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Abstract
Hyperbaric oxygen therapy (HBOT) is a modality of treatment in which patients inhale 100% oxygen inside a hyperbaric 
chamber pressurised to greater than 1 atmosphere. The aim of this review is to discuss neuropsychological findings in various 
neurological disorders treated with HBOT and to open new perspectives for therapeutic improvement. A literature search 
was conducted in the MEDLINE (via PubMed) database from the inception up 10 May 2020. Eligibility criteria included 
original articles published in English. Case studies were excluded. Full-text articles were obtained from the selected studies 
and were reviewed on the following inclusion criteria (1) performed cognitive processes assessment (2) performed HBOT 
with described protocol. Two neuropsychologists independently reviewed titles, abstracts, full texts and extracted data. The 
initial search retrieved 1024 articles, and a total of 42 studies were finally included after applying inclusion and exclusion 
criteria. The search yielded controversial results with regard to the efficiency of HBOT in various neurological conditions with 
cognitive disturbance outcome. To the best of our knowledge this is the first state-of-the art, systematic review in the field. 
More objective and precise neuropsychological assessment methods are needed to exact evaluation of the efficacy of HBOT 
for neuropsychological deficits. Future studies should widen the assessment of HBOT effects on different cognitive domains 
because most of the existing studies have focussed on a single process. Finally, there is a need for further longitudinal studies.
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Introduction

Hyperbaric oxygen therapy (HBOT) is a modality of treat-
ment in which patients inhale 100% oxygen through a head 
tent, mask or endotracheal tube inside a hyperbaric chamber 
that has been pressurised to greater than 1 absolute atmos-
phere (ATA). HBOT is typically administered at more than 
one and less than three ATA and induces a state of increased 
pressure and hyperoxia that cause mechanical and physi-
ologic effects.

HBOT has been recommended for various conditions for 
more than 40 years (Grim, 1990; Leach et al., 1998). Ini-
tially, it was used to treat decompression sickness in divers. 
However, over the years its far-reaching potential has been 
recognised, and it has been approved for a variety of pur-
poses, including carbon monoxide (CO) poisoning, decom-
pression sickness and gas embolism, problematic wound 
healing, delayed radiation injuries, sudden deafness and 
other conditions as indicated by evidence-based medicine 
(Mathieu et al., 2017; Moon, 2019). Although controlled 
clinical trials are limited, the rational basis of HBOT as well 
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• Enhanced oxygen supply and increased pressure result in a 
variety of pathophysiological mechanisms.
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as good clinical results have gradually increased the use of 
HBOT for neurological disorders linked with cognitive 
disturbances. Neurological disorders as well as conditions 
related to central nervous system (CNS) damage may pre-
sent with a variety of neuropsychological symptoms, such 
as impairment of memory and learning processes, attention 
and visuo-spatial functions, language processes and execu-
tive dysfunctions.

The neuroprotective and therapeutic effects of neuropsy-
chological deficits provided by HBOT have been established 
in experimental animal and human models, although they 
remain controversial. In this review, we will summarise 
the existing results of HBOT usage in several neurological 
states, its current understanding and opinions for future stud-
ies. To the best of our knowledge this is the first state of the 
art, systematic review in this topic.

To understand the role of HBOT in neurological disor-
ders, a basic knowledge of cerebral metabolism, cerebral 
blood flow and the neurophysiology of the brain is essential. 
The physiological basis of HBOT is the gas laws. While 
breathing air at atmospheric pressure, most of the oxygen 
is bound to haemoglobin. In this situation, blood haemo-
globin is saturated with oxygen (at approximately 97%) and 
working at near maximum capacity with a small amount of 
oxygen dissolved in the blood plasma compartment. If the 
percent of inhaled oxygen – or the pressure at which oxygen 
is breathed – is increased, more oxygen will dissolve into the 
blood plasma. In HBOT conditions, the fraction of inspired 
oxygen and partial pressure of oxygen increases, supersatu-
rating the blood with oxygen. Inhaling 100% oxygen at 3 
ATA increases mean arterial oxygen tension from approxi-
mately 100 mmHg in normobaric conditions to 2000 mmHg 
and the amount of oxygen delivery to the tissues from 3 
to 60 mL of oxygen per litre of blood (Jain, 2017). Super-
saturation of the blood to this degree supports resting tissue 
oxygen requirements without a necessary contribution from 
haemoglobin carriage. Hence, HBOT is useful in diseases in 
which haemoglobin function is limited, such as CO poison-
ing or ischaemia (Mathieu, 2006a). The excess oxygen is 
carried in solution and it can diffuse to areas where red blood 
cells cannot reach. This elevation in the partial pressure of 
oxygen in tissue mediates the therapeutic benefits of HBOT.

Enhanced oxygen supply and increased pressure result 
in a wide variety of pathophysiological mechanisms. Thus, 
HBOT is believed to diminish neuroinflammatory responses, 
blood–brain barrier permeability and apoptosis while posi-
tively impacting neurogenesis, neuronal and axonal integrity 
and synaptogenesis (reviewed by Daly et al., 2018; Fischer 
et al., 2010). All of these effects may potentially influence 
patients’ cognitive functioning. Nevertheless, direct links 
are very difficult to establish. Recent advances in radiology 
and medical imaging, in particular diffusion tensor imaging 
(DTI) and advanced perfusion models, could potentially fill 

the gap and provide better understanding of the interdepend-
ence among white matter structure, cerebral blood flow and 
cognition (Chen et al., 2010; Tal et al., 2017).

Brain metabolism generates large amounts of reactive 
forms of oxygen. There is an excessive literature demon-
strating that augmented oxygen reactivity is associated 
with deteriorated performance in cognitive tasks (Bhatt 
et  al., 2020; Kandlur et  al., 2020). At the same time, 
however, reactive oxygen species may also play a role in 
functional and structural modifications indispensable for 
synaptic plasticity (Massaad & Klann, 2011). In particular 
reactive forms of oxygen seem to be involved in regulation 
of N-methyl-d-aspartate (NMDA) receptors (Betzen et al., 
2009), calcium  (Ca2 +) channels (Huddleston et al., 2008), 
potassium channels (Gong et al., 2000) and  Ca2 + /calmo-
dulin kinase II (Shetty et al., 2008) functioning. Hydrogen 
peroxide promotes ryanodine receptor redox modifica-
tions in hippocampal neurons (Kemmerling et al., 2007). 
Consequently, although oxygen reactive forms seem to 
be necessary for long term potentiation (the cellular sub-
strate for memory), they are also implicated with deficient 
long term potentiation during aging (Hu et al., 2007) and 
in mouse models of Alzheimer Disease (AD) (Cai et al., 
2008). HBOT schemes differ from study to study what may 
result in various exposures to oxidative stress. Therefore, 
it is difficult to predict whether beneficial or detrimental 
effects of reactive oxygen forms on cognition in particular 
study prevails.

The diversity and strength of innate repair mechanisms 
activated by HBOT are associated both with the elevated 
level of dissolved oxygen and the elevated pressure (Efrati 
& Ben-Jacob, 2014b). However, it remains unclear how 
oxygen and pressure relate to each other. For instance, it 
has been proposed that HBOT may act as a transducer to 
improve oxidative metabolism while subsequent normobaric 
oxygen therapy (100% oxygen, 1 ATA) may further enhance 
this effect (Rockswold et al., 2010, 2013). Exposure of rat 
brain slices to high pressures (5.3 ATA) typically shows an 
augmentation in the synaptic NMDA receptors response, 
usually followed by post-synaptic excitability modifica-
tions (Bliznyuk et al., 2020; Mor & Grossman, 2010; Mor 
& Grossman, 2007). HBOT and normobaric reoxygenation 
augment excitability and activate oxygen-induced potentia-
tion in CA1 hippocampal neurons (Garcia et al., 2010b). 
Moreover, oxygen induced neural plasticity does not need 
modifications in excitatory synaptic transmission (Garcia 
et al., 2010a). When referring to experiments performed 
with the use of brain slices it should be kept in mind that it 
remains unclear whether the reported hyperexcitability, and 
which forms of increased neuronal excitability are a part 
of the learning process or, actually represent cellular mani-
festation of neuronal oxygen poisoning. The only experi-
ments (performed by our team) on humans exposed to 1.4 
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ATA and 2.8 ATA HBO may suggest that actually oxygen 
related mechanisms affecting cognition and poisoning might 
be interrelated (Kot et al., 2015). The study was, however, 
performed on young males from the elite military Special 
Forces unit and therefore might not be representative for 
wider population.

Traditional view is that hyperoxia (below 2.8 ATA) 
diminishes brain perfusion (Di Piero et al., 2002; Kety & 
Schmidt, 1948; Omae et al., 1998) due to cerebral vasocon-
striction caused by an interruption in nitric oxide-mediated 
basal relaxation of cerebral vessels (Bitterman & Bitterman, 
1998; Oury et al., 1992). The topic has been extensively 
reviewed by our team (Winklewski et al., 2013). The exist-
ing dogma has been challenged by Micarelli et al. (2013). 
Authors investigated 7 healthy volunteers during acute 
exposure to HBO at 2.5 ATA (thus mimicking a possible 
therapeutic condition). The authors reported augmented 
brain perfusion in the left hemisphere with a relative cer-
ebral blood flow increase in the neural networks encompass-
ing dorsal and ventral attention pathways. Nevertheless, the 
links between changes in brain perfusion and cognition are 
complex and not fully understood. Quite insightful are data 
coming from the investigations of the impact of physical 
training on perfusion and cognition. It is generally believed 
that active lifestyle slowdown cerebral prefusion and cogni-
tive decline associated with age (Boraxbekk et al., 2016; 
Jackson et al., 2016; Szalewska et al., 2017). However, 
Guiney et al. (2019) demonstrated that improvements in 
higher-order cognitive functioning in healthy older adults 
associated with habitual physical activity were not related 
to improved cerebrovascular functioning.

Hyperoxia and in particular HBOT exposure results in 
increased parasympathetic nervous system activity, brady-
cardia and dissociation between heart rate and broader 
cardiovascular system responses (Lodato & Jubran, 1993; 
Parkinson & Registrar, 1871; Walter et al., 1962). The neu-
rovisceral integration model proposes a bi-directional cor-
tical influences on autonomic functioning and integrates 
central nervous and autonomic systems (Smith et al., 2017; 
Thayer & Lane, 2000). The main affector and effector of the 
parasympathetic nervous system is the vagal nerve. Elec-
trical vagal nerve stimulation seems to improve cognitive 
functioning, in particular memory consolidation and recog-
nition (Clark et al., 1999; Ghacibeh et al., 2006; Vonck et al., 
2014). Interestingly, also behavioural interventions such as 
slow breathing, associated with vagal nerve increased activ-
ity, are able to modulate cortical alpha rhythm (Hsu et al., 
2020; Maric et al., 2020). Cardiovascular desynchronization, 
in turn, may have detrimental impact on cognition (Ogoh & 
Tarumi, 2019).

Evidence for cognitive improvements after HBOT in dif-
ferent neurological disorders accumulates (Boussi-Gross 
et al., 2015; Hardy et al., 2002; Rossignol et al., 2007; 

Tapeantong & Poungvarin, 2009). Nevertheless, there is 
still an ongoing debate regarding the efficacy of HBOT in 
individuals with traumatic brain injury (TBI), stroke or other 
neurological conditions. Although it is widely agreed, and 
confirmed by the majority of studies, that HBOT leads to 
significant improvements in cognition, the debate is mostly 
related to a control group issue and minimal effective dos-
ages (the minimal pressure that does not have any physi-
ological effect on the CNS) (Churchill et al., 2013; Efrati & 
Ben-Jacob, 2014a, b; Golden et al., 2006; Harch et al., 2007; 
Wolf et al., 2012). There are several neurological conditions 
where HBOT has been reported to be useful, that is, CO 
poisoning, TBI and post-concussion syndrome (PCS), stroke 
and neurodegenerative disorders.

Existing intensive functional therapy and neuropsycho-
logical rehabilitation programmes are considered essential 
to minimise cognitive and physical sequelae associated with 
brain damage in various neurological states. Neuropsycho-
logical rehabilitation refers to helping cognitively impaired 
individuals to totally or partially restore normal functioning, 
compensate cognitive, emotional, psychosocial and behav-
ioural deficits, and improve the quality of life. However, 
considering the heterogeneity of physical, cognitive, behav-
ioural, and psychosocial symptoms in various neurological 
states, these programmes are often only partially successful. 
Those programs should be improved and modified in accord-
ance with the better understanding of cognitive processes 
and brain structures via newest neuroimaging techniques and 
medical development. It is well known that neuroplasticity 
and synaptic reorganization have a decisive role in neuropsy-
chological rehabilitation effects (Sohlberg & Mateer, 2001). 
Some of the mechanisms involved in both processes have 
essential implications for rehabilitation, such as diaschisis, 
functional reorganization, or modification of synaptic con-
nectivity among others (Sohlberg & Mateer, 2001). Thus, 
alternative approaches dedicated to the metabolic recovery 
of cerebral tissues that stimulates synaptic and functional 
plasticity such as HBOT need to be further explored in order 
to improve the neuropsychological outcome of a patient.

Finally, there are some adverse events and risks associ-
ated with HBOT. They are related to changes in atmos-
pheric pressure, hyperbaric oxygen exposure and psy-
chological factors (i.e. confinement anxiety). Middle ear 
barotrauma is the most common HBOT-related complica-
tion with incidence rates ranging between authors from 2 
to 82%. In one of the largest retrospective study of HBOT 
safety the incident risk of middle era barotrauma was 9.2% 
of patients, which gives 410 events per 100,000 sessions. 
The safety of hyperbaric oxygen treatment was assessed in 
2,334 patients (Hadanny et al., 2016b). To minimise this 
risk, patients are provided with instructions describing ear 
clearing techniques like swallowing, chewing and modified 
Valsalva manoeuvre. In intubated and unconscious patients 
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myringotomy is the procedure of choice before the HBOT. 
Oxygen itself is a drug and there is always a risk of adverse 
effects based on biochemical reactions.  CNS oxygen tox-
icity presented with the temporarily loss of consciousness 
and general seizures is quite infrequent event. It occurs 
with a rate of only 1.59 events per 100,000 sessions, mostly 
at pressures 2.4 ATA and above (Hadanny et al., 2016a). 
Seizures during hyperbaric oxygen therapy were assessed 
in retrospective analysis of 62,614 treatment sessions. 
This is one of the reasons why in case of using HBOT in 
emergency indications (i.e. diving accidents, CO intoxica-
tion, compartment syndrome, etc.) when high partial pres-
sure of oxygen is used, use of multiplace chambers with 
direct supervision of medical attendant inside the chamber 
is preferred. If such event occurs, the internal attendant 
immediately removes the oxygen mask from the patient 
and switches him or her to air breathing. Lungs oxygen 
toxicity is cumulative, but can be avoided by using mini-
mum inspired fractions of oxygen between HBOT sessions. 
In some patients with pre-existing cardiac problems, there 
is a risk of hypotension after HBOT due to hypovolemia 
evoked by vanishing vasoconstrictive effect. Hypovolemia 
risk can be mitigated by careful volume assessment and, 
if needed, volume loading before the end of oxygen expo-
sure. Eyes oxygen toxicity, manifesting as myopia, may 
occur in patients receiving HBOT over several weeks. 
Myopia is usually spontaneously reversible within a short 
period of time. Gas embolism and pulmonary barotrauma, 
a well-known phenomena in divers, during decompression 
in hyperbaric chambers are very rare (Mathieu, 2006b; 
Oriani et al., 1996). In conclusion of the adverse effects, 
the HBOT is generally considered as a low risk medical 
procedure when conducted by the well trained hyperbaric 
personnel in carefully assessed patients.

Methodology

PRISMA guidelines were used for the reporting of this sys-
tematic review (Moher et al., 2009).

Data Sources

Electronic database Pubmed was searched, from 1946 to 
2020, for relevant studies; last search was performed on 10 
May 2020. The reference lists of included studies were hand-
searched for additional references.

Separate search for four medical indications for HBOT 
(CO intoxication, post-concussion syndrome, stroke, ageing 
and neurodegenerative diseases) was made. The following 
search terms were used:

a) CO intoxication Search: ((hyperbaric oxygen therapy) 
AND (carbon monoxide)) AND (cognition) ("hyper-
baric oxygenation"[MeSH Terms] OR ("hyperbaric"[All 
Fields] AND "oxygenation"[All Fields]) OR "hyperbaric 
oxygenation"[All Fields] OR ("hyperbaric"[All Fields] 
AND "oxygen"[All Fields] AND "therapy"[All Fields]) 
OR "hyperbaric oxygen therapy"[All Fields]) AND 
("carbon monoxide"[MeSH Terms] OR ("carbon"[All 
Fields] AND "monoxide"[All Fields]) OR "carbon 
monoxide"[All Fields]) AND  ("cognition"[MeSH 
Terms] OR "cognition"[All Fields] OR "cognitions"[All 
Fields] OR "cognitive"[All Fields] OR "cognitively"[All 
Fields] OR "cognitives"[All Fields])      

b) Traumatic brain injury Search: ((hyperbaric oxygen 
therapy) AND (concussion)) AND (cognition) Sort by: 
Most Recent ("hyperbaric oxygenation"[MeSH Terms] 
OR ("hyperbaric"[All Fields] AND "oxygenation"[All 
Fields]) OR  "hyperbaric oxygenation"[All Fields] 
OR ("hyperbaric"[All Fields] AND "oxygen"[All 
Fields] AND  "therapy"[All Fields]) OR "hyper-
baric oxygen therapy"[All Fields]) AND ("brain 
concussion"[MeSH Terms]  OR ("brain"[All 
Fields] AND "concussion"[All Fields]) OR "brain 
concussion"[All Fields] OR "concussion"[All Fields] 
OR "concussions"[All Fields] OR "concussed"[All 
Fields] OR "concussive"[All  Fields]) AND 
("cognition"[MeSH Terms] OR "cognition"[All Fields] 
OR "cognitions"[All Fields] OR "cognitive"[All Fields] 
OR "cognitively"[All Fields] OR "cognitives"[All 
Fields]) and  Search: ((hyperbaric oxygen ther-
apy) AND (traumatic brain injury)) AND (cogni-
tion) ("hyperbaric oxygenation"[MeSH Terms] OR 
("hyperbaric"[All Fields] AND "oxygenation"[All 
Fields]) OR  "hyperbaric oxygenation"[All Fields] 
OR ("hyperbaric"[All Fields] AND "oxygen"[All 
Fields] AND "therapy"[All Fields]) OR "hyperbaric 
oxygen therapy"[All Fields]) AND ("brain injuries, 
traumatic"[MeSH  Terms] OR ("brain"[All Fields] 
AND "injuries"[All Fields] AND "traumatic"[All 
Fields]) OR "traumatic  brain injuries"[All Fields] 
OR ("traumatic"[All Fields] AND "brain"[All Fields] 
AND "injury"[All Fields])  OR "traumatic brain 
injury"[All Fields]) AND ("cognition"[MeSH Terms] 
OR "cognition"[All Fields] OR "cognitions"[All Fields] 
OR "cognitive"[All Fields] OR "cognitively"[All Fields] 
OR "cognitives"[All Fields])

c) Stroke  Search: ((hyperbaric oxygen therapy) 
AND (stroke)) AND (cognition)  ("hyperbaric 
oxygenation"[MeSH Terms] OR ("hyperbaric"[All 
Fields] AND "oxygenation"[All Fields]) OR "hyperbaric 
oxygenation"[All Fields] OR ("hyperbaric"[All Fields] 
AND "oxygen"[All Fields] AND "therapy"[All Fields]) 
OR "hyperbaric oxygen therapy"[All Fields]) AND 
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("stroke"[MeSH Terms] OR "stroke"[All Fields] OR 
"strokes"[All Fields] OR "stroke s"[All Fields]) AND 
("cognition"[MeSH Terms] OR "cognition"[All Fields] 
OR "cognitions"[All Fields] OR "cognitive"[All Fields] 
OR "cognitively"[All  Fields] OR "cognitives"[All 
Fields])  and  Search: ((hyperbaric oxygen therapy) 
AND (cognition)) AND (ischemia)  ("hyperbaric 
oxygenation"[MeSH Terms] OR ("hyperbaric"[All 
Fields] AND "oxygenation"[All Fields]) OR "hyperbaric 
oxygenation"[All Fields] OR ("hyperbaric"[All Fields] 
AND "oxygen"[All Fields] AND "therapy"[All Fields]) 
OR "hyperbaric oxygen therapy"[All Fields]) AND 
("cognition"[MeSH Terms] OR "cognition"[All Fields] 
OR "cognitions"[All Fields] OR "cognitive"[All Fields] 
OR "cognitively"[All Fields]  OR "cognitives"[All 
Fields]) AND ("ischaemia"[All Fields] OR 
"ischemia"[MeSH Terms] OR "ischemia"[All Fields] 
OR "ischaemias"[All Fields] OR "ischemias"[All 
Fields])      

d) Ageing and neurodegenerative disorders  Search: 
((hyperbaric oxygen therapy) AND (neurodegen-
erative disease)) AND (cognition) ("hyperbaric 
oxygenation"[MeSH Terms] OR ("hyperbaric"[All 
Fields] AND "oxygenation"[All Fields]) OR "hyper-
baric oxygenation"[All Fields] OR ("hyperbaric"[All 
Fields] AND "oxygen"[All Fields] AND "therapy"[All 
Fields]) OR "hyperbaric oxygen therapy"[All Fields]) 
AND ("neurodegenerative diseases"[MeSH Terms] OR 
("neurodegenerative"[All Fields] AND "diseases"[All 
Fields]) OR "neurodegenerative diseases"[All Fields] 
OR ("neurodegenerative"[All Fields] AND "disease"[All 
Fields]) OR "neurodegenerative disease"[All Fields]) 
AND ("cognition"[MeSH Terms] OR "cognition"[All 
Fields] OR "cognitions"[All Fields] OR "cognitive"[All 
Fields] OR "cognitively"[All Fields] OR "cogni
tives"[All  Fields])  and  Search: (hyperbaric oxy-
gen therapy) AND (alzheimer disease) ("hyperbaric 
oxygenation"[MeSH Terms] OR ("hyperbaric"[All 
Fields] AND "oxygenation"[All Fields]) OR "hyper-
baric oxygenation"[All Fields] OR ("hyperbaric"[All 
Fields] AND "oxygen"[All Fields] AND "therapy"[All 
Fields]) OR "hyperbaric oxygen therapy"[All Fields]) 
AND ("alzheimer disease"[MeSH Terms]  OR 
("alzheimer"[All Fields] AND "disease"[All Fields]) 
OR "alzheimer disease"[All Fields])  and Search: 
((hyperbaric oxygen therapy) AND (neurodegenera-
tion)) AND (cognition) Sort by: Most Recent ("hyper-
baric oxygenation"[MeSH Terms] OR ("hyperbaric"[All 
Fields] AND "oxygenation"[All Fields]) OR "hyperbaric 
oxygenation"[All Fields] OR ("hyperbaric"[All Fields] 
AND "oxygen"[All Fields] AND "therapy"[All Fields]) 
OR "hyperbaric oxygen therapy"[All Fields]) AND 
("nerve degeneration"[MeSH Terms] OR ("nerve"[All 

Fields] AND "degeneration"[All Fields]) OR "nerve 
degeneration"[All Fields] OR "neurodegeneration"[All 
Fields] OR "neurodegenerating"[All Fields] 
OR "neurodegenerations"[All Fields])  AND 
("cognition"[MeSH Terms] OR "cognition"[All Fields] 
OR "cognitions"[All Fields] OR "cognitive"[All Fields] 
OR "cognitively"[All Fields] OR "cognitives"[All 
Fields])  and  Search: ((hyperbaric oxygen therapy) 
AND (ageing)) AND (cognition) Sort by: Most 
Recent ("hyperbaric oxygenation"[MeSH Terms] OR 
("hyperbaric"[All Fields] AND "oxygenation"[All 
Fields]) OR  "hyperbaric oxygenation"[All Fields] 
OR ("hyperbaric"[All Fields] AND "oxygen"[All 
Fields] AND "therapy"[All Fields]) OR "hyperbaric 
oxygen therapy"[All Fields]) AND ("aging"[MeSH 
Terms] OR  "aging"[All Fields] OR "ageing"[All 
Fields]) AND ("cognition"[MeSH Terms] OR 
"cognition"[All Fields] OR "cognitions"[All Fields] OR 
"cognitive"[All Fields] OR "cognitively"[All Fields] OR 
"cognitives"[All Fields])     

Study Selection and Eligibility Criteria

A two-step approach was used to select articles. Firstly, 
titles and abstracts of all search results were screened for 
the following characteristics (1) original article published in 
English, (2) case studies were excluded. Secondly, full-text 
articles were obtained from the selected studies and were 
reviewed on the following inclusion criteria (1) performed 
cognitive processes assessment (2) performed HBO ther-
apy with described HBOT protocol. Two neuropsycholo-
gists independently reviewed titles, abstracts, full texts 
and extracted data. The review process is summarized in 
Figs. 1, 2, 3 and 4. Results from the systematic literature 
search are provided separately in each indication section of 
the manuscript.

Results and Discussion

HBOT and Cognitive Dysfunctions After CO 
Intoxication

Exposure to CO, which excludes oxygen from tissues 
through the formation of a  stable  complex carboxy- 
haemoglobin (COHb), can damage various body systems 
– including the CNS. The acute symptoms reported by 
patients are: headache, weakness or lethargy, dizziness, 
nausea, shortness of breath, chest pain, visual changes 
and muscle cramping. Moreover, up to 45% have cogni-
tive problems with memory, attention and concentration 
(Weaver et al., 2002). Patients in more severe states (with 
a loss of consciousness or with COHb levels greater than 
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25%) frequently show cognitive dysfunction lasting 1 month 
or longer (Goldstein, 2008; Weaver et al., 2002). Multiple 
mechanisms are involved in both acute and delayed CO 
toxicity, including neuroinflammation, apoptosis and brain 
lipid peroxidation. All of them are ameliorated by HBOT 
(reviewed by Mannaioni et al.,  2006).

Most patients with CO poisoning can recover from the 
acute phase. However, around 1–30% of patients develop 
delayed neuropsychological sequelae 2–6  weeks after 
recovery from the acute phase (Choi, 1983; Weaver, 2009; 
Weaver et al., 2007). Therefore, treatment for CO poisoning 
during the acute phase aims to address immediate threats 
to life as well as prevent delayed and sometimes permanent 
neuropsychological morbidity (Liao et al., 2019; Mathieu 
et al., 1985).

Gale and Hopkins (2004) recruited 20 patients with CO 
poisoning and assessed neuropsychological functioning. 

They showed a correlation between impairment of verbal 
memory and visual memory and reduced hippocampal 
volume in patients. Cognitive disturbances were present 
even 6 months or longer after CO poisoning. Chang et al. 
(2010) described similar findings about persistent neu-
ropsychological deficits (verbal episodic memory, visual 
memory and visual-spatial ability) in 9 patients with 
CO exposure: these issues were still present after 3 and 
10 months. Moreover T2-weighted brain magnetic reso-
nance imaging of patients with delayed neuropsychiatric 
sequelae after CO poisoning shows damage to the hip-
pocampus (Bruno et al., 1993; Henke et al., 1999) and 
white-matter lesion in the frontal lobe and periventricu-
lar area (Mundy et al., 2013; Park & Kim, 2014). Those 
regions are involved in reference memory and working 
memory, respectively (Burges et al., 2002; Prior et al., 
1997).

Fig. 1   PRISMA Flow Diagram for Included Studies for HBOT usage in cognitive dysfunction after CO intoxication
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The standard treatment for CO poisoning includes 
administration of 100% oxygen and general supportive 
care. Administration of supplemental oxygen increases the 

dissolved oxygen content, hastens the elimination of COHb 
in the blood and decreases cerebral oedema (Goldstein, 
2008). HBOT is often recommended for patients with acute 

Fig. 2   PRISMA Flow Diagram 
for Included Studies for usage 
of HBOT in TBI-related cogni-
tion disorders
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Fig. 3   PRISMA Flow Diagram 
for Included Studies for HBOT 
usage in postroke cognitive 
disturbances
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CO poisoning, especially if they have lost consciousness 
or have severe poisoning symptoms (Mathieu et al., 2017; 
Stoller, 2007).

There are also few animal studies in this field. Liu et al. 
(2016) sought whether neurogenesis is the target for HBOT 
to abrogate the delayed neuropsychological sequelae after 
CO poisoning. HBOT (2.5 ATA with 100% oxygen for 
60 min) was conducted on rats during the first 7 days after 
CO poisoning. Their animal research suggests that early 
HBOT may ameliorate delayed neuropsychological distur-
bances after acute CO poisoning by promoting neurogenesis 
through upregulating Brain-Derived Neurotrophic Factor 
(BDNF) in the hippocampus. Furthermore, the same group 
of authors conducted study with HBO therapy combined 
with N-butylphthalide on 80 rats. HBOT was conducted on 
the same conditions as in previous study. Rats performed 
Morris Water Maze Task. Last part of the study included 

hippocampus microstructure assessment. Authors concluded 
that combined therapy can improve cognitive functioning 
through maintaining ultrastructural integrity of hippocam-
pus, and thus may play a neuroprotective role in brain tissue 
in rats with CO poisoning. Animal studies examining effect 
of HBOT on cognition after carbon monoxide intoxication 
are presented in Table 1.

Several studies have investigated the effect of HBOT with 
multiple neuropsychological methods. Scheinkestel et al. 
(1999) conducted a double-blind, randomised clinical trial 
to investigate the effects of HBOT by measuring cognitive 
functioning immediately after the therapy (daily treatments 
with 100% oxygen in a hyperbaric chamber – 60 min at 
2.8 ATA for the HBOT group and at 1.0 ATA for the nor-
mobaric oxygen group – for three days) and 1 month later. 
They found no improvement in the patients’ states, and they 
reported a worse outcome in learning tests.

Fig. 4   PRISMA Flow Diagram 
for Included Studies for HBOT 
in cognitive ageing and neuro-
degenerative disorders
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Table 1  Effect of HBOT in carbon monoxide poisoning on cognition in animals

ATA  absolute atmosphere, CO carbon monoxide, HBOT hyperbaric oxygen therapy

Authors Studied group HBOT protocol Cognitive measures Results

(Liu et al., 2016) 10 rats after acute carbon monoxide 
poisoning

7 sessions for 60 min at 2.5 ATA Eight arm maze test Improvement in memory

(Bi et al., 2017) 80 rats after CO intoxication; 
divided in two groups HBOT and 
HBOT + N-butylphthalide

7 sessions for 60 min at 2.5 ATA Morris Water Maze Task Improvement in memory
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A similar methodology was used by Weaver et al. (2002); 
they examined 152 patients with CO poisoning with various 
neuropsychological tests after the first and third session and 
at 2 and 6 weeks, 6 months and 12 months after HBOT. All 
subjects underwent three protocol-directed sessions in mon-
oplace hyperbaric chambers at intervals of 6 to 12 h. The first 
oxygen treatment session was initiated within 24 h after the 
end of the exposure to CO. During both hyperbaric-oxygen 
and normobaric-oxygen sessions, all intubated patients were 
mechanically ventilated with 100% oxygen. The patients in 
the HBOT group were exposed to 100% oxygen at 3 ATA 
and then 2 ATA during the first chamber session and then to 
100% oxygen at 2 ATA during sessions 2 and 3. Subjects in 
the normobaric-oxygen group were exposed to air at 1 ATA 
for all three chamber sessions. After three sessions, there 
were improvement in a few neuropsychological tests (Digit 
Span, Trail Making, Digit-Symbol, Block Design and Story 
Recall), demonstrating increased attention, visuo-spatial 
and memory processes as well as processing speed. This 
avoided two of the limitations of the study by Scheinkestel 
et al. (1999), i.e. loss to follow up and cluster rather than 
patient level randomisation for group exposures. Thus, it 
was the first study that was not plagued with or accused of 
having methodological flaws. From this study, 44 individuals 
were subsequently enrolled to ancillary prospective APOE 
genotyping study. The authors found that HBOT reduced 
cognitive deficits after CO poisoning in the absence of the 
e4 allele and concluded that HBOT is a useful treatment for 
preventing cognitive sequalae after CO poisoning (Hopkins 
et al., 2007).

Delayed neuropsychiatric sequel is estimated to occur in 
10–30% of victims of carbon monoxide poisoning, but the 
reported incidence varies widely (Sönmez et al., 2018). Its 
various symptoms mainly comprise cognitive impairment, 
parkinsonism, urinary and faecal incontinence, dementia and 
psychosis (Choi, 1983; Tapeantong & Poungvarin, 2009). 
Emergent HBOT within 24 h reduces the risk of cognitive 
sequelae after acute CO poisoning (Weaver et al., 2002).

Yeh et al. (2014) indicated that patients with delayed 
neuropsychiatric sequel after CO intoxication had poorer 
performance on general cognitive functioning, language 
skills, psychomotor speed, visual-spatial processes, logical 
and working memory and executive function compared to 
those with acute CO poisoning at 1 month. Compared with 
the acute neuropsychological sequel group, the group with 
delayed symptoms had more significant progress at 6-month 
follow-up after HBOT with regard to general cognitive func-
tion, psychomotor speed and visuo-spatial skills. However, 
the follow-up progress on language processes, logical mem-
ory and executive function tasks did not differ between the 
groups. These results support previous brain-image find-
ings that patients with delayed neuropsychiatric sequel had 
abnormal deep white matter and frontal lobe regions (Ernst 

& Zibrak, 1998; Zagami et al., 1993). The authors suggested 
that future research should employ standardised and compre-
hensive neuropsychological tasks, as well as larger samples 
and matching brain-imaging investigations.

Lo et al. (2007) performed magnetic resonance, diffu-
sion tensor imaging and Mini-Mental State Examination 
(MMSE) examination in 6 patients with delayed neuropsy-
chiatric sequel immediately before and 3  months after 
HBOT (subjects underwent from 8 to 40 consecutive ses-
sions, depending on the clinical response, with a pressure 
of 2.5 ATA for 120 min in each session) to obtain fractional 
anisotropy values and assess neuropsychological function-
ing. There was a significantly higher mean fractional anisot-
ropy value in the control group compared with the patients 
both before and 3 months after HBOT. Notably, in the indi-
viduals with delayed symptoms of CO poisoning, the mean 
fractional anisotropy value 3 months after HBOT was also 
significantly higher than before HBOT. All of the patients 
regained full scores in the MMSE 3 months after the hyper-
baric oxygen therapy.

Chang et al. (2010) examined 9 patients – with symptoms 
of delayed neuropsychiatric sequel – who received HBOT 
(at 2.5 ATA for 120 min five days per week during hospi-
talisation; 8–40 sessions). For all patients, cognitive symp-
toms significantly improved after the therapy, with signifi-
cantly higher MMSE scores. However, white matter changes 
remained evident in the brain magnetic resonance scans.

Although HBOT has been applied clinically for the treat-
ment of both acute and delayed phase of CO poisoning and 
HBOT reduces the neurological sequelae caused by the poison, 
the clinical benefits and the underlying mechanisms are still 
controversial (Annane et al., 2011; Birmingham & Hoffman, 
2011; Camporesi, 2014; Hampson et al., 2013; Weaver et al., 
2007). Nevertheless, growing evidence has indicated that HBOT 
can promote proliferation of endogenous neural stem cells and 
stimulate neurogenesis in the injured brain (Lee et al., 2013; Mu 
et al., 2011; Zádori et al., 2011).

Delayed encephalopathy after acute CO poisoning 
(DEACMP) is a very serious complications (Goldstein, 
2008). DEACMP is a common cause of clinical neurological 
complications and may result in memory impairment, unre-
sponsiveness, visceral autonomic nervous system dysfunc-
tion, Parkinson’s disease, cognitive dysfunction and behav-
ioural disorders in patients. Currently, the pathogenesis of 
DEACMP remains elusive. Given that the CNS is the tissue 
that is most sensitive to oxygen, some researchers have sought 
primary factors that induce DEACMP in hypoxia caused 
by CO poisoning (Lee et al., 1988; Prockop & Chichkova, 
2007). This theory does not explain all clinical manifestations 
and pathological changes present in DEACMP, especially 
the variety of symptoms that occur after the recovery of the 
carbonyl haemoglobin level. Other researchers have reported 
that delayed CO poisoning neuropathology is associated with 
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an adaptive immunological response to chemically modi-
fied myelin basic protein (Thom et al., 2004). Xiang et al. 
(2017a, b), in their double-blind, randomised study involv-
ing 215 DEACMP patients (MMSE score ≤ 24, indicative of 
cognitive delay), found that both HBOT and the combined 
application of N-butylphthalide and HBOT (with 2.5 ATA for 
80 min per day) significantly increased cognitive function-
ing (measured with MMSE) after short-term treatment. The 
efficacy of the combined treatment was greater than HBOT 
alone. After 8 weeks of treatment, almost half of the experi-
mental group achieved significantly higher results compared 
to the control group. The researchers concluded that HBOT 
may increase the blood oxygen level to alleviate the hypoxic 
state in the brain of CO-poisoned patients. This phenom-
enon is beneficial to the functional recovery of damaged 
brain cells.

Moreover, the combined application of N-butylphthalide 
and HBOT may be a potential effective therapy in treating 
cognitive dysfunction for patients with DEACMP. Further-
more, the same authors conducted study on 120 DEACMP 
patients divided in two groups: HBOT alone and HBOT plus 
dexamethasone. Each patients received 20 hyperbaric oxy-
gen therapy sessions at 2.5 ATA for 80 min per day. MMSE 
performed before and after 4 weeks of treatment showed 
cognitive improvement in both groups. Although authors 
concluded that the combined application of dexamethasone 
and HBO therapy should be considered as it yields better 
efficacy for patients with DEACMP (Xiang et al., 2017a, b). 
Efficacy of N-butylphthalide and dexamethasone combined 
with HBOT in patients with DEACMP was also studied in 
recent study by Zhang et al. (2020). Authors examined 171 
DEACMP patients and divided in two groups: combined 
therapy and HBO alone. Cognitive state was assessed with 
MMSE and Montreal Cognitive Assessment (MoCA) scale 
before and 1 and 3 months and 1 year after the treatment. 
Their results indicate that combined therapy can signifi-
cantly improve cognitive and motor functions of patients 
with DEACMP. Human studies examining effect of HBOT 
on cognition after carbon monoxide intoxication are pre-
sented in Table 2.

Current studies examining CO intoxication effects 
mostly agree that HBOT is promising therapy for improving 
patients cognition. Although research paradigm varies (e.g. 
therapy range from 3 to 40 HBOT sessions), thus comparing 
results should be made with caution. Furthermore, detailed 
neuropsychological assessment is rarely done. Cognitive 
screening methods (i.e. MMSE, MoCA) are not reliable 
and sensitive enough to detect subtle changes in cognitive 
functioning. Future studies should be designed to determine 
optimal combinations of the dose and timing of HBOT, 
and planned subgroup analyses should attempt to define 
which patients could benefit most from hospital transfer. 
These studies will hopefully provide the evidence needed 

to eliminate the remaining doubt about the effectiveness of 
HBOT. More aggressive and appropriate treatment options 
than are used today are needed. The correct diagnosis of the 
cognitive consequences of CO poisoning often occur quite 
a bit after the exposure. Thus, appropriate and timely treat-
ment is even more problematic.

HBOT and TBI‑Related Cognition Disorders

TBI can be caused by several factors. An external physi-
cal force, rapid acceleration or deceleration of the head, 
bleeding within or around the brain, lack of sufficient oxy-
gen to the brain or toxic substances passing through the 
blood–brain barrier. The damage caused by TBI can be focal 
(confined to one area of the brain) or diffuse (involving more 
than one area of the brain: Zhang et al., 2014). Symptoms 
of a TBI vary from mild and moderate to severe, depending 
on the extent of the damage to the brain. TBI can result in 
temporary or permanent impairment of cognitive, emotional 
or physical functioning state. Thus, it has become a sig-
nificant concern in civilian and military populations (Chiu 
& LaPorte, 1993). TBI is linked with several pathological 
mechanisms, that is, diffuse shearing of axonal pathways 
and small blood vessels – which is also known as diffuse 
axonal injury (Medana & Esiri, 2003) – ischaemia, mild 
oedema and other biochemical and inflammatory processes, 
that culminate in impaired regenerative or healing processes 
resulting from increasing tissue hypoxia (Zasler et al., 2007). 
Furthermore, TBI can lead to PCS, a complex of symptoms 
such as headaches, dizziness, imbalance, vertigo, fatigue, 
changes in sleep pattern, neuropsychiatric symptoms (e.g., 
behavioural and mood changes, confusion) and cognitive 
impairments (in memory, attention, concentration and exec-
utive functions) (McCauley et al., 2000). Due to multiple 
pathological mechanisms, cognitive impairments are usually 
the predominant symptoms localised in multiple brain areas 
(Kushner, 1998; Levin, 1990; Sohlberg & Mateer, 2001a, b). 
The use of HBOT for brain injury is based on the hypothesis 
that injured or inactive neurons would benefit from increased 
blood flow and oxygen delivery, which would act to meta-
bolically or electrically reactivate the cells (Deng, 2018; 
Francis & Baynosa, 2017; Neubauer & James, 1998).

In recent years, animal models (Chen et al., 2010; Efrati 
& Ben-Jacob, 2014a, b; Lin et al., 2012; Neubauer & James, 
1998) and human studies (Barrett et al., 2004; Boussi-Gross 
et al., 2013; Golden et al., 2006; Harch et al., 2012; Shi 
et al., 2003; Tal et al., 2015; Wright et al., 2009) have shown 
that HBOT can improve PCS by targeting basic pathological 
processes (Hadanny & Efrati, 2016). The evidence about 
the effectiveness of HBOT for TBI is conflicting, and the 
case series and time series studies of HBOT for TBI patients 
had serious flaws. One of the most concerning issues is the 
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optimal time window for HBOT, a factor that can determine 
its efficacy in TBI.

Animal model studies have demonstrated that HBOT has 
a positive effect on cognitive outcome (Kraitsy et al., 2014; 
Lin et al., 2012). Zhou et al. (2007) found that rats with brain 
injury treated with HBO (1 h at 1.5 ATA + 3hour normobaric 
oxygen) had significant improvement in cognitive recovery 
HBO research using sham, NBO and HBO was used by 
Harch et al. (2007). Authors proved that 80 HBOT sessions 
performed twice a day for 90 min at 1.5 ATA can signifi-
cantly improve spatial learning in TBI rats. They confirmed 
their results with showing increase in hippocampus vascular 
density after hyperbaric oxygen therapy. Wang et al. inves- 
tigated the prolonged therapeutic time window of HBOT in  
animal models. Their study involved HBOT administration 
within 6 h after TBI. Their results showed decreased neu- 
ronal apoptosis and improved cognitive ability. Furthermore, 
they described that multiple HBOT sessions (3 ATA hourly 
for 3 or 5 days) could extend the therapeutic time window up to 48 h 
post-TBI (Wang et al., 2010). The authors also reported that 
a treatment initiated within 12 h after injury improved neu-
rologic outcomes, compared with a longer window of 24 h. 
They concluded that 72 h after injury there is no significant 
improvement after single a HBOT session. However, if the 
first HBOT starts at 24 h after concussion and continues for 
3 or 5 consecutive days, there are significant improvements 
in cognitive deficits. Their results suggest that the optimal 
HBOT paradigm for human studies may be a single treat-
ment initiated within 24 h after the injury, followed by treat- 
ments for 5 consecutive days. Liu et al. (2013) investigated 

the effect and mechanism of HBOT on cognitive function- 
ing in rats. Authors suggest that hyperbaric oxygen therapy 
significantly improves spatial learning and memory skills 
at rats with traumatic brain injury, and the potential mecha- 
nism behind those improvements is mediated by metabolic 
changes and nerve cell restoration in the hippocampus. 
Another research proving neuroprotective effect of HBOT 
after TBI was conducted by Baratz-Goldstein et al. (2017). 
They investigated impact of 4 consecutive days hyperbaric 
oxygen treatment on mice with traumatic brain injury (2 
different time lines: 3 h after injury and 7 days post injury). 
They found that mice treated with hyperbaric oxygen 
showed significant improvement in learning abilities. Their 
results suggest neuroprotective effect of HBOT in TBI with 
short and long therapeutic window. Similar results (memory 
improvement) were described by Chen et al. (2014). Moreo- 
ver they described therapeutic effect of hyperbaric oxygen 
on neuroinflammation, apoptosis and oedema after TBI.

The data from these pre-clinic and clinic studies indicate 
that HBOT is beneficial when it is applied early after an 
insult or injury. Application of HBOT within a therapeutic 
time window established in preclinical study is an important 
requirement to ensure treatment efficiency. Studies examin-
ing effect of HBOT on cognition in animal models of TBI 
are presented in Table 3.

Cifu et al. (2014) conducted a randomised, blinded clini- 
cal study on subjects with persistent post-concussion symp-
toms. In their study – a randomised, controlled trial including 
50 military service members suffering mild TBI between 3 and 
71 months before HBOT. HBOT was assessed at 2.0 ATA. All 

Table 3  Effect of HBOT in traumatic brain injury on cognition in animals

ATA  absolute atmosphere, HBOT hyperbaric oxygen therapy, TBI Traumatic Brain Injury

Authors Studied group HBOT protocol Cognitive measures Results

(Zhou et al., 2007) 23 TBI rats HBO for 1 h at 1.5 ATA Morris water maze post 
injury days 11 to 15

Improvements in cognition

(Harch et al., 2007) 19 TBI rats 80 HBOT, twice a day, 
7 days/week 1.5 ATA for 
90 min

Morris water maze Improvement in spatial 
learning

(Wang et al., 2010) 6 rats with TBI 3 ATA hourly for 3 or 
5 days

Beam-balancing test; Pre-
hensile traction test

Improved cognitive ability

(Liu et al., 2013) 20 rats with TBI HBOT for 60 min daily at 2 
ATA for 1 and 2 weeks

Morris water maze test 
immediately after TBI, 1 
and 2 weeks of HBOT

Improvement in spatial 
learning and memory

(Baratz-Goldstein et al., 
2017)

15 mice with TBI HBOT session for 4 days for 
60 min at 2 ATA 

7 and 30 days after TBI; 
Elevated plus maze, 
Y-maze, Novel object 
recognition test

Improvement in learning 
abilities

(Chen et al., 2014) 9 TBI mice in each test HBOT performed 3 h after 
injury for 60 min at 2 
ATA for 5 days

Morris water maze (postin-
jury days 14,15,16 and 
17), beam walk task (1,3,7 
and 14 days post injury)

Improved motor skills and 
spatial learning

(Zhou et al., 2007) 23 TBI rats HBO for 1 h at 1.5 ATA Morris water maze post 
injury days 11 to 15

Improvements in cognition
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subjects were randomly assigned to one of three groups, breath-
ing 10.5%, 75% or 100% oxygen to mimic normal air at 1.0 
ATA, 100%  oxygen at 1.5 ATA or 100% oxygen at 2.0 ATA, 
respectively. HBOT at either 1.5 or 2.0 ATA equivalent had 
no effect on post-concussion symptoms after mild TBI when 
compared with sham compression. However, the HBOT effect 
on cognitive functions was assessed with the self-administered 
Rivermead Post-Concussion Symptoms Questionnaire (RPQ), 
which is known to display several flaws in implementation and 
in its ability to accurately reflect test-taker experience. Moreover, 
interpretation and accuracy of the RPQ can vary widely due 
to self-administration and the various confounding variables 
involved. Indeed, it is sensitive to subjective patient memory, 
social desirability, stress and other covariates such as personality 
factors and willingness to reveal problems, as are the two other 
methods. Relying completely on the self-administration assess-
ments is a weakness of this study (Potter et al., 2006).

Furthermore, Walker et  al. (2014) conducted a ran-
domised, double-blind and sham-control feasibility trial 
comparing pretreatment and posttreatment conducted in 60 
male active-duty marines with combat-related mild TBI. 
Subjects with PCS that had persisted for 3 to 36 months were 
randomised to one of three groups receiving preassigned 
oxygen fractions (10.5%, 75% or 100%) at 2.0 ATA. This 
design led to groups with an oxygen exposure equivalent to 
breathing surface air, 100% oxygen at 1.5 ATA, and 100% 
oxygen at 2.0 ATA, respectively. Each subject received 40 
hyperbaric chamber sessions of 60 min each for 10 weeks. 
Multiple neuropsychological tests of cognitive performance 
were collected preintervention and 1-week postintervention. 
There were no significant changes in cognitive functioning 
between groups and pre and post HBOT. The authors con-
cluded that HBOT is not useful to treat cognitive, balance 
or fine motor deficits associated with mild TBI and PCS.

Harch et al. (2012) performed an uncontrolled HBOT 
trial of 16 participants with PCS after blast exposure during 
military service. There was an improvement in both cognitive 
and psychomotor characteristics. The authors reported sig-
nificant improvement one week after HBOT (40 at 1.5 ATA, 
5 days per week for 60 min each session) in full-scale intel-
ligence quotient (IQ), delayed and working memory, execu-
tive functions and attention. In a randomised trial, Wolf et al. 
(2012) studied participants with chronic PCS. Their results 
demonstrated no efficacy in cognitive impairment treatment 
with HBOT at an exposure pressure of 2.4 ATA for 90 min 
given once daily for 30 treatments compared to 1.3 ATA air 
exposure. However, both groups (the control group received 
treatment with room air at 1.3 ATA) improved beyond what 
would be expected more than 6 months after mild TBI. In 
subsequent study, they received similar results – no significant 
difference was observed between air (1.3 ATA) and HBO (2.4 
ATA) although both groups shoved improvement in cognition 
(without statistical significance). The Wolf et al. (2012) 

studies were widely criticised for using 1.3 ATA in control 
group (Mychaskiw & Stephens, 2013; Weaver et al., 2013). 
Actually, it should be recognized that 1.3 ATA air and 2.4 
ATA oxygen may represent low and high edges of the oxygen 
dose–response curve. Hyperbaric physiology indicates that 
relatively subtle changes in tissue partial oxygen pressure may 
exert a significant therapeutic effect (Mychaskiw & Stephens, 
2013; Weaver et al., 2013).

Boussi-Gross et al. (2013) presented a prospective, ran-
domised and controlled crossover study of the effect of 
HBOT with 100% oxygen at 1.5 ATA (5 days per week, 
60 min each) on mild TBI patients at late chronic stage. 
The authors randomly divided the subjects into treated or 
crossover groups. The patients in the treated group were 
evaluated before and after 40 HBOT sessions. Subjects in 
the control group were evaluated at three times, baseline, 
and after 2 and 4 months. Neuropsychological examination 
included assessment of information processing, attention, 
memory and executive functions. All subjects underwent 
single photon emission computed tomography examination. 
HBOT induced neuroplasticity and significant brain function 
improvement in mild TBI patients with prolonged PCS (at a 
late chronic stage, years after brain injury). There was also 
improvement in all assessed cognitive functions. Moreover, 
changes in single photon emission computed tomography 
images after treatment indicate that HBOT reactivates neu-
ronal activity in stunned areas that seem normal under com-
puted tomography and magnetic resonance imaging.

Tal et al. (2015), in their study using perfusion magnetic 
resonance imaging, proved that HBOT can significantly 
increase cerebral blood flow and cerebral blood volume 
following 50–70 daily hyperbaric sessions, 5 days a week 
(each session consisted of 60 min of exposure to 100% 
oxygen at 1.5 ATA). There was also significant cognitive 
improvement in patients post TBI. The mean time from 
the acute injury was 10.3 ± 3.2 years. The most prominent 
improvements were seen in information processing speed, 
visual spatial processing and motor skills indices. The 
increased perfusion to the dysfunctional tissue, and the sig-
nificant cognitive improvement, suggest that impaired tissue 
perfusion may serve as a rate limiting factor for regenera-
tion and neuroplasticity even years after the acute injury. The 
authors concluded that that appropriate biological trigger can 
induce neuroplasticity months to years after the acute injury.

In a subsequent, study Tal et al. (2017) evaluated dif-
fusion tensor imaging changes before and after HBOT of 
prolonged PCS. HBOT was initiated 6 months to 27 years 
(10.3 ± 3.2 years) from injury for 60 daily hyperbaric ses-
sions, 5 days per week with sessions consisting of 90 min 
of exposure to 100% oxygen at 2 ATA. The authors found 
an increase in fractional anisotropy and a decrease in mean 
diffusivity after HBOT, together with cognitive function 
improvement of patients in the late chronic stage of TBI. 
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Their results suggest that HBOT can induce brain micro-
structure recovery with significant improvement in memory, 
executive functions and information processing speed. They 
concluded that HBOT can improve the integrity of brain 
fibres, a phenomenon that correlates with improved cogni-
tive functioning. It should be kept in mind, however, that 
quantitative validation of diffusion tensor imaging patho-
logic metrics remains very limited (Winklewski et al., 2018).

Churchill et al. (Churchill et al., 2016) examined effect 
of HBOT on information processing speed after mTBI. In 
their study, investigators measured speed of processing at 
baseline, 6 and 13 weeks in military personnel with mTBI. 
Subjects were randomized to 40 sessions of air (1.2 ATA) 
or HBOT (1.5 ATA). They found no significant changes in 
reaction time between HBO or air.

Furthermore Shandley and colleagues found that HBOT 
(90 min at 2.4 ATA) correlates with stem cell mobilization 
as well as increased neuropsychological performance com-
paring to 90 min air at 1.3 ATA. Authors suggest that stem 
cell mobilization may be required for cognitive improvement 
in TBI population.

Hadanny et al. (2018) demonstrated the neurotherapeu-
tic effects of HBOT for chronic TBI. The study included 
154 subjects (42.7 ± 14.6  years) with documented TBI 
0.3–33 years (mean 4.6 ± 5.8, median 2.75 years) prior to 
HBOT. The HBOT protocol comprised 40–70 daily hyper-
baric sessions, 5 days a week. Each session involved expo-
sure to 100% oxygen at 1.5/2 ATA. The authors confirmed 
that HBOT induced significant improvement in memory, 
executive functions, information processing speed and 
global cognitive scores.

Weaver et al. (2012) proposed the design of randomised 
study to evaluate the efficacy and utility of HBOT for American 
combatants with PCS. Based on this design authors conducted 
clinical trial. They examined executive functions, processing 
speed, memory, and learning of 71 military service members 
with mTBI (35 with PTSD) who were randomly administered 
to HBO or air (40 HBO sessions at 1.5 ATA vs air at 1.2 ATA 
for 60 min). Authors found that after 13 weeks HBOT improved 
post-concussive and PTSD symptoms, cognitive processing 
speed, sleep quality, and balance function, especially in indi-
viduals with PTSD. Although changes did not persist beyond 
six months (Weaver et al., 2018). Research on effect of HBOT 
on cognition in traumatic brain disorders in humans are pre-
sented in Table 4.

Currently, the results of HBOT in clinical TBI trials are 
controversial, and the efficiency of HBOT in TBI has not been 
well established. First, the optimal time window for HBOT 
administration must be determined to ensure its efficacy in 
treating TBI. Second, objective and precise neuropsychologi-
cal assessment methods are another challenge in the evalua-
tion of the efficacy of HBOT in TBI patients. Third, heteroge-
neity in patients and HBOT paradigms (pressure, frequency, 

length of treatment course) partly affect or determine the 
outcome. There have been variations in patients’ age and in 
the severity and nature of the injury in the studies. Future tri-
als of HBOT for PCS should consider measuring outcomes 
with standardised neuropsychological methods and at longer 
intervals postintervention or in combination with rehabilita-
tion therapy to determine potential delayed or priming effects.

HBOT and Poststroke Cognitive Disturbances

Stroke is a result of a blocked artery or a ruptured blood 
vessel. It leads to an interruption in cell homeostasis and 
symptoms such as loss of speech and loss of motor function. 
It is a major cause of disability and mortality among adults, 
with long-term impairments in the physical, emotional and 
cognitive state of survivors (Robinson, 2006). Neuropsy-
chological disturbances after stroke are very common; they 
involve multiple cognitive deficits that lead to a decline in 
everyday functioning and in social functioning (Godefroy 
& Bogousslavsky, 2007). The main therapeutic targets are 
the regions surrounding the focal site of injury where the 
tissue is at high risk of disruption but not irreparably dam-
aged; thus, there is still the potential to salvage these neurons 
(Baron, 2001; Lo et al., 2003; Singhal, 2007). Cell death 
and reduced neuronal activity caused by an ischaemic event 
can lead to excitotoxicity, oxidative stress, inflammation and 
apoptosis, all of which are pathways where hypoxia plays a 
key role (Lo et al., 2003). Therefore, increased oxygenation 
has been considered as a potential treatment for stroke; this 
treatment may lead to tissue repair and the generation of 
new synaptic connections (Golden et al., 2002; Neubauer & 
James, 1998). Therapy and neuropsychological rehabilita-
tion programmes are valuable for improving cognition at 
early stages, but they usually provide only partial recovery 
from symptoms. To date, there is no efficient neuropsycho-
logical rehabilitation programs available for late chronic 
stages (Rajeswaran, 2013; Ricker & Callahan, 2000).

Current concepts of the pathophysiology of stroke pro-
vide a rationale for using HBOT in its management. Con-
ventional methods of stroke treatment and their functional 
consequences are not satisfactory, and the outcomes remain 
controversial. There are only a few experimental animal 
studies and uncontrolled human trials that have shown the 
effectiveness and safety of HBOT after stroke. Clinical 
observations and basic research data suggest that HBOT may 
be a useful and effective treatment option in the manage-
ment of acute stroke, but more studies are needed to clarify 
its clinical utility (Sánchez, 2013). The use of HBOT as a 
treatment following stroke was first raised 50–60 years ago 
(Hart & Strauss, 2003; Hart & Thompson, 1971). Despite 
decades of interest, studies that have investigated the effects 
of HBOT following a stroke have produced mixed results 
(Bennett et al., 2014; Freiberger et al., 2016; Helms et al., 
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2005). Rehabilitation of stroke patients is one aspect that 
should be planned during the first few months following 
stroke. Thus, long-term follow-up studies are required to 
determine whether such measures would reduce the chronic 
disability attached to impaired cognition in stroke in stroke 
patients.

First clinical researches in this field were made by Sarno 
and Sarno (Sarno et al., 1972a, b). Authors investigated the 
effect of HBOT on language skills disrupted after stroke. 
First study included 16 left hemisphere stroke patients, sec-
ond: 32 stroke patients (16 with left sided damage). Patients 
underwent neuropsychological examination, with detailed 
assessment of various verbal processes, before chamber 
treatment and after every session. Each patient participated 
in two double blinded conditions: HBOT (performed at 2 
ATA of 100% oxygen) or sham (10.5% oxygen both for 
90 min) with random order. Authors found no significant 
changes in neuropsychological tests results after exposure 
to oxygen.

Boussi-Gross et al. (2015) presented a retrospective anal-
ysis of the effects of HBOT on memory impairments in post-
stroke patients during the late chronic, unremitting stage. 
The HBOT protocol consisted of 40 to 60 daily sessions, 
5 days per week, 90 min each, 100% oxygen at 2 ATA. Their 
data showed statistically significant improvements in mem-
ory functions in the majority of patients. These neuropsy-
chological findings were in good agreement with metabolic 
brain changes assessed by single photon emission computed 
tomography brain imaging. Imaging analysis identified the 
brain regions associated with the memory impairments and 
improvements (perirhinal cortex and its activation correlated 
with clinical improvement in the delayed memory meas-
ures; improvement in verbal and nonverbal delayed memory 
abilities with the change in activation in the left and right 
perirhinal cortex, respectively).

These results are consistent with previous reports that 
HBOT induces neuroplasticity effects at late chronic stage, 
although these studies lacked a control group. Neverthe-
less, these and previous studies have provided convincing 
evidence that HBOT can induce neuroplasticity at chronic 
poststroke stages in areas with metabolic dysfunction, which 
if relevant to memory function in the brain can improve after 
HBOT (Boussi-Gross et al., 2013; Efrati et al., 2013).

Hadanny et al. (2015) firstly examined effect of HBOT 
on patients suffering from anoxic brain damage caused by 
cardiac arrest. Patients received 60 daily HBOT sessions of 
100% oxygen at 1.5 ATA for 60 min. Neuropsychological 
measures were compared with single photon emission com-
puted tomography results. Authors found significant improve-
ment in memory, attention and executive functions. Those 
changes correlated with increased brain activity in relevant 
brain areas assessed by single photon emission computed 
tomography imaging. Their further retrospective research Ta
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focus was put on 162 stroke patients (87 in left hemisphere, 
121 ischemic). They found that HBOT (40–60 sessions, 
90 min of 100% oxygen at 2 ATA) had significant effect on 
all cognitive domains. Authors concluded that hyperbaric 
oxygen therapy can be successful treatment even in late 
chronic stage of post-stroke patients (Hadanny et al., 2020).

In one of the most recent studies, Rosario et al. (2018) 
measured the impact of HBOT across a number of cognitive 
domains, including speech, language skills, general cogni-
tion, memory and emotional/behavioural impairments. The 
authors assessed functional abilities over a 3-month period 
for 6 subjects who underwent two 4-week periods of HBOT 
(commenced over 6 months after a stroke). HBOT com-
prised 20 total treatments of 100% at 2.0 ATA for 60 min for 
4 weeks (on weekdays). There were significant improvements 
in memory and executive function after oxygen therapy. 
Despite a small sample size, the authors concluded that their 
findings support the idea of HBOT as a potential intervention 
following stroke. Researches on effect of HBOT on cognition 
after ischemia/stroke are presented in Table 5.

Clearly, additional larger prospective, randomised tri-
als on the effect of HBOT on cognitive impairment during 
acute and delayed poststroke periods should be conducted. 
Moreover, future studies should widen the assessment of the 
HBOT effects on different cognitive functions because most 
of the existing studies focus on memory abilities. Additional 
study limitations relate to the HBOT protocol. Even though 
they have shown similar, significant beneficial effect, studies 
that have evaluated HBOT in stroke management have used 
different treatment protocols. The exact HBOT protocol that 
will induce maximal neuroplasticity with minimal side effects 
must be determined. Bennet et al. (2014) reported that when 
taken together, the existing literature does not indicate that 
HBOT is an effective intervention in the acute phase following 
an ischaemic stroke. Nevertheless, the failure of some clinical 
stroke trials that have utilised HBOT is probably linked to fac-
tors such as delayed time to therapy, inadequate sample size 
and the use of excessive chamber pressures (Singhal, 2007). 
Further research could focus on investigating HBOT effects 
on cognitive functions on stroke patients receiving thromboly-
sis or thrombectomy treatment before oxygen therapy.

HBOT Usage for Cognitive Ageing 
and Neurodegenerative Disorders

Dementia is a condition characterised by increasing sev-
eral cognitive deficits such as loss of memory, problems 
with speech and understanding and visuo-spatial disrup-
tion. According to the 2003 World Health Organization 
(WHO) World Health Report, dementia causes 11.2% more 
years lived with disability than cardio- and cerebrovascular 
diseases and all forms of cancer in people aged 60 years 
and older. There are currently around 36 million dementia 

patients worldwide. It is anticipated that the number of 
dementia cases will increase in the subsequent years and 
will reach 81.1 million by the year 2040 (Ferri et al., 2005). 
Research on HBOT for dementia has mainly focussed on 
animal experiments (Table 6).

The first investigation of HBOT in the elderly popula-
tion was performed by Jacobs et al. (1969). They reported 
improved cognitive functioning in 13 elderly patients with 
chronic organic brain syndrome after exposure to hyper-
baric oxygen (30 sessions, twice a day with 100% oxygen 
at 2.5 ATA). Five control subjects exposed to a neutral air 
mixture failed to show improvement. Over the next six 
years, five other research reports were published. Three 
confirmed Jacobs original observation (Edwards & Hart, 
1974; Jacobs et al., 1972; Raskin et al., 1978), while two 
did not (Goldfarb et al., 1972; Thompson et al., 1976). The 
study by Goldfarb et al. (1972) was performed on 10 patients 
(mean age 74 years) with cognitive decline. All subjects 
underwent 40 to 58 h of exposure to 100% oxygen at 2.5 
ATA in two sessions per day (90 min each). Compression 
and decompression time of each individual chamber ses-
sion was about 110 min. Neuropsychological examination 
was performed before and after 15 days of treatment. There 
were no significant improvements in cognitive outcome of 
subjects. Moreover Thompson et al. (1976) included 21 sub-
jects with dementia (50–80 years old, 13 with diagnosis of 
cortical atrophy, 8 cerebrovascular disease) and 4 control 
subjects. HBOT consisted of the same procedure as Jacobs 
et al. (1969). There were no significant differences between 
the experimental and control subjects (Jacobs et al., 1972), 
although the severity of dementia in subjects in both studies 
was different. The patients in the Jacobs study had less cog-
nitive deterioration. The interest in treating dementia with 
HBOT has grown in recent years.

Alzheimer disease is the most common form of demen-
tia. It is characterised by progressive cognitive impairment 
and psychobehavioural disturbances. In a rodent model of 
Alzheimer disease, Shapira et al. (2018) found that HBOT 
can improve cognitive function by reducing neuroinflam-
mation. The authors conducted their study with 6 mice (3 
HBO treated, 3 nontreated). For animals in the treated group, 
HBOT was administered as 100% oxygen at a pressure of 2 
ATA for 60 min daily for 14 consecutive days. The effects 
of HBOT on cognitive functions (memory and behaviour) 
in mice were evaluated using a series of behavioural tests. 
Cognitive tests were performed during the 7 days preced-
ing sacrifice with a 24-h delay after the last HBOT or con-
trol treatment and a 48-h delay after the last task to reduce 
stress. The authors concluded that HBOT can ameliorate 
Alzheimer disease pathology and behavioural deficits in a 
transgenic mouse model of Alzheimer disease. Furthermore, 
in another rodent model of Alzheimer disease, Zhao et al. 
(2017) proved that HBOT can reduce hippocampal neuronal 
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apoptosis and thus improve cognitive function. The authors 
examined 24 rats (3 groups: 8 normal, 8 Alzheimer disease, 
8 Alzheimer disease HBO) that underwent the experimental 
procedure. The Alzheimer disease HBOT group received six 
HBOT sessions (2 ATA) for 60 min, while the normal and 
Alzheimer disease groups were placed in hyperbaric cham-
bers without compression or decompression treatment. The 
authors concluded that hyperbaric treatment improves learn-
ing and memory skills by inhibiting dendritic spine loss and 
reducing neuronal apoptosis, astrocyte activation and tumour 
necrosis factor α (TNF-α) production in the hippocampus of 
rats with Alzheimer disease.

The second most common form of dementia is vascular 
dementia, accounting for approximately 30% of all cases 
of dementia (Kalaria et al., 2008). Vascular dementia is 
group of syndromes based on varying vascular mecha-
nisms, such as multiple infarcts, small vessel ischaemic 
disease, strategically placed infarcts, hypoperfusion and 
haemorrhage, Alzheimer disease with cerebrovascular 
disease, hereditary vascular dementia or cerebral autoso-
mal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy (Brien et al., 2003). To date, no 
effective treatments have been approved for established 
vascular dementia. Current treatment methods focus 
mainly on the reduction of risk factors and slowing the 
progression of the clinical outcome (Erkinjuntti et al., 
2004; Moorhouse & Rockwood, 2008; Sorrentino et al., 
2008). A study on animal models of vascular dementia 
demonstrated that HBOT (2 ATA for 120 min [pressure 
boost for 15 min, steady pressure for 90 min, decom-
pression for 15 min] once a day for 10 continuous days) 
improves the blood supply and promotes neurogenesis 
in the piriform cortex (Zhang et al., 2010). These obser-
vations suggest possible benefits of HBOT for vascular 
dementia in humans.

Cerebrovascular disease includes a variety of conditions 
that affect  the brain and the cerebral circulation which can 
lead to vascular dementia (Kuźma et al., 2018). Vila et al. 
(2005) examined possible reversible effect of HBOT on 
cognitive decline in cerebrovascular disease. Their study 
included 26 subjects with mild to moderate leukoaraiosis 

(18 received 10 sessions of HBOT for 45 min at 2.5 ATA, 8 
air sessions at 1.1 ATA). After treatment subjects receiving 
hyperbaric oxygen showed significant improvement in motor 
and cognitive scales compared to control group.

Wang and colleagues (Wang et al., 2009) examined 64 
vascular dementia patients (32 HBOT, 32 control subjects) 
who underwent 12 weeks of HBOT sessions (97% oxygen 
administered at 2.0 ATA for 60 min a day for 24 consecutive 
days a session; six days of rest in between sessions) as an 
adjuvant treatment to donepezil. Patients who received oxy-
gen treatment showed better cognitive function compared 
to the control group treated with donepezil alone, measured 
either by the MMSE or by Hasegawa’s Dementia Rating 
Scale.

Similar methodology was used by Xu et al. (2019). Authors 
prospectively analysed 158 vascular dementia patients who were 
randomized in two groups: HBO treatment (12 weeks of HBOT 
sessions administered at 2 ATA for 60 min) and control group, 
both treated with donepezil hydrochloride. Authors concluded 
that HBO therapy can improve cognitive functions in patients 
with vascular dementia.

In one of the most recent reviews in this field, You et al. 
(2019) described HBOT as effective and safe complemen-
tary therapy for the treatment of vascular dementia. How-
ever, more research is needed because the exact mechanism 
of this treatment modality remains unclear. Given that 
HBOT has shown usefulness in treating a variety of condi-
tions, the possible efficacy for treating Alzheimer disease 
and vascular dementia should be considered in experimental 
and preliminary clinical studies. Effect of hyperbaric oxygen 
therapy on dementia is presented in Table 7.

Future research should consider more detailed cognitive 
assessment. The current methodology is based mostly on 
brief neuropsychological batteries and tests, for example, 
the MMSE and MoCA. Furthermore, research must find the 
most effective HBOT protocol and include more subject and 
control groups. Moreover, multimodal assessment of posi-
tron emission tomography and magnetic resonance imaging 
networks could provide additional information on the impact 
of HBOT on neurodegenerative diseases.

Table 6  Effect of HBOT on cognition in animal models of neurodegenerative disease

AD Alzheimer Disease, VaD Vascular Dementia, ATA  absolute atmosphere, HBOT hyperbaric oxygen therapy

Authors Studied group HBOT protocol Cognitive measures Results

(Shapira et al., 2018) 14 old triple-transgenic 
mice and 14 non trans-
genic

HBOT 100% oxygen at 2 
ATA for 60 min daily for 14 
consecutive days

Y-maze, Open field test, 
Novel object recognition 
test

Improvement in cognition and 
behaviour measures

(Zhao et al., 2017) 8 rats with AD 5 HBO sessions at 2 ATA for 
60 min

Morris water maze task Improvement in learning and 
memory

(Zhang et al., 2010) 10 VaD rats 10 HBOT sessions for 90 min 
at 2 ATA 

The one-way avoidance test Improvement of learning and 
memory
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Conclusions

To the best of our knowledge  this review provides the first 
state-of-the art, systematic summary of research focused on 
the use of HBOT in various neurological conditions.

Existing clinical data can be conflicting due to several 
inherent procedural issues, such as the use of non-objective 
endpoints, the lack of appropriate brain imaging as part of 
the inclusion criteria, inappropriate placebo of a hyperbaric 
environment as well as the inclusion of patients and lack of 
control groups. Clearly, larger randomised trials that evalu-
ate the effect of HBOT on cognitive impairment should be 
conducted. Current HBOT studies have reported controver-
sial results with regard to the efficiency of HBOT in various 
neurological conditions with cognitive disturbance outcome.

Some study limitations relate to HBOT itself. There is still 
no agreement about an HBOT protocol, specifically the appro-
priate air pressure and the time and repetition of treatment 
sessions. The exact HBOT protocol for each neurological state 
– which will induce maximal neuroplasticity and functional 
improvement with minimal side effects – must be determined.

Future studies should widen the assessment of HBOT 
effects on different cognitive functions because most of the 
existing  investigations have focussed on single processes. 
Furthermore, more objective and precise neuropsychologi-
cal assessment methods are needed to evaluate the effi-
cacy of HBOT for neuropsychological deficits. To reach 
an agreement about the effectiveness of HBOT for neu-
ropsychological disorders, research needs to focus more on 
homogeneity of the included subjects. The current studies 
were conducted using heterogeneous groups of patients 
with wide variations in age, severity and nature of the 
brain damage. Thus, there is a need for longitudinal stud-
ies to verify whether the administration of a more exten-
sive series of HBOT sessions will lead to longer-lasting 
improvements in cognitive functioning.

Assuming that the methodological issues described 
in this review can be properly addressed and evaluated 
HBOT may have potential for the treatment of neuropsy-
chological deficits in a wide range of neurological states.
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