated spatially random cortical parcellations based

on a Poisson disc sampling (Arslan et al., 2018; Schirmer, 2015). For

each state-of-the-art parcellation, we generated 20 surrogate random

parcellations with the same number of regions. First, a set of vertices

equal to the number of regions are selected using an approximate blue

noise sampling using the Geometry Processing Toolbox (Jacobson

et al., 2018), defining regions center. Subsequently, each remaining

vertex is assigned to its closest region center. These random

parcellations were used as a null model to test the spatial significance

of the proposed atlases.

Additionally, we generated random cortical parcellations with a

fixed number of points sampled per area. For each state-of-the-art

parcellation, we generated 20 surrogate random parcellations with the

same number of regions, where for each area we sampled uniformly a

fixed number of vertices. The number of vertices sampled per area

was fixed to 60, areas of size below this value (which represents less

than 4% of all areas) were kept as such. These random parcellations

with a fixed number of sampled points were used as a null model to

test the SC and FC reliability and its potential effect on the subse-

quent SC–FC relationship across atlases.

The composition of brain atlases was compared using the adjusted

Rand index (Hubert & Arabie, 1985). The Rand index quantifies the

similarity between two partitions or atlases of the brain by computing

the proportion of points (vertices or voxels) for which the two parti-

tions are consistent (i.e., they are either in the same area or in a differ-

ent area for both partitions). The adjustment accounts for the level of

similarity that would be expected by chance only.

2.3 | Connectivity measures

2.3.1 | Structural connectivity

We used the probabilistic white matter tracking method implemented

in FSL (Behrens et al., 2007) to track all possible connections between

all pairs of gray matter points (either vertices or voxels) in the

“matrix3” mode. For every voxel of the white matter, we initiated

5,000 samples. Starting points were chosen randomly within a sphere

of radius 2 mm from the voxel's center. Initial orientation was ran-

domly chosen and then streamlines were grown in the two opposite

directions with a propagation step set at 0.5 mm and a maximal curva-

ture at 80�.

Fiber tracking was stopped when samples reached the gray-white

matter boundary surface, the subcortical gray matter structures or the

ventricles. Samples reaching the ventricles were rejected. Samples

were kept only if they reached gray-white matter boundary surface

and/or subcortical gray matter structures in the two opposite direc-

tions. SC was then defined as the total number of samples connecting

pairs of regions. Likewise, we built a matrix of the average fibers'

length between regions.

We also investigated the potential influence of candidate normali-

zation procedures. First, we computed one of the most commonly

used approaches (surface normalization), which consists of expressing

SC as a density of samples per unit surface, by dividing the number of

samples by the average surface area of the regions (Hagmann et al.,

2008). Second, we used a normalization inspired by tract-tracing stud-

ies (fractional scaling), which consists of computing the fraction of

samples relative to the total number of samples that reach each region

excluding self (within region) connections (Donahue et al., 2016).

Additionally, we also mitigated the distance-related bias towards

longer fibers inherent from tractography algorithms. SC was further

either weighted (multiplied) or regressed by the average fiber length.

As SC is biased by distance in a logarithmic way (Roberts, Perry, Rob-

erts, Mitchell, & Breakspear, 2017) (Figure S1), we regressed out the

distance on the logarithm of SC and then took the power of the resid-

uals as the corrected SC.

2.3.2 | Functional connectivity

Functional connectivity was computed from resting-state fMRI acqui-

sitions. For each subject, phase-encoding direction, session and atlas,

the time series of all vertices or voxels within a given brain region was

spatially averaged to form the representative BOLD signal of that

region. FC was then computed as the Pearson correlation between all

possible pairs of brain region time series. To obtain robust estimates,

FC matrices were averaged across runs (phase-encoding directions

and sessions).

We also investigated the potential influence of spurious sources

of variance, by regressing out linear and quadratic drifts, motion

parameters, and the global brain signal (Fox, Zhang, Snyder, & Raichle,

2009; Van Dijk et al., 2010).

2.3.3 | Summary

For each subject and brain atlas (state-of-the-art or randomly gener-

ated), the preprocessing yielded 12 matrices: 9 of SC (3 normal-

izations × 3 distance-corrections), 2 of FC (with or without

regression), and one of average fibers' length. The reference set of

connectivity matrices corresponds to SC without any normalization or

distance correction (raw number of samples), and FC without regres-

sion of spurious sources of variance.

2.4 | Connectivity-based structure–function
relationship

The relationship between structural and functional connectivity was

assessed both in terms of strength similarity (SC–FC correlation), over-

lap in partitions (SC–FC partition), and connectivity fingerprint (SC–FC

fingerprint; see Figure 1). Strength similarity was evaluated by means

of the Pearson correlation between the patterns of SC and

FC. Overlap between partitions was investigated based on the nor-

malized mutual information between the communities detected in SC

and those in FC. Communities were extracted by means of a greedy

optimization method that attempts to maximize a measure of network

modularity, the Louvain algorithm (Blondel, Guillaume, Lambiotte, &

Lefebvre, 2008). We used an asymmetric generalization of the mea-

sure of network modularity adapted for fully connected network with
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signed values (Rubinov & Sporns, 2011). Community detection was

performed using the function community_louvain.m as provided by the

Brain Connectivity Toolbox (http://www.brain-connectivity-toolbox.

net/) with the default resolution parameter value (γ = 1). To limit the

computational burden, the detection was performed on only one run

per subject and atlas. Connectivity fingerprint were evaluated by com-

puting the proportion of subjects who can be identified from their

SC–FC correlation, similar to the approach developed in Finn et al.

(2015) and Zimmermann, Griffiths, Schirner, Ritter, & McIntosh

(2019). For each individual subject, we computed the correlation

between its own FC and the SCs of all subjects (including itself), to

find the pair of maximally similar SC and FC matrices.

Of note, the SC–FC correlation and SC–FC partition are defined

at the subject level while the SC–FC fingerprint is defined at the

group level.

2.5 | Statistical assessments

In order to test the significance of the SC–FC relationship we used

three null models:

F IGURE 1 Brain SC–FC relationship across atlases. (A) SC–FC correlation, that is, the correlation between structural and functional
connectivity patterns, computed for each subject and each atlas. (B) SC–FC partition, that is, the overlap between communities extracted from SC
and those from FC, computed for each subject and each atlas. (C) SC–FC fingerprint, that is, the proportion of subjects correctly identified
according to their SC–FC correlation. Across the panels, the first row represents an illustration of the SC–FC relationship measures, the second
row represents the average values per atlas as a function of the number of regions, the last row represents the SC–FC relationship according to
various SC normalizations (subplots) as a function of the number of regions. For each subplot, the blue, red, cyan, and green curves represent the
mean and SD (shaded area) across subjects and atlases of the same size of the SC–FC relationship from the state-of-the-art atlases, spatially
random parcellations, fixed size parcellations, and permutations, respectively. The blue dots in the SC–FC fingerprint subplots represent the state-
of-the-art atlases. The dark beige histograms represent the proportion of subjects (or the proportion of atlases for the SC–FC fingerprint) at a
given number of regions for whom there is no significant statistical difference compared to random expectations (permutation-based tests
corrected, p < .01)
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• The first null model was based on permutations, the Mantel test

(Mantel, 1967), where for each subject and each atlas, we gener-

ated 1000 surrogate SC matrices (after any potential SC normaliza-

tion or correction) in which the region's connectivity profiles were

preserved, but brain regions were randomly permuted. This proce-

dure tests the significance of the SC–FC relationship against ran-

dom expectations.

• The second null model was based on spatially random parcellations

described above, where for each state-of-the-art atlas, we gener-

ated 20 surrogate parcellations and their associated connectivity

matrices. This procedure tests the significance of the SC–FC rela-

tionship in the state-of-the-art brain atlases against spatially ran-

dom expectations. We normalized the SC–FC relationship

measures to that of the corresponding random parcellations using

a “z-score”-like approach (subtracting and dividing individual values

per subject and per atlas by the mean and SD obtained from the

set of associated random parcellations). We then used z-tests to

measure the significance of the observed differences.

• The third null model was based on random parcellations with a

fixed number of points sampled per area described above, where

for each state-of-the-art atlas, we sampled 20 surrogate

parcellations and their associated connectivity matrices. This pro-

cedure tests the reliability of the SC and FC estimates and its sub-

sequent effect on the SC–FC relationship. For each subject and

each atlas, the reliability was estimated by computing the correla-

tion between the SC (resp. FC) patterns extracted from the fixed

size parcellations and the SC (resp. FC) pattern from the original

state-of-the-art atlas.

To test whether there were systematic differences in the SC–FC

relationship measures between atlases, a paired Student's t test was

performed between all possible pairs of atlases and over all the sub-

jects, and we reported the Cohen's d effect size. Furthermore, to test

whether relative differences between individuals were preserved

across atlases, we computed the Pearson correlation between SC–FC

relationship measures for each pair of brain atlases across subjects.

Pairwise comparisons (either difference or correlation) were plotted

as a function of the normalized absolute difference in the number of

regions between the pair of atlases (i.e., absolute difference divided

by the average).

All statistical tests were rejected at p < .01 significance. Correction

for multiple comparisons was performed by controlling the false dis-

covery rate when appropriate (Benjamini, Krieger, & Yekutieli, 2006).

3 | RESULTS

Here using high quality MRI data, we explored the dependence of the

relationship between structural and functional connectivity on brain

parcellation. We used a total of 144 publicly available group-wise

whole-brain atlases, and quantified the SC–FC relationship via the use

of three main criteria: SC–FC correlation (i.e., the correlation between

SC and FC patterns), SC–FC partition (i.e., the overlap between

communities extracted from SC and FC), and SC–FC fingerprint

(i.e., the proportion of subjects for whom SC and FC are the most sim-

ilar). We would like to observe whether brain parcellation might have

an effect on the resulting structure–function relationship.

3.1 | Overall SC–FC relationship

Structure–function measures across atlases and subjects as a function

of the spatial scale (i.e., number of regions) are represented in

Figure 1. We observed general trends across measures, SC–FC corre-

lation and SC–FC fingerprint were strongly influenced by the number

of regions, with a global decrease (resp. increase) in correlation (resp.

fingerprint) with increasing number of regions. There was no clear

influence of the number of regions on the overlap between SC and

FC partitions. Interestingly, the variability across subjects appeared to

be small. SC–FC correlations were highly significant across all atlases,

while for the SC–FC partition and the SC–FC fingerprint, only fine-

grained atlases (with a number of regions larger than ~200) had signif-

icant values (permutation-based tests corrected).

3.2 | What can be expected from spatially random
parcellations?

The atlases used here were based on a multitude of criteria; it is, how-

ever, unclear how their specificity impacts the resulting SC–FC rela-

tionship and whether they meaningfully deviate from purely spatially

random surrogate parcellations. Surprisingly, we observed that the

SC–FC relationship from the spatially random parcellations was quite

close to the ones derived from the state-of-the-art atlases (Figure 1).

However, despite small differences, some of the state-of-the-art

atlases differed significantly from the random parcels (Figure 2). We

observed a mixed proportion of subjects for whom there was a signifi-

cant positive or negative deviation of the SC–FC correlation from the

ones extracted from the random parcels. The overlaps between SC

and FC partitions were not significantly different from the ones

extracted from the random atlases, and only a small proportion of sub-

jects showed a significant positive deviation in the SC–FC fingerprint

(only for some atlases with a high number of regions).

3.3 | On the reliability of connectivity estimates

The main effect observed in the SC–FC relationship is a general

decrease in correlation as a function of the number of regions. One

possible explanation is the reliability of the connectivity estimates,

where coarser regions and hence atlases with low number of regions

may have higher signal-to-noise ratio. We explored here such effect

by fixing the number of sampled points per area. We observed that

the reliability of SC estimates are strongly influenced by the size of

the areas, while, surprisingly, FC estimates are virtually not affected

(Figure 3).2 Consequently, while the resulting SC–FC partition and fin-

gerprint were only slightly affected by the connectivity reliability, the

relationship of the SC–FC correlation with the number of regions was

inverted when computed using the fixed size constrain (Figure 1).
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3.4 | Pairwise comparisons

We then asked how the atlases differ to one another in terms of spa-

tial organization. The spatial overlap between atlases was relatively

high, with decreasing similarity when the difference between the

number of regions increased (Figure 4). Beyond the overall patterns of

SC–FC relationship, we also assessed whether there exist significant

differences across state-of-the-art atlases. We observed a large num-

ber (more than 90%) of significant differences in the SC–FC correla-

tion between atlases (Figure 4), while we observed only a moderate

number of statistical differences (about 50%) for the overlap between

SC and FC partitions (Figure S2). In general, differences in the SC–FC

relationship increased with increasing difference in spatial scale, espe-

cially for the SC–FC correlation. Pairwise differences from the random

parcellations followed a similar trend, while the differences from the

fixed size parcellations were moderate and did not depend on the

number of regions.

Additionally, the inter-individual variability of the SC–FC relation-

ship measures was generally highly correlated between atlases, with

stronger covariations for atlases of similar size and for the SC–FC cor-

relation compared to the partitions overlap. We also observed that

the covariations were stronger between random parcels than between

state-of-the-art atlases (Figures 4 and S2).

3.5 | Sensitivity to distance and preprocessing
strategies

In general, spatially proximal regions are more likely to be strongly

connected both structurally and functionally. In order to explore how

much of the SC–FC relationship may be explained by distance, we

report here the results when correcting for the distance. The

weighting correction scheme only marginally altered the results, while

the regression of the distance had a pronounced effect. Thus, we will

focus only on the later. We observed a general drop in the SC–FC

relationship values and a marked decrease as a function of the number

of regions. As such, some of the SC–FC correlations were no longer

significantly different from random expectations (permutation-based

tests corrected). Distance correction virtually abolished the SC–FC

F IGURE 2 Brain SC–FC relationship, comparing state-of-the-art atlases against spatially random parcellations. Normalized (z-score-like) SC–
FC correlation (a), partitions overlap (b), and fingerprint (c). Across the panels, the first row represents the average normalized values per atlas as a
function of the number of regions where the size of the points is proportional to the number of subjects significantly different from the random
parcellations, the second row represents the normalized SC–FC relationship according to various SC normalizations (subplots) as a function of the
number of regions. For each subplot, the blue curve represents the mean and SD (shaded area) of the normalized SC–FC relationship values
across subjects and atlases of the same size of the state-of-the-art atlases against random parcellations. The blue dots in the SC–FC fingerprint
subplots represent the state-of-the-art atlases. The dark beige (resp. red) histograms represent the proportion of subjects (or the proportion of
atlases for the SC–FC fingerprint) at a given number of regions for whom there is a significant statistical negative (resp. positive) deviation from
the random parcellations (z-tests corrected, p < 0.01)

1172 MESSÉ



fingerprint where only a very small portion of values remained signifi-

cant (permutation-based tests corrected), see Figure 1. Interestingly,

the distance correction renders a large number of the SC–FC correla-

tions significantly higher than the ones obtained from the random par-

cels (Figure 2). Distance correction had no effect on the overlap

between SC and FC partitions. Distance correction tended to slightly

reduce the reliability of SC estimates (Figure 3). In terms of pairwise

comparison, distance correction reduced the differences but they

remained largely significant, while the covariations across atlases

remained virtually unchanged (Figures 4 and S2).

When exploring the influence of alternative preprocessing strate-

gies, the results remained overall consistent across the SC normaliza-

tions. However, we observed a negative impact of the widely

employed surface normalization which expresses SC values per unit

surface. SC–FC correlation dropped quickly to values close to zero

when the number of regions increases, but the values remain signifi-

cantly different from random expectations (permutation-based tests

corrected). In terms of SC–FC fingerprint, the surface normalization

drop values to near zero regardless of the number of regions, hence

making them largely nonsignificant (permutation-based tests corrected).

Using the surface normalization makes the SC–FC correlation virtually

no longer significantly different from the random parcellations. Interest-

ingly, the fractional scaling approach slightly increased the SC–FC cor-

relation and fingerprint, and also increased positive differences against

random parcels (Figures 1 and 2). Moreover, the fractional scaling

tended to reduce the effect of the number of regions on the SC–FC

correlation, which is corroborated with a higher SC reliability (Figure 3).

The pairwise differences between atlases were not strongly affected by

the SC normalizations; and covariations between atlases were reduced

when using the surface normalization, while they were slightly higher

F IGURE 3 Reliability of connectivity estimates. (a) Structural connectivity reliability according to various normalizations (subplots) as a
function of the number of regions. For each subplot, the blue (resp. red) curve represents the mean and SD (shaded area) across subjects and
atlases of the same size of the Pearson (resp. Spearman) correlation between the structural connectivity estimates from the state-of-the-art
atlases and the parcellations of fixed size. (b) Functional connectivity reliability as a function of the number of regions. The blue (resp. red) curve
represents the mean and SD (shaded area) across subjects and atlases of the same size of the Pearson (resp. Spearman) correlation between the
functional connectivity estimates from the state-of-the-art atlases and the parcellations of fixed size. (c) Size of the cortical regions as a function

of the number of regions composing the atlases. The blue curve represents the mean and SD (shaded area) across regions and atlases of the same
size of the number of vertices per regions. The green line represents the number of vertices of the fixed-size atlases
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when using the fractional scaling (Figure 4). The overlap between SC

and FC partitions remains unchanged.

3.6 | Is the Pearson correlation suitable?

So far, we have observed that the correlation between SC and FC

is mainly influenced by the reliability of SC estimates, which

decreased with an increasing number of areas. Such an effect can

be potentially attributed to the skewed nature of the SC distribu-

tions (Figure S3), where the variability of the SC estimates may

distort the resulting Pearson correlation values in a nontrivial way

similar to the presence of outliers (Bishara & Hittner, 2015). In

order to investigate such possibility, we computed nonparametric

correlation coefficients using Spearman. Consequently, SC reliability

increased significantly to a level similar to the ones from FC

(Figure 3).

F IGURE 4 Brain SC–FC relationship, pairwise comparisons. (a) Pairwise spatial overlap between atlases. The adjusted Rand index values between
atlases as a function of the normalized absolute difference of the number of regions (left plot) or their histograms (right plot). (b) Pairwise differences
between SC–FC correlations, the Cohen's effect size of the difference (left) and the correlation coefficient (right) of the SC–FC correlation values
between atlases according to various SC normalizations (subplots) as a function of the normalized absolute difference of the number of regions. For
each subplot, the blue, red, and cyan curves represent the mean and SD (shaded area) across pairs of atlases of the same difference in size of the
values from the comparison between SC–FC relationship values of the state-of-the-art atlases, spatially random parcellations and fixed size
parcellations, respectively. The dark beige histograms represent the proportion of pairs of state-of-the-art atlases at a given normalized absolute
difference for which there is a significant statistical difference (paired t-tests corrected, p < .01)
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F IGURE 5 Legend on next page.

MESSÉ 1175



We observed that the results remained largely consistent when

computing the SC–FC correlation based on Spearman, with slightly

higher values compared to Pearson (Figures 5 and S4). Moreover, a

large number of the state-of-the-art atlases were significantly superior

(in terms of SC–FC correlation) compared to spatially random parcels.

Nevertheless, the SC–FC fingerprint appeared completely abolished.

These results demonstrated that the dependence on the number of

regions in the correlation between SC and FC cannot be entirely

attributed to the connectivity reliability.

Regressing out plausible spurious sources of variance in rfMRI

data before computing FC did not alter the results when using Pear-

son (Figures S5 and S6) or Spearman (Figures S7 and S8). We only

observed that the SC–FC correlation from the state-of-the-art atlases

were no longer significantly higher than that of random parcellations

(Figures S5 and S7).

4 | DISCUSSION

In the present study, we performed a comparison of a set of state-of-

the-art group-wise brain atlases, to relate structural and functional

connectivity derived from MRI data. We found that (a) there is a sig-

nificant effect of brain parcellations on the SC–FC correlation and fin-

gerprint, which is mainly driven by the number of areas; (b) the

overlap between SC and FC partitions is virtually not influenced by

the choice of the atlas nor by any normalization; (c) there are mixed

differences in the SC–FC relationship when compared to purely ran-

dom parcellations; (d) the influence of the number of areas cannot be

attributed solely to the reliability of the connectivity estimates; (e) and

beyond the influence of the number of regions, the spatial embedding

of the brain (distance effect) can explain a large portion of the

observed relationships. To the best of our knowledge, this is the first

study that explores extensively the relationship between SC and FC

across multiple factors, including not only the choice of the brain

parcellation, but also commonly used preprocessing strategies.

A few studies have explored the influence of brain parcellations

on the resulting structure and topology of whole-brain structural

(Bassett, Brown, Deshpande, Carlson, & Grafton, 2011; Zalesky et al.,

2010) and functional (Arslan et al., 2018; Fornito, Zalesky, & Bullmore,

2010; Wang et al., 2009) connectivity networks, see de Reus & van

den Heuvel, 2013 for review. Overall, although organizational princi-

ples appear preserved, these studies showed pronounced quantitative

effects of the number of regions on several topological properties

(including density, smallworldness, and scalefreeness), but rather con-

sistent estimates at a given spatial scale (Bassett et al., 2011; Fornito

et al., 2010; Wang et al., 2009; Zalesky et al., 2010). More recently,

Arslan et al., 2018 did an extensive and systematic comparison of

state-of-the-art brain parcellations (where part of them were used

here) on the resulting FC patterns using a variety of evaluation criteria

including reproducibility, fidelity, agreement with alternative modali-

ties and topological properties. Interestingly, across all criteria investi-

gated, the brain atlases can hardly be distinguished from each other.

The authors concluded that “The results […] suggest that there is no

optimal method able to address all the challenges faced in this endeavor

simultaneously” (Arslan et al., 2018). Here, we have observed very sim-

ilar results with a pronounced effect of the number of regions, and

specific behavior depending on the measure investigated. Moreover,

there is no marked emerging trend when the state-of-the-art atlases

are compared to purely random parcellations, except when distance

effect is corrected and/or Spearman is used, in which cases we show

that most of the proposed atlases have a SC–FC correlation above

the random parcels. SC–FC fingerprint appears to be mostly driven

by the distance dependence on both measures of connectivity. We

also report that the differences between atlases albeit small were sys-

tematic and lead to significant differences.

It is unclear which mechanisms lead to the dependence of the SC–

FC relationship on the spatial scale. It is possible that with increasing

number of regions the inter-individual variability and hence the speci-

ficity of individuals increase in such a way that group-wise atlases

may not be any longer appropriate. Furthermore, the brain connectiv-

ity estimates at large scale become less robust, where the noise may

play a more influential role. Here we show that FC is highly reliable

even when it is subsampled at low rate, while the reliability of struc-

tural connectivity is mostly influenced by the choice of the measure

of reliability itself. Shared variance in SC estimates between the

F IGURE 5 Brain SC–FC relationship across atlases when using the Spearman correlation. (a) SC–FC correlation, that is, the correlation
between structural and functional connectivity patterns, computed for each subject and each atlas. (b) SC–FC fingerprint, that is, the proportion
of subjects correctly identified according to their SC–FC correlation. Across the panels, the first row represents the average values per atlas as a
function of the number of regions, the second row represents the SC–FC relationship according to various SC normalizations (subplots) as a
function of the number of regions. For each subplot, the blue, red, cyan, and green curves represent the mean and SD (shaded area) across
subjects and atlases of the same size of the SC–FC relationship from the state-of-the-art atlases, spatially random parcellations, fixed size
parcellations, and permutations, respectively. The dark beige histograms represent the proportion of subjects (or the proportion of atlases for the
SC–FC fingerprint) at a given number of regions for whom there is no significant statistical difference compared to random expectations
(permutation-based tests corrected, p < .01). The third row represents the average normalized values per atlas as a function of the number of
regions where the size of the points is proportional to the number of subjects significantly different from the random parcellations, the last row

represents the normalized SC–FC relationship according to various SC normalizations (subplots) as a function of the number of regions. For each
subplot, the blue curve represents the mean and SD (shaded area) of the normalized SC–FC relationship values across subjects and atlases of the
same size of the state-of-the-art atlases against random parcellations. The dark beige (resp. red) histograms represent the proportion of subjects
(or the proportion of atlases for the SC–FC fingerprint) at a given number of regions for whom there is a significant statistical negative (resp.
positive) deviation from the random parcellations (z-tests corrected, p < .01). The blue dots in the SC–FC fingerprint subplots represent the state-
of-the-art atlases
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state-of-the-art atlases and the fixed-size atlases is overall greater

than 60% using Spearman, and it can be as low as 1% with Pearson.

However, the pattern of SC–FC correlation remains largely unchanged

using either one of the measure. Thus, the effect of the spatial scale

cannot be explained only by the connectivity reliability.

Furthermore, tractography's ability to recover tracts is expected

to decrease as a function of the distance due to technical biases. Con-

sequently, structural connectivity estimates from diffusion MRI

tractography are highly related to the fiber lengths (Roberts et al.,

2017). Furthermore, distance is also a natural by-product of the spatial

and material (metabolic cost) constraints in the brain, making it a bio-

logical principle for the preferential connection of brain areas

(Bullmore & Sporns, 2012). As such, it remains challenging to disen-

tangle these two factors from tractography outputs. That is why, we

explored the SC–FC relationship both with and without correcting

such covariate to highlight its prominent effect.

Altogether, the present results and the abundance of available

parcellations highlight the challenge of delineating brain areas, which

render the concept of brain parcels somehow elusive (Sporns, 2013;

Van Essen, Glasser, Dierker, Harwell, & Coalson, 2012). It has been

sparsely but robustly documented that some anatomical brain connec-

tions have nonuniform spatial arrangements, for example, with the

presence of gradients, which cannot be easily subdivided into areas.

Connection topography, which consists of considering brain connec-

tivity as a continuous field, has been proposed as an alternative way

to study brain connectivity, complementary to the classic concept

of network (Huntenburg, Bazin, & Margulies, 2018; Jbabdi,

Sotiropoulos, & Behrens, 2013). It would be of considerable interest

to explore the possibility to translate the concept of connectivity-

based structure–function relationship into such framework, all the

more that connection topography appears to be a powerful approach

to highlight inter-individual variability (Tavor et al., 2016).

The present results are subject to several important methodologi-

cal considerations. First and foremost, despite a concept being widely

adopted, brain connectivity (both structural and functional) is under

massive investigations and debates on the best approaches for

obtaining proper estimates and on their interpretations. Structural

connectivity can only be indirectly probed in vivo using dMRI together

with computational tractography. While tractography-based SC esti-

mates correlate with tract-tracing data (Calabrese, Badea, Cofer, Qi, &

Johnson, 2015; Delettre et al., 2019; Donahue et al., 2016), it has also

been shown that tractography faces a number of biases which result

to a significant number of false positives (Jbabdi & Johansen-Berg,

2011; Jones, Knösche, & Turner, 2013; Maier-Hein et al., 2017;

Reveley et al., 2015; Thomas et al., 2014). Thus, analyses using cur-

rent dMRI-based SC estimates, while being a powerful tool, should be

interpreted with caution. On the other hand, FC remains an elusive

concept given its vague definition and a lack of clear interpretations

(Marrelec, Messé, Giron, & Rudrauf, 2016). We here employed the

classic, basic and most widely used measure of Pearson correlation as

a proxy. While there is an abundant literature which has provided

meaningful insights into brain architecture using such measure, it

would be informative to see whether alternative definitions nuance

the SC–FC relationship. Whereas the SC–FC relationship was

explored here at the network-level, a potential new avenue would be

to refine the analysis at the area-level, where some specificities have

been recently shown (Vázquez-Rodríguez et al., 2019). Last but not

least, we have here conducted an analysis on group-wise atlases,

while personalized parcellations remain only marginally investigated

(Gratton et al., 2018). It would be interesting to explore whether

subject-specific atlases improve the correspondence between struc-

ture and function.

To conclude, the relationship between structural and functional

connectivity depends on a myriad of factors. While the distinction

between state-of-the-art atlases and random parcellations is subtle in

terms of the SC–FC measures, the choice of one over the other is

most likely a matter of convenience. On one side, some state-of-the-

art atlases have the advantage of having interpretable local delinea-

tions. On the other side, random parcellations are easily

implementable and adjustable, allowing to investigate the robustness

of the results by statistical inference over multiple realizations and

spatial scales. Structure–function analyses must balance the reliability

of connectivity measures and the robustness of the association (the

correspondence between SC and FC must be reasonably high), as

such, atlases with 200–300 regions appear as a good compromise.

The use of the fractional scaling to normalize SC values and the

Spearman correlation to quantify associations are efficient steps for

improving reliability. Furthermore, connectivity analyses should be

done both with and without distance correction in order to probe the

amount of variance explained by such prominent biological factor.
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ENDNOTES

1 The overlap between the 94 subjects used in the present study with

those used in Arslan et al. (2018) (the 100 unrelated subjects) is low, only
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nine subjects are common to both datasets. The number of levels per

atlas is 10, except for 2 atlases with only 5 and 9 levels, so we have in

total 10 + 12 × 10 + 5 + 9 = 144.
2 Of note that the measure of reliability, as defined here, is biased towards

high resolution atlases (with a high number of regions), as their average

regions size gets close to the value sets for fixed-size parcellations.
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