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Abstract: There is an increasing demand for bearing temperature and strain monitoring in high-
speed rotating systems. This study proposes a new multiresonance, multiplexing, wireless, passive
inductance capacitance (LC) temperature and strain sensor. The sensor has two capacitors connected
at different locations (turns) on the same inductor to achieve simultaneous temperature and strain
measurements. The plate capacitor is connected to the inner part of the inductor and the other
interdigital capacitor is connected to the outer part of the inductor to form two LC loops. The structure
of the sensor is optimized through High Frequency Structure Simulator (HFSS) simulations to realize
frequency separation of the two parameters and avoid mutual interference between the two signals.
The sensor is fabricated on a polyimide film using electroplating technology. The experimental
results show that the temperature–strain sensor can operate stably from 25 ◦C to 85 ◦C with an
average sensitivity of 27.3 kHz/◦C within this temperature range. The sensor can detect strains in
the range of 1000–5000 µεwith a strain sensitivity of 100 Hz/µε at 25 ◦C. Therefore, the proposed
wireless passive LC temperature-strain sensor exhibits stable performance. In addition, the use of a
single inductor effectively reduces the sensor’s area. The flexible substrate provides advantageous
surface conformal attachment characteristics suitable for monitoring high-temperature rotating parts
in adverse environments.

Keywords: temperature-strain sensor; wireless; rotating system

1. Introduction

There is an increasing demand for monitoring temperature, pressure, strain, and other
parameters in high-speed rotating environments [1–4]. Rolling bearings are extensively
used in various mechanical devices and precision instruments. During high-speed rotation
of the bearing, the temperature of the bearing can increase abruptly due to friction, affecting
the normal operation of the device [5]. In addition, the structure of the bearing will be
gradually deformed and damaged depending on the action of cyclic loading, leading to
bearing failure or even fracture in severe cases [6]. Therefore, it is of great significance
to develop sensors for temperature and strain measurements of bearings to determine
the safety and stability of engineering components. In recent years, a variety of tempera-
ture [7–11] and strain sensors [12–14] have been reported. For instance, the thermometers
proposed by Rodriguez and Jia [15] are mainly used for temperature detection of rotating
bearings. Yang et al. [16] studied a super-sensitive wearable temperature sensor made of
graphene nanowalls (GNWs), which can monitor body temperature in real time. The strain
sensors proposed by Jia et al. [17] and Fassler and Majidi [18] detect strength and frac-
ture based on plane strain. Mattmann et al. [19] studied sensors for measuring textile
strain. However, these sensors measure only a single physical quantity, which is limiting.
In practice, it is usually necessary to measure multiple parameters simultaneously [20–22].
For instance, the bearing temperature and strain should be monitored simultaneously
to monitor the running condition of rolling bearings and predict accidents in advance.
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Performing measurements of multiple parameters using one sensor can effectively reduce
the volume and weight of the measurement system and minimize cost. Many scholars have
conducted studies on integrated sensors [23–26]. LC resonators can be used to monitor
dual parameters by superimposing two separate LC resonators. Dong et al. [27] proposed a
wireless, passive, LC capacitive temperature-pressure dual-parameter sensor. Tan et al. [22]
developed an integrated temperature-pressure-humidity sensor. However, in the above
reports, the method of stacking was mostly used to develop multiparametric sensors, which
can significantly reduce the sensitivity of the sensor to strain and increase its area.

In order to meet the testing requirements of temperature, strain and other parameters
under the environment of rotating bearings. At the same time, in order to realize the
effective acquisition of signals in rotation and other environments, this study proposes a
wireless passive flexible temperature and strain sensor with multiresonance multiplexing.
We used two capacitors connected at different parts of an inductor (different turns) to
ensure simultaneous measurement of temperature and strain. Due to the single induc-
tance adopted in this study, an integrated design of the sensor chip is realized, the area
of the sensor is effectively reduced, and interaction of the superimposed inductance is
also avoided. The sensor is suitable for measuring parameters in narrow and curved
spaces. Therefore, the proposed sensor is of great significance for real-time in situ wireless
monitoring of all parameters in rotating environments, such as rotating bearings. In this
study, the equivalent circuit of the sensor was analyzed, and High Frequency Structure
Simulator (HFSS) electromagnetic simulation software was used for simulation analyses of
the multiparametric sensor, resulting in the structural optimization of the sensor’s design.
This ensured that an integrated dual-parameter sensor with frequency separation of the
two sensitive parameters was achieved. The temperature and strain characteristics of the
sensor were investigated, and the test results were analyzed. Finally, a precise test was
conducted for the temperature and strain parameters.

2. Design and Simulation

The principle of the wireless, passive, LC temperature and strain sensor is shown in
Figure 1a. The reading antenna was connected to an Agilent network analyzer (E5061B,
Agilent, California, USA). The reading circuit includes an equivalent built-in resistance
(Ra), a reading antenna inductance (La), and an equivalent capacitance (Ca). The sensor
circuit is composed of an equivalent resistance (Ri), an equivalent inductance (Li), and a
variable capacitance (Ci) (the index i is the abbreviation of the temperature and strain of
the sensor). The resonant circuit can be considered to be equivalent to two LC loops, as
shown in Figure 1a. The resonant frequency is calculated using Equation (1) [28,29]:

fi =
1

2π
√

LiCi
, (1)

where fi is the resonant frequency of the sensor’s circuit. It can be observed from the
equation that fi is mainly determined by the sensor’s interdigital capacitance Ci. Interdigital
capacitance is a combination of two sets of electrodes intersecting in a comb tooth shape,
and the electric field between the interdigital electrodes can be approximated as a uniform
electric field [30]. When the number of interdigital electrode pairs is n, the plane interdigital
geometric ratio can be defined as,

η =
gc

wc + gc
, (2)

where gc is the interdigital capacitance spacing and wc is the interdigital width. When n >
3, the capacitance value can be expressed as:

C ≈ lc(n− 1)ε0
1 + εrK[(1− η2)

1
2 ]

2K[η]
, (3)
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Figure 1. Design and simulation of integrated dual-parameter sensor: (a) Sensor’s equivalent circuit
diagram; (b) Sensor’s f –S11 simulation curve, and (c) Sensor’s simulated electric field distribution.

The K(x) function is the complete elliptic integral of the first type [31], n is the inter-
digital logarithm, ε0 is the vacuum permittivity, εr is the relative permittivity, and lc is the
length of the interdigital electrode. It can be observed from the equation that changes in
the permittivity of the substrate, the finger length, finger width, and interfinger spacing of
the interdigital capacitor will result in changes in the interdigital capacitance value, thereby
changing the resonant frequency.

A parallel plate capacitor is composed of two parallel metal conductor plates, sepa-
rated by a dielectric material. The capacitance value of the plate capacitor is related to the
dielectric, the distance and the facing area between the two plates. Its calculation equation
is as follows:

C =
ε0εrS

d
, (4)

where, ε0 is the vacuum permittivity, and εr is the relative permittivity of dielectric. S is the
area of the capacitor plates, and d is the distance between the upper and lower capacitor
plates. The capacitance value changes when εr changes.

The sensing mechanism of the sensor is as follows: The antenna is used as the ex-
citation source, the sensor is used as the load of the antenna, the antenna sends out a
frequency sweep signal, and the sensor loop is inductively coupled with an interrogation
antenna. When the frequency of the sweep signal is close to the natural frequency of the
sensor, the sensor’s loop resonates. Sensitive parametric information is fed back to the test
antenna [32–34]. By extracting the lowest point of the f–S11 curve, the resonant frequency
of the sensor can be obtained. In an LC resonant circuit, any change in the interdigital
capacitance or plate capacitor will result in a change in the resonant frequency of the sensor.
Changes in the variable capacitance can be determined by observing the changes in the
resonant frequency, as given in Equation (1). Accordingly, it has been established that
changes in the external parameters are associated with the relationship that determines the
physical parameters that lead to changes in the capacitance.

To verify the feasibility of the proposed dual-parameter sensor, we used high-frequency
simulation software HFSS to simulate the designed sensor. The antenna was used to feed
the sensor by adding an excitation source. The sensor model and simulation results are
shown in Figure 1b,c. Figure 1b shows the f –S11 curve of the sensor. The sensor can detect
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two resonant frequencies: the temperature signal at approximately 60 MHz and the strain
monitoring signal at approximately 120 MHz. Figure 1c shows the electric field distribution
diagram of the integrated sensor. As indicated, the electric field distribution of the sensor
is mainly concentrated in the electrode part. It can be observed from the simulation that
the sensor designed in this study is feasible.

3. Results and Discussion
3.1. Sensor Preparation

The preparation process of the sensor is shown in Figure 2. First, the polyimide (PI)
film was treated with oxygen plasma [32,35] for three minutes. Additionally, a plasma
power of 120 W and an O2 flow rate of 150 sccm were used to make the film surface
hydrophilic. Upper and lower through-holes were drilled on the PI film using laser drilling
technology. The outer diameters of the through-holes were 0.4 mm. Silver paste was
injected to metalize the through-hole so that the upper and lower surfaces can be connected.
We then used electroplating technology to deposit 18 µm of metallic copper on the back
of the PI film as a trace that connects the inductor and the capacitor and the lower plate
of the plate capacitance. Subsequently, 18 µm of metal copper was deposited on the front
of the PI film as the inductor and interdigital electrodes and the upper plate of the plate
capacitance. The interdigital capacitor of the strain-sensitive unit was placed on the outer
part of the inductor, and the plate capacitor of the temperature-sensitive unit was placed
on the inner part of the inductor. The surface of the sensor was covered with the PI film
to form an insulating layer, achieving a dual-parameter sensor with multiple resonances.
The sensor has the following characteristics: external dimension: 16 mm × 26 mm, size of
interdigital electrode: 8 mm × 8 mm, finger length: 6.5 mm, linewidth: 0.1 mm, interdigital
distance: 0.2 mm, and number of interdigital pairs: 14, size of plate capacitance: 5mm×
5mm. The outermost length of the inductor is 14.7 mm, with a total of 11 turns. The internal
temperature capacitor was connected to a six-turn inductor, and the outer strain capacitor
was connected to a five-turn inductor.
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Figure 2. Preparation of integrated dual-parameter sensor: (a) Oxygen plasma treatment on the surface of the polyimide (PI)
film; (b) Laser drilling; (c) Through-hole metallization; (d) Plating of copper on the posterior part of the PI film; (e) Copper
deposition on the front part of the PI film.
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3.2. Strain Test

To verify the strain characteristics of the sensor, we built a strain test platform. The can-
tilever beam device shown in Figure 3a was used to study the strain-sensitive characteristics
of the sensor. The cantilever (made of acrylic board) was fixed on a desk, and its other
end was hung in air. Pressure was then applied using a pressure gauge to deform the can-
tilever. The sensor was fixed on the cantilever with glue (number 502, LUSHI, Guangdong
Province, China), the temperature-sensitive part was attached to the position where the
cantilever did not deform, and the strain-sensitive part was attached to the suspension
position of the cantilever so that the sensor can deform together with the cantilever when
pressure was applied. A standard strain gauge was fixed at the axisymmetric position of
the center of the cantilever beam to detect the deformation of the sensor. Applying pressure
at the center axis of the cantilever beam can be equivalent to keeping the strain on the
sensor consistent with the strain of the strain gauge [36]. The standard strain gauge was
connected to the dynamic strain measuring system (JHDY-0508, Jiangsu, China), and the
measured strain was fed back to a computer terminal. Figure 3b shows the change in the
strain detected by the strain measuring instrument over time. The result of the one-to-one
correspondence between the pressure and strain is shown in Figure 3c. As shown, the strain
varied from 0 to 5000µε with the applied pressure. First, the strain-sensitive interdigital ca-
pacitance was tested using an LCR tester (IM3536, Shanghai, China). The results are shown
in Figure 3d. As indicated, the capacitance value decreases as a function of strain from
4.82535 pF to 4.73925 pF. This change is related to the direction of the applied strain [17].
The direction of the applied strain on the capacitor can be mainly divided into two: the
direction perpendicular to the interdigital electrode plate and the direction parallel to the
length of the interdigital electrode plate, as shown in Figure 4a. When strain is applied
in the X direction, the electrode width wc and electrode spacing gc are changed, while the
electrode length lc of the interdigital electrode remains unchanged. When strain is applied
in the Y direction, the main changes are the electrode length lc of the interdigital electrode,
while the electrode width wc and the electrode spacing gc remain unchanged. In this study,
the sensor was subjected to strain in the X direction. According to the capacitance calcu-
lation formula given in Equation (3), when the distance between the electrode spacing gc
increases, the capacitance value decreases, which is consistent with the detection outcomes.
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The sensor was then tested at 25 ◦C using a vector network analyzer. The number of
sampling points of the network analyzer was set to a maximum of 1601 points. A home-
made antenna connected to the network analyzer was fixed above the sensor. The test
distance between the two was set to 2 mm to ensure that the sensor has a good signal.
The sensor strain values were 1000, 2000, 3000, 4000, and 5000 µε following the application
of forces of 10, 20, 30, 40, and 50 N, respectively, on the central axis of the cantilever beam.
Accordingly, the data were observed and recorded. The origin software was used to plot
the collected data to generate the f –S11 response curve of the dual-parameter sensor, as
shown in Figure 4. Figure 4a shows the strain mechanism diagram. As shown in Figure
4b, when the strain parameter changes, the temperature-sensitive part of the sensor hardly
changes, and the frequency remains essentially unchanged; however, the frequency of the
strain-sensitive part changes. The main reason for this result is attributed to the fact that
when strain develops (Equation (1)), the value of the strain-sensitive capacitance decreases,
leading to an increase in the resonant frequency of the sensor, as shown in Figure 4c.
The Figure 4c,d clearly shows the influence of each sensitive unit when the strain changes.
The resonant frequency values of each sensitive unit were extracted separately and fitted to
obtain the results, as shown in Figure 4e,f. As shown in Figure 4e, the resonant frequency
of the strain-sensitive element increases from 121.4 MHz to 121.9 MHz, and the fitted curve
is f1 = 1.214 E8 + 100x. Thus, its strain sensitivity is 100 Hz/µε.

3.3. Temperature Test

The sensor was placed on a heating table to study its temperature-sensitive char-
acteristics. First, an LCR analyzer was used to test the temperature-sensitive capacitor.
The temperature plate capacitor was placed on the heating table, and the capacitor was
connected to the LCR analyzer using a wire. The heating switch was turned on to heat the
plate capacitor; the observations were then recorded. The results are shown in Figure 5a.
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As indicated, the capacitance increases as a function of temperature. This is attributed to
the fact that when the external temperature changes, the plate capacitor medium’s permit-
tivity changes [21,37]. This leads to an increase in the plate capacitance value. When the
temperature of the heating platform decreased to 25 ◦C, the plate capacitor was removed.
The sensor was then placed on the heating platform, and the test antenna connected to
the network analyzer was used to test the sensor. The sensor was heated from 25 ◦C to
85 ◦C, and its generated f –S11 response curve is shown in Figure 5b. Figure 5b shows that
when the temperature parameter changes, the two sensitive parameters of the sensor both
change and the frequency shifts to the left. The main reason is that when the temperature
increases, the permittivity of the PI film changes; this causes the plate capacitance value to
increase from 5.5117 pF to 6.4059 pF. According to Equation (1), the resonant frequency
decreases when the variable capacitance increases. As shown in Figure 5c,d, the effects
of all the sensitive units during temperature change are clearly observed. The resonant
frequency values of each sensitive unit were extracted and fitted to obtain the results, as
shown in Figure 5e,f. It can be observed that the resonant frequency varies linearly with
temperature. As shown in Figure 5e, the resonant frequency of the temperature-sensitive
unit decreases from 63.6 MHz to 61.9 MHz. The fitted curve is f = 6.45E7 – 27,308x, and its
temperature sensitivity is 27.30 KHz/◦C. Figure 5f shows that the resonant frequency of
the strain-sensitive element decreases from 123.97 MHz to 120.65 MHz when subjected to
temperature changes, and the fitted curve is f = 1.257 E8 − 56,000x. When the sensor is
placed in a temperature-strain compound environment, put the temperature value into the
formula to get the effect of temperature on strain, and then get the actual strain value.
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Figure 5. Temperature results of the dual-parameter wireless sensor: (a) Plate capacitance change as a function of tempera-
ture; (b) Temperature response curve (25–85 ◦C) of the dual-parameter sensor, and an (c) enlarged view of the temperature
response curve of the temperature-sensitive unit. (d) Enlarged view of the temperature response curve of the strain-sensitive
unit; (e) fitted curve of the temperature response curve of the temperature-sensitive unit, and (f) Fitted curve of the
temperature response of the strain-sensitive unit.

Table 1 presents a comparison of the sensor developed in this study with previously
reported sensors [15,36,38,39]. The sensor proposed herein has the following advantages:

1. The strain range is sufficiently large to monitor a relatively larger range of strain
changes.
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2. Integrated measurement of the sensor is realized, the sensor area is reduced, and the
temperature and strain can be monitored simultaneously.

3. The sensor comprises a flexible substrate and has the advantage of conformal attach-
ment on curved surfaces.

Table 1. Comparison between the sensors we studied and previously reported sensors.

Sensor Type Range Integration Basal References

Temperature sensor 0–200 ◦C No rigid [15]
Temperature sensor −70–100 ◦C No rigid [38]

Strain sensor 0–2500 µε No rigid [36]
Strain sensor 0–400 µε No rigid [39]

Sensor in this study 25–85 ◦C/0–5000 µε Yes flexible

4. Conclusions

This study proposed a wireless, passive, dual-parameter sensor with multiple reso-
nance multiplexing for the first time. Simultaneous measurement of temperature and strain
was achieved by designing two capacitors connected to the same inductor. After HFSS
simulation and optimization, two temperature and strain sensors with frequency-separated
sensitive parameters were obtained, achieving effective reduction in the sensor area and
integration of the sensor chip design. The sensor was prepared on a PI film based on the
optimized parameters, and the temperature and strain parameters were tested separately.
The effects of different sensitive parameters on each sensitive unit of the sensor were
analyzed, and the sensitivity of each parameter was obtained through linear fitting. Experi-
mental test results showed that the multiresonant sensor can operate stably at 25–85 ◦C and
1000–5000 µε conditions, and its temperature and strain sensitivities were 27.3 kHz/◦C and
100 Hz/µε, respectively. The sensor has broad application prospects for real-time in situ
wireless monitoring of parameters on high-speed rotating bearings. To apply the sensor to
the rotating bearing and to perform engineering practice, we will focus on improving the
strain sensitivity of the sensor in future work, as well as reducing the size of the sensor to
make it easier to attach it to the bearing for testing.
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