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The neurohormone oxytocin (OXT) has been found to mediate the regulation of

complex socioemotional cognition in multiple ways both in humans and other

animals. Recent studies have investigated the effects of OXT in different levels

of analysis (from genetic to behavioral) chiefly targeting its impact on the social

component and only indirectly indicating its implications in other components of our

socio-interactive abilities. This article aims at shedding light onto how OXT might

be modulating the multimodality that characterizes our higher-order linguistic abilities

(vocal-auditory-attentional-memory-social systems). Based on evidence coming from

genetic, EEG, fMRI, and behavioral studies, I attempt to establish the promises of this

perspective with the goal of stressing the need for neuropeptide treatments to enter

clinical practice.
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INTRODUCTION

The nine amino acid peptide oxytocin (OXT) is involved in an array of physiological and
pathophysiological processes, with some of those most commonly reported in the literature
being pregnancy and uterine contractions, milk ejection, sexual activity, pain modulation, social
interaction and bonding, parental care, and attention to socially-relevant stimuli (for a good review
see Meyer-Lindenberg et al., 2011). From another perspective, malfunctions of the oxytocinergic
system have been reported in cases of Autism Spectrum Disorder, Schizophrenia, Obsessive
Compulsive Disorder, Phobia, Prader-Willi Syndrome and Williams Syndrome, providing strong
functional links to the social and emotional modules that all these cases share (Leckman et al., 1994;
Lopatina et al., 2012; De Berardis et al., 2013; Grinevich et al., 2015; Haas and Smith, 2015). This
broad perspective of the literature indicates that OXT impacts a wide spectrum of neurobehavioral
systems.

Here I put forth the hypothesis that OXT also has a significant role in our linguistic
abilities, ranging from modulating genes involved in spoken-language acquisition to modulating
our motivation to communicate. In building this hypothesis, I follow an approach I have
argued in Theofanopoulou and Boeckx (2015) in the context of cognitive phylogenies,
where for a hypothesis to be valid in the Language Sciences, there needs to be evidence
at multiple levels of biological organization, from genetics to ultimately the behavioral
level (Fisher, 2015). Thus, I appeal to relevant findings from a multitude of studies,
touching upon all the following levels of analysis: genome, connectome, dynome (brain
oscillations), cognome, and phenome (See Figure 1). I also develop my hypothesis from a
translational viewpoint among non-human animal studies and humans, including the molecular
studies of OXT to its social functions in communication. I conclude that OXT most
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FIGURE 1 | A multi-dimensional illustration of the evidence presented

in the paper. At every level of analysis, the most important findings that are

related to the role of oxytocin in linguistic cognition are listed.

probably globally affects brain components that are tightly
interwoven with the pinnacle of our social expressions, namely
the sensory, motor, and more cognitive facets of our linguistic
abilities (auditory, vocal, attention, and memory systems).

GENOME: OXT MODULATES GENES
INVOLVED IN SPOKEN-LANGUAGE
ACQUISITION

Apart from the aforementioned actions of OXT, what is of
most relevance for the present article is its key role in
several developmental processes that subserve the acquisition
of our higher cognitive skills. Oxytocin-mediated, experience-
dependent cross-modal plasticity in the sensory cortices during
early development (Zheng et al., 2014) and the left-lateralized
expression of OXT in the auditory cortex of the mouse brain
(Marlin et al., 2015) suggest that OXT pathways are highly
pertinent to understanding the sensory ontogeny of our linguistic
communication. For humans, epigenetic misregulation of the
OXTR via aberrant gene silencing with DNA methylation
has implicated OXT in the development of Autism Spectrum
Disorder, where deficits in language performance are included in
its core phenotype (Gregory et al., 2009). A potential mechanism
is that epigenetic DNA methylation of the oxytocin receptor
gene (OXTR) is associated with neural activity and functional
coupling of neurons (Puglia et al., 2015). Thus, the aberrant
OXTR expression by methylation could be impacting neural
activity and neuronal coupling in language performance.

An even more possible direct genetic link between OXT
and our linguistic capacities is evidenced in the robust findings

with genes known to be necessary for normal language
development, namely in the FOXP2-CNTNAP2 pathway. To
begin with, interaction between OXT and CNTNAP2 in
critical developmental windows has been shown in a mouse
model of autism (Peñagarikano et al., 2015). FOXP2 regulates
CNTNAP2 expression, and CNTNAP2 has been linked to
complex neurological disorders, including language impairment,
autism, dyslexia, schizophrenia, and depression, with Single
Nucleotide Polymorphisms (SNPs) having been associated with
specific language endophenotypes (see Rodenas-Cuadrado et al.,
2014 for review).

Another link between OXT and FOXP2 is provided through
LNPEP, the peptidase that metabolizes oxytocin, located on
chromosome 5q15 (for more details on LNPEP see Ebstein et al.,
2012). Vernes et al. (2007) identified genomic sites directly bound
by FOXP2 protein in native chromatin of human neuron-like
cells, and LNPEP was among the genes with the most robust
and consistent binding. LNEP functionally regulates synaptic
transmission and formation.

A third potential interaction between OXT and FOXP2 may
occur by two other genes related to language: (i) RUNX2 and
(ii) POU3F2 (Benítez-Burraco and Boeckx, 2014, 2015). For
RUNX2, –a critical transcription factor for osteoblast formation-,
Tamma et al. (2009) found that it was differentially regulated in
OXT knockout mice. RUNX2 is connected to many genes that
are essential not only for brain and language development, but
also for bone formation (Boeckx and Benítez-Burraco, 2015).
A direct interaction between RUNX2 and FOXP2 has been
experimentally demonstrated in the context of endochondral
ossification (Zhao et al., 2015), a finding further reinforced
by Gascoyne et al. (2015), who added FOXP2 to the list of
established osteoblast and chondrocyte transcription factors
(such as RUNX2). Significantly, the action of OXT on osteoblast
maturation (Di Benedetto et al., 2014) and its implication in
an osteogenic network that supports the development of our
language-ready brain (and skull) may provide genetic evidence
for the hypothesis that OXT may directly foster encephalization
and our craniofacial phenotype (Carter, 2014). Last but not least,
both OXT and RUNX2 have been found to be strongly connected
to the Vitamin D endocrine system (Prüfer and Jirikowski, 1997;
Han et al., 2013; Patrick and Ames, 2014), which has been
proposed to explain the genetics and epidemiology of Autism
(Cannell, 2008).

Concerning POU3F2, a transcription factor, neuronal and
endocrine components (including OXT) of the hypothalamic-
pituitary axis have been shown to be critically dependent on
POU3F2 action (Nakai et al., 1995; Schonemann et al., 1995;
Burbach et al., 2001). POU3F2 also regulates FOXP2 gene
expression in a human-specific manner (Maricic et al., 2013).
Crucially, the fact that in all three genes, OXTR, POU3F2, and
FOXP2, there have been identified signs of positive selection
in human or recent hominin evolution (Enard et al., 2002;
Maricic et al., 2013; Schaschl et al., 2015), reinforces the idea
that these evolutionary changes might be partially responsible
for the emergence of aspects of our species-specific cognitive and
linguistic abilities.
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CONNECTOME

Recent studies have implicated OXT in brain development
and plasticity. Specifically, the oxytocinergic brain system has
been described to undergo major morphological alterations that
modify the conformation of its neurons and glia and its synaptic
inputs in a stimulus-dependent manner (Theodosis, 2002). The
bulk of the evidence coming from studies in mice, rats and
praire voles elucidates the significant role OXT plays in shaping
different pathways of the brain (see Carter, 2003 for review).
Importantly, the expression of the OXTR displays a particular
maturational progression in the brain of the developing rat
that could be classified in two types: transient expression
during early postnatal development and constant abundant
expression mediating neuronal transmission in the mature brain
(Yoshimura et al., 1996). Similarly in mice, neocortical OXTR
binding exhibits a transient peak in early postnatal periods,
when extensive synaptic proliferation and pruning takes place
(Hammock and Levitt, 2013).

These findings along with the ones that address the effect of
the maturation of the OXT system on sensory—and not only
socio-sexual- aspects could exemplify why early postnatal life
is indeed a sensitive period for OXT in modeling circuits that
are eventually responsible for sensory performance. Additional
insight can be gained from comparative data on mice: Zheng
et al. (2014) found that OXT promotes excitatory synaptic
transmission in the sensory cortices at a much earlier stage
than the hitherto understood functions of OXT in social and
emotional contexts and, notably, Marlin et al. (2015) found that
both OXT receptors and projections from hypothalamic OXT-
producing neurons are present in the auditory cortex of mice,
with the former beingmore numerous on the left side than on the
right, something that could be telling for lateralization in human
language development (Theofanopoulou, 2015 and references
therein).

In humans, it has not yet been experimentally established
how early adjustments of the OXT system influence the
neuronal and synaptic substrates that underlie the sensory and
cognitive modules of our language-ready brain. The only (rough)
conclusions we can deduce from the literature are based on
comparisons between infants that have or have not been breastfed
and concomitant brain changes. On the grounds that OXT
is stable in milk and that OXT in maternal blood can be
transferred to milk and then to neonates (Takeda et al., 1986), we
would expect that lactation goes hand-in-hand with proliferating
brain connectivity. At least, some evidence suggests so: Deoni
et al. (2013) showed an association between early exclusive
breastfeeding with increased development in late maturing
white matter regions (interestingly also near BA44, traditionally
linked to language). Tellingly, breastfed children also showed
improved receptive language scores compared to formula-fed
children. Moreover, Khedr et al. (2004) found that visual evoked
potential (FVEP), brainstem auditory evoked potential (BAEP),
and somatosensory evoked potential (SSEP) are more mature in
breastfed infants relative to formula-fed infants at 1-year of age,
something suggestive of the importance of breastfeeding in early
development. I propose that an important molecule and factor

could be the high concentration in OXT in breast milk and also
its release during skin-to-skin contact over breastfeeding (Uvnäs-
Moberg et al., 2015). Furthermore, the aforementioned results
(see also Kafouri et al., 2013 and Isaacs et al., 2010)mesh well with
recent studies showing that autism is to a great extent correlated
with inefficient breastfeeding, by cause of lack of interest in
milk-suckling (Williams et al., 2000; Gallup and Hobbs, 2011;
Al-Farsi et al., 2012; Steinman and Mankuta, 2013). A deeper
understanding of the complex OXT feedback loop between
mother and infant in breastfeeding could be reached if we
additionally take into account that the perturbation of the system
might be actually stemming from the mother. Indeed, birth
complications (Brimacombe et al., 2007) due to low OXT levels
and stressful-depressive mother care have long been associated
with autism (see Uvnäs-Moberg et al., 2015 for an excellent
review on the short- and long-term effects of breastfeeding
and skin-to-skin contact between mother and infant, explained
via OXT release). According to this thread of interpretation,
traditional psychological theories on the role of the “refrigerator-
mother” in the etiology of autism could now be construed on a
neuroendocrine basis.

Another important issue at the level of the connectome is
the loci where OXT is expressed in the brain. In humans,
OXT is dispersed from the magnocellular neurons in the
paraventricular and supraoptic nuclei of the hypothalamus to
practically throughout the brain: including the amygdala, the
hippocampus, the striatum, the brainstem, the cerebellum, the
insula, the suprachiasmatic nucleus, the septum, the bed nucleus
of stria terminalis, the globus pallidus, the substantia nigra
pars compacta, the ventral tegmental are, the spinal cord, and
to neocortical areas traditionally associated with “language,”
such as the prefrontal cortex, the anterior cingulate cortex and
the precuneus (Lee et al., 2009, 2010; Ma et al., 2016). Even
though it is important to find out “where” OXT is expressed
in the brain, a mere locationist approach cannot enlighten
our understanding of “how” OXT gives rise to cognitive sub-
processes mechanistically (Theofanopoulou and Boeckx, 2015).
At the following level of analysis (i.e., the dynome) the direct
effects of OXT administration on brain rhythms and how this
translates into specific cognitive processes (i.e., the cognome) will
be illustrated.

DYNOME—COGNOME

Only very recently attempts have been made to link the action of
OXT with a rhythmic correlate in the human brain that would
make some sense in terms of its cognitive significance. In early
experimental attempts of pure behavioral paradigms (e.g., “trust”
experiments, for example: Baumgartner et al., 2008), OXT was
not implicated at a granularity level that could be matched with
the (de)activation of a specific oscillatory band. It was not until
2009, when Kéri and Benedek examined the effect of OXT on the
perception of biological vs. non-biological motion stimuli, that
a venue for associating OXT modulation to neural activity was
opened (Kéri and Benedek, 2009). Specifically, Kéri and Benedek
found that OXT enhances the ability to detect biological motion
in noise, whereas no such effect turned up when detecting a
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rotating shape. This led Perry et al. (2010) to tentatively link these
results with the alpha/mu and beta brain rhythms, which have
been shown to be suppressed while observing actions executed by
someone else (Muthukumaraswamy and Johnson, 2004; Lange
et al., 2015). Characteristically, alpha/mu and beta rhythms have
been found to be desynchronized reinforcing the efficiency of
the mirror neuron system, which in humans is activated not
only when observing biological actions, but also at all levels
of communicative interactions (see Pineda, 2005 for a review).
This is more than pertinent to the scope of this article, since
for linguistic communication interplay to happen, it is necessary
not only to perceive biological movements (lip-movements,
tongue-movements, formant transitions, hand gestures, and
eye movements), but to couple them with the auditory input
and whence make out the multidimensional meaning of the
compound “linguistic” input. As I have put forward elsewhere
(Theofanopoulou, 2015), this interplay should be mediated by
an attentional mechanism that keeps track of all these distinct
rhythmic stimuli. It should not take us by surprise then that
an overall decrease of the aforesaid rhythms has also been
linked to increased demands of attention andmemory (Klimesch,
2012). Importantly, after OXT administration, alpha/mu and
beta rhythms had a general suppressive effect that was widespread
across the scalp (viz not only on brain areas of the somato-motor
cortex), something that was interpreted as an effect on a broader
network, in which mirror/motor and attentional mechanisms
can be with difficultly disentangled (Perry et al., 2010). A
similar experiment was conducted by Singh et al. (2015), also
in Schizophrenia patients, and replicated the diffused effect
of OXT in the brain. Lastly, Hepker (2016) tested how OXT
affects mirror neuron activity in a hand-gesture experiment and
encountered greater mu rhythm suppression, in accordance with
other experiments, but this time for a biological movement
directly involved in language processing.

To the best of my knowledge, there are no studies yet
showing that OXT has a direct effect on the rhythmic patterns
in a purely linguistic task. But as put forth in Theofanopoulou
(2016) there are several reasons to expect so. Firstly, alpha/mu
and beta band suppression have been shown to coordinate
the rhythms partaking not only in motor but also in auditory
(speech) (Obleser and Weisz, 2012) processing and OXT seems
to support this multimodality, considering that it has been
found to increase not only in response to biological motions,
but also to vocalizations alone (Seltzer et al., 2010) and to
attenuate the human acoustic startle response (Ellenbogen et al.,
2014). Secondly, in autism alpha-band deployment was shown
to be severely impaired, giving rise to increased distraction
(Oberman et al., 2005, 2008; Murphy et al., 2014; see also
Moran and Hong, 2011, for similar findings in schizophrenia).
Here magnetoencephalography (MEG) studies showing atypical
auditory responses in patients with autism are also of relevance:
for example, in autistic patients stronger responses to nonspeech
than speech sounds (Yau et al., 2015), delayed (Roberts
et al., 2010), and atypically lateralized (Orekhova et al., 2012)
neuromagnetic auditory field responses compared to controls
were observed. These experiments in conjunction with the
irregularities observed in the oxytocinergic system in autism

make it plausible that OXT might in part modulate the brain
rhythms in language-processing.

PHENOME

In behavioral experiments OXT has been engaged in a surfeit of
different complex tasks that can be difficult to decompose for
the aims of this article. Accordingly, only experiments that are
informative for different facets of linguistic processing will be
mentioned.

OXT has been loosely associated with “communicative”
functions (Yamasue, 2013) that only recently have been broken
down into processes that correspond to more specific linguistic
processes. For instance, Seltzer et al. (2010) found that
children under stress show increased OXT levels after hearing
maternal vocalizations and Watanabe et al. (2014) showed that
intranasal OXT administration to autism-patients affects their
decisions about social information with conflicting verbal and
non-verbal contents. Lastly, Ellenbogen et al. (2014) found
that intranasal oxytocin attenuates the human acoustic startle
response independent of emotional modulation.

However, most data come from studies involving OXT in eye-
gaze enhancement suggesting its plausible role in interpersonal
communication (Guastella et al., 2008) and in inferring the
mental state of others (Domes et al., 2007). Gamer (2010)
explains that OXT increased the proportion of fixation changes
toward the eyes across all expressions, and did not directly affect
the efficiency of processing emotional faces per se. In light of
studies clarifying the importance of eye gaze in the modulation
of speech and co-speech gesture (Holler et al., 2014, 2015), we
can better appraise why in most cases the communicative deficits
in autism derive from an abnormal fixation to the mouth region
of the interlocutor, instead of the eye region (Pelphrey et al.,
2005; Neumann et al., 2006). Tellingly, for therapeutic concerns,
Andari et al. (2010) found that OXT selectively increased autism
patients’ gazing time on the eye region, improving their social
performance.

In a similar vein, Ebitz and Platt (2014) further argue that
these emitted eye-signals, regulated by OXT, provoke OXT-
release back in the receiver, increasing eye contact and proximity
seeking, establishing in this way a back-and-forward loop
that strongly underlies communicative functions. This cascade
of reciprocal OXT-secretion might, in other words, give a
neurohormonal basis to the “turn-taking” roots of our linguistic
capacity, recently highlighted from an evolutionary perspective
(Levinson, 2016).

CONCLUSION

In this article I attempted to draw attention to the potential
implications of the neurohormone OXT in the context of
language. Even though its role in purely linguistic matters has
so far been overlooked, there is already a plethora of evidence
strongly suggesting that a better understanding of its function
could be rewarding. Results from experiments at different levels
of analysis (from genetic to oscillatory and behavioral) suggest
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that OXT could fit well in the recently addressed hypotheses that
underline the “reward-learning” foundations of our linguistic
capacities (see Berra, 2015 for a good review). However, till
now only dopamine has been tested in linguistic tasks in
humans (Ripollés et al., 2014) and widely in vocal-learning
in zebra finches (reviewed in Simonyan et al., 2012). More
genetic experiments on the effect of OXT on mice vocalizations
and birdsongs in different paradigms (courtship, affiliative, fear,
dam-puppies) and EEG studies on its impact on alpha/mu/beta
rhythm suppression in a speech perception task would help to
appreciate more the role of OXT in our high cognition and its
possible therapeutic implications.
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