Citation: Lechowicz K, Wrońska-Pilarek D, Bocianowski J, Maliński T (2020) Pollen morphology of Polish species from the genus Rubus L. (Rosaceae) and its systematic importance. PLoS ONE 15(5): e0221607. https:// doi.org/10.1371/journal.pone. 0221607

Editor: Branislav T. Šiler, Institute for Biological Research "S. Stanković", University of Belgrade, SERBIA

Received: August 9, 2019
Accepted: April 24, 2020
Published: May 29, 2020
Copyright: © 2020 Lechowicz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All data is contained in the manuscript.

Funding: The authors received no specific funding for this work.

Competing interests: No authors have competing interests

Pollen morphology of Polish species from the genus Rubus L. (Rosaceae) and its systematic importance

Kacper Lechowicz \mathbb{D}^{1}, Dorota Wrońska-Pilarek $\oplus^{1 *}$, Jan Bocianowski \oplus^{2}, Tomasz Maliński ${ }^{1}$
1 Department of Forest Botany, Poznań University of Life Sciences, Poznań, Poland, 2 Department of Mathematical and Statistical Methods, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Poznań, Poland
* dorota.wronska-pilarek@up.poznan.pl

Abstract

The genus Rubus L. (Rosaceae) not been investigated satisfactorily in terms of palynology. This genus is taxonomically very difficult due to the large number of species and problems with their delimitation, as well as very different distribution areas of particular species. The aim of this study was to investigate pollen morphology and for the first time the ranges of intrageneric and interspecific variability of Rubus species, as well as verify the taxonomic usefulness of these traits in distinguishing studied taxa from this genus. The selected species of the genus Rubus were analysed for 11 quantitative pollen characteristics and the following qualitative ones: exine ornamentation, pollen outline and shape, as well as bridge structure. Analyses were conducted on a total of 1740 pollen grains, which represent 58 blackberry species belonging to a majority of subgenera and all the sections and series found in Poland. The most important characters included exine ornamentation (exine ornamentation type, width and direction of grooves and striae, number and diameter of perforations) and length of the polar axis (P). The arrangement of the examined species on the dendrogram does not corroborate division of the genus Rubus into subgenera, sections and series currently adopted in taxonomy. This fact is not surprising because the taxonomy of the genus was not based on pollen characters. Pollen features should be treated in taxonomy as auxiliary, because they fail to differentiate several (10) individual species, while the other ones create groups with similar pollen traits.

Introduction

Rubus L. is a large and diverse genus in the Rosaceae family with a worldwide distribution, including hundreds or even thousand of published species names and infrageneric taxa $[1,2]$. Depending on which classification you follow, historic or modern, the number of Rubus species may vary from 429 to 750 or up to 1000 worldwide [3-9].

The genus Rubus L. belongs to the tribe Rubeae Dumort., subfamily Rosoideae, family Rosaceae Juss. [10, 11]. The studied genus belongs to the clades Superrosids, Rosids and the order

Rosales [12]. The genus Rubus was traditionally divided into 12 subgenera [13, 14]. The current classification recognises 13 subgenera, with the largest subgenus Rubus in turn divided into 12 sections [10]. However, this classification is clearly arbitrary, as many of the subgenera have been shown to be poly- or paraphyletic [15]. Most of the European blackberries belong to the typical subgenus-Rubus. Other subgenera were also distinguished from it: Chamaerubus, Cylactis, Anoplobatus and Idaeobatus, which were represented by individual species [9, 16].

According to Weber [9], about 250 to 300 species of blackberries are found in Central and North-Western Europe. In turn, Stace [17] described approx. 300 species from the British Isles alone. In Poland, the occurrence of 108 species from the genus Rubus has been confirmed so far [18]. Since the publication of the genus Rubus monograph written by the Polish batologist, prof. Jerzy Zieliński [16], five new blackberry species have been described in Poland and 10 new species for the Polish flora have been recorded [18]. Although blackberries have been a group of plants widespread throughout Europe, their phytogeographic, ecological and genetic diagnosis is still incomplete.

The genus Rubus is a highly complex one, particularly the subgenus Rubus, with polyploidy hybridisation and apparently frequent facultative apomixis, thus leading to great variation in the subgenus and making species classification one of the grand challenges of systematic botany $[9,16,19]$. Apomixis is characteristic almost exclusively to the subgenus Rubus, embracing most of the European blackberry species. Apomixis in blackberries gives rise to grains that are mature and of typical structure, as well as much smaller and not fully developed pollen. Facultative apomicts produce fewer undeveloped grains (several per cent) than obligate ones, in which they constitute from 10 to 25% [20].

Because pollen grains have a unique biological characteristics, contain a large amount of genetic information, and exhibit strong genetic conservation, they can be used for species identification [21-23]. Due to considerable difficulties in recognising particular blackberry species, pollen grains of most blackberry species have not been described in the palynological literature so far. To date only a few authors have studied pollen morphology of European taxa from this critical genus, and they are mostly older works, in which only several selected species (from 3 to 18) or the most important pollen grain features (pollen shape and exine ornamentation) were described. As a result, pollen grains of only 48 European blackberry species have been described [18, 24-33]. Among the 108 Polish blackberries species, pollen of just 15 species has been characterised so far, of which six are endemic species $[31,33,34]$.

The most important characteristics of blackberry pollen grains include exine ornamentation (ornamentation type, width and orientation of striae and grooves), lenght of colpori, type of the bridge (clamped vs. stretched), costae colpi and the number and size of perforations [24, 25, 27, 28, 30, 31, 33-48]. According to Tomlik-Wyremblewska [31, 46], pollen size and shape prove to be poor criteria in species identification.

Despite relatively numerous publications, our knowledge concerning blackberry pollen morphology is far from complete, because the available descriptions are usually brief and sometimes limited to mean dimensions. Moreover, researchers typically analyse individual, most important pollen grain characters (such as pollen size and exine ornamentation); alternatively, only some selected species were characterized. Therefore, the aim of the presented study was to perform a comprehensive analysis of relationships among the species within the taxonomically challenging genus Rubus L., based on pollen features of 58 species, representing four subgenera, all three sections and 23 series found in Poland. Many of the studied blackberry species are distributed throughout Europe. Another aim of this study was to discuss the taxonomic significance of pollen morphology with reference to the current classification of this genus according to Zieliński [16]. In addition, the intrageneric and interspecific variability of pollen grains in the Rubus species under investigation has not yet been comprehensively analysed.

Materials and methods

Pollen morphology

The collected plant material was stored in the herbarium of the Faculty of Forest Botany of the Poznań University of Life Sciences (PZNF), which did not require any permits to conduct research.

The study was conducted on 58 Polish and European Rubus species, which represent four out of five subgenera, all three sections and all 23 series of blackberries found in Poland, including all six Polish endemic species (R. capitulatus, R. chaerophylloides, R. ostroviensis, R. posnaniensis, R. seebergensis and R.spribillei). A list of the species analysed with their affiliation to particular taxa is shown in Table 1.

In this paper, the taxonomic classification of the studied taxa from the genus Rubus was adopted from Zieliński [16], with further modifications [18]. The verification of the taxa was made by Prof. Jerzy Zieliński (Institute of Dendrology, Polish Academy of Sciences in Kórnik), a batologist-taxonomist specialising in the genus Rubus.

Several, randomly selected inflorescences (flowers) were collected from 58 natural blackberry localities in Poland (Table 2).

Pollen grains were acetolysed according to the method of Erdtman [49]. The inflorescences collected from the herbarium were placed in tubes and then centrifuged with glacial acetic acid. Grains were mixed with the acetolysis solution, which consisted of nine parts acetic anhydrite and one part concentrated sulphuric acid. The mixture was then heated to boiling and kept in the water bath for 2-3 min. Samples were centrifuged in the acetolysis mixture, washed with acetic acid and centrifuged again. The pollen grain samples were then mixed with 96% alcohol and centrifuged 4 times, with processed grains subsequently divided into two groups. One half of the processed sample was immersed in an alcohol-based solution of glycerin for LM, while the other was placed in 96% ethyl alcohol in preparation for scanning electron microscopy (SEM). The SEM observations were made using a Zeiss Evo 40 and the LM measurements of acetolysed pollen grain were taken using a Biolar 2308 microscope at a magnification of 640x. Pollen grains were immersed in glycerin jelly and measured using an ocular eyepiece with a scale. Measurements taken from 30 mature, randomly selected, properly developed pollen grains were made by using the light microscopy (LM), with 1740 pollen grains measured in total. Measurement results were then converted into micrometres by multiplying each measurement by two.

The pollen grains were analysed for 11 quantitative characters: length of the polar axis (P) and equatorial diameter (E), length of the ectoaperture (Le), thickness of the exine along the polar axis and equatorial diameter (Exp, Exe), distance between apices of two ectocolpi (d) and P/E, Le/P, Exp/P, Exe/E, d/E (apocolpium index P.A.I) ratios. The pollen shape classes (P/E ratio) were adopted according to the classification proposed by Erdtman [50]: oblate-spheroidal (0.89-0.99), spheroidal (1.00), prolate-spheroidal (1.01-1.14), subprolate (1.15-1.33), prolate (1.34-2.00) and perprolate (>2.01). In addition, the following qualitative characters were also determined: outline, shape, operculum structure and exine ornamentation.

Exine ornamentation types (I-VI) were identified based on the classification proposed by Ueda [47]. The types and subtypes of the striate exine ornamentation were characterised by the height and width of grooves, width of striae and the number and diameter of perforations.

Descriptive palynological terminology followed Punt et al. [51] and Halbritter et al. [52].

Statistical analysis

The normality of the distributions for the studied traits (P, E, Le, d, Exp, Exe, P/E, Le/P, d/E, Exp/P and Exe/E) was tested using Shapiro-Wilk's normality test [53]. Multivariate analysis of

Table 1. The taxonomic classification of the Rubus species studied.

No	Species	Subgenus	Section	Subsection	Series
1	R. saxatilis	Cylactis	-	-	Saxatiles
2	R. xanthocarpus				Xanthocarpi
3	R. odoratus	Anoplobatus	-	-	-
4	R. idaeus	Idaeobatus	-	-	-
5	R. nessensis	Rubus	Rubus	Rubus	Nessenses
6	R. scisus				
7	R. constrictus				Rubus
8	R. plicatus				
9	R. opacus				
10	R. divaricatus				
11	R. canadensis				Canadenses
12	R. allegheniensis				Alleghenieses
13	R. bifrons			Hiemales	Discolores
14	R. montanus				
15	R. grabowskii				
16	R. henrici-egonis				
17	R. parthenocissus				
18	R. perrobustus				Rhamnifolii
19	R. marssonianus				
20	R.gracilis				
21	R. wimmerianus				Sylvatici
22	R. angustipaniculatus				
23	R. circipanicus				
24	R. macrophyllus				
25	R. sprengelii				Sprengeliani
26	R. chlorothyrsos				
27	R. pyramidalis				Vestiti
28	R. micans				Micantes
29	R. glivicensis				
30	R. chaerophylloides				
31	R. acanthodes				
32	R. clusii				
33	R. radula				Radulae
34	R. posnaniensis				Pallidi
35	R. pfuhlianus				
36	R. koehleri				Hystrix
37	R. bavaricus				
38	R. schleicheri				
39	R. apricus				
40	R. ostroviensis				Glandulosi
41	R. siemianicensis				
42	R. pedemontanus				
43	R. hercynicus				
44	R. orthostachys		Corylifolii	Sepincoli	Subrectigeni
45	R. lamprocaulos				
46	R. czarnunensis				Sepincoli
47	R. hevellicus				Subthyrsoidei
48	R.gothicus				
49	R. camptostachys				Subsylvatici
50	R. mollis				Subcanescentes
51	R. fasciculatus				
52	R. fabrimontanus				Subradulae
53	R. capitulatus				Hystricopes
54	R. dollnensis				
55	R. seebergensis				
56	R. spribillei				
57	R. corylifolius				-
58	R. caesius		Caesii		-

https://doi.org/10.1371/journal.pone.0221607.t001

Table 2. List of localities of the Rubus species studied.

No	Species	Localities	Geographical coordinates	Collector, herbarium
1	R. acanthodes	Poland, Dolnośląskie, Nowe Łąki near Pielgrzymka	$\begin{aligned} & 51^{\circ} 07^{\prime} 06,1^{\prime \prime} \mathrm{N}, 15^{\circ} \\ & 46^{\prime} 37,5^{\prime \prime} \mathrm{E} \end{aligned}$	Boratyńska, Dolatowska, Tomlik, Zieliński; KOR
2	R. allegheniensis	Poland, Zachodniopomorskie, Łukęcin near Świnoujście	$\begin{aligned} & 54^{\circ} 02^{\prime} 34,9^{\prime N} \mathrm{~N}, 14^{\circ} \\ & 52^{\prime} 23,8^{\prime \prime \mathrm{E}} \end{aligned}$	Boratyńska, Dolatowska, Zieliński; KOR
3	R. angustipaniculatus	Poland, Mazowieckie, Zakrzew near Radom	$\begin{aligned} & 50^{\circ} 26^{\prime} 27,3^{\prime \prime} \mathrm{N}, 21^{\circ} \\ & 00^{\prime} 02,4^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
4	R. apricus	Poland, Wielkopolskie, Bachorzew near Jarocin	$\begin{aligned} & 51^{\circ} 59^{\prime} 39,9^{\prime N} \mathrm{~N}, 17^{\circ} \\ & 33^{\prime} 49,9^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
5	R. bavaricus	Poland, Wielkopolskie, Robczysko near Leszno	$\begin{aligned} & 51^{\circ} 48^{\prime} 41,4^{\prime \prime} \mathrm{N}, 16^{\circ} \\ & 45^{\prime} 38,6^{\prime \prime} \mathrm{E} \end{aligned}$	Danielewicz, Maliński; POZNF
6	R. bifrons	Poland, Podkarpackie, Łukowe near Sanok	$\begin{aligned} & 49^{\circ} 25^{\prime} 20,1^{\prime \prime} \mathrm{N}, 22^{\circ} \\ & 14^{\prime} 14,1^{\prime \prime} \mathrm{E} \end{aligned}$	Oklejewicz; KOR
7	R. caesius	Poland, Lubuskie, Osiecznica near Krosno Odrzańskie	$\begin{aligned} & 52^{\circ} 04^{\prime} 45,0^{\prime \prime} \mathrm{N}, 15^{\circ} \\ & 03^{\prime} 11,0^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
8	R. camptostachys	Poland, Wielkopolskie, Raków near Kępno	$\begin{aligned} & 51^{\circ} 11^{\prime} 16,8^{\prime \prime} \mathrm{N}, 18^{\circ} \\ & 05^{\prime} 54,1^{\prime \prime} \mathrm{E} \end{aligned}$	Zieliński; KOR
9	R. canadensis	Poland, Dolnośląskie, Bialskie Mts. near Stronie Śląskie	$\begin{aligned} & 50^{\circ} 14^{\prime} 59,9^{\prime \prime} \mathrm{N}, 16^{\circ} \\ & 57^{\prime} 45,7^{\prime \prime} \mathrm{E} \end{aligned}$	Kosiński; KOR
10	R. capitulatus	Poland, Wielkopolskie, Psienie-Ostrów near Pleszew	$\begin{aligned} & 51^{\circ} 57^{\prime} 48,2^{\prime N} \mathrm{~N}, 17^{\circ} \\ & 45^{\prime} 51,5^{\prime \prime} \mathrm{E} \end{aligned}$	Danielewicz, Maliński; POZNF
11	R. chaerophylloides	Poland, Wielkopolskie, Laskowo near Chodzież	$\begin{aligned} & 53^{\circ} 01^{\prime} 19,2^{\prime \prime} \mathrm{N}, 17^{\circ} \\ & 05^{\prime} 45,4^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
12	R. chlorothyrsos	Poland, Pomorskie, Bargędzino near Łeba	$\begin{aligned} & 54^{\circ} 43^{\prime} 53,4^{\prime \prime} \mathrm{N}, 17^{\circ} \\ & 43^{\prime} 19,3^{\prime \prime} \mathrm{E} \end{aligned}$	Boratyńska, Dolatowska, Zieliński; KOR
13	R. circipanicus	Poland, Zachodniopomorskie, Jarosławiec near Ustka	$\begin{aligned} & 54^{\circ} 32^{\prime} 21,3^{\prime \prime} \mathrm{N}, 16^{\circ} \\ & 32^{\prime} 31,6^{\prime \prime} \mathrm{E} \end{aligned}$	Zieliński; KOR
14	R. clusii	Poland, Małopolskie, Dobronków near Tarnów	$\begin{aligned} & 49^{\circ} 59^{\prime} 28,2^{\prime \prime} \mathrm{N}, 21^{\circ} \\ & 20^{\prime} 37,5^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
15	R. constrictus	Poland, Małopolskie, Lipinki near Gorlice	$\begin{aligned} & 49^{\circ} 40^{\prime} 20,4^{\prime \prime} \mathrm{N}, 21^{\circ} \\ & 17^{\prime} 31,6^{\prime \prime} \mathrm{E} \end{aligned}$	Oklejewicz; KOR
16	R. corylifolius	Poland, Lubuskie, Różanówka near Bytom Odrzański	$\begin{aligned} & 51^{\circ} 46^{\prime} 05,4^{\prime \prime} \mathrm{N}, 15^{\circ} \\ & 52^{\prime} 29,5^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
17	R. czarnunensis	Poland, Pomorskie, Drzewicz, Bory Tucholskie National Park	$\begin{aligned} & 53^{\circ} 51^{\prime} 07,3^{\prime \prime} \mathrm{N}, 17^{\circ} \\ & 34^{\prime} 08,4^{\prime \prime \mathrm{E}} \end{aligned}$	Tomlik, KOR
18	R. divaricatus	Poland, Lubuskie, Bielawy near Bytom Odrzański	$\begin{aligned} & 51^{\circ} 46^{\prime} 21,3^{\prime N} \mathrm{~N}, 15^{\circ} \\ & 55^{\prime} 09,6^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
19	R. dollnensis	Poland, Dolnośląskie, Młynowiec near Stronie Śląskie	$\begin{aligned} & 50^{\circ} 16^{\prime} 36,1^{\prime \prime} \mathrm{N}, 16^{\circ} \\ & 54^{\prime} 04,8^{\prime \prime E} \end{aligned}$	Kosiński, Tomaszewski, Zieliński; KOR
20	R. fabrimontanus	Poland, Lubuskie, Tarnów Jezierny Nowa Sól	$\begin{aligned} & 51^{\circ} 51^{\prime} 45,1^{\prime \prime} \mathrm{N}, 15^{\circ} \\ & 59^{\prime} 07,7^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
21	R. fasciculatus	Poland, Podkarpackie, Gruszowa near Przemyśl	$\begin{aligned} & 49^{\circ} 40^{\prime} 57,4^{\prime \prime} \mathrm{N}, 22^{\circ} \\ & 40^{\prime} 47,2^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
22	R. glivicensis	Poland, Małopolskie, Maga near Tarnów	$\begin{aligned} & 50^{\circ} 00^{\prime} 09,8^{\prime \prime} \mathrm{N}, 21^{\circ} \\ & 20^{\prime} 24,7^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
23	R. gothicus	Poland, Wielkopolskie, Pakówka near Bojanowo	$\begin{aligned} & 51^{\circ} 40^{\prime} 20,7^{\prime \prime} \mathrm{N}, 16^{\circ} \\ & 46^{\prime} 07,9^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
24	R. grabowskii	Poland, Lubuskie, Tarnów Jezierny Nowa Sól	$\begin{aligned} & 51^{\circ} 51^{\prime} 45,1^{\prime \prime} \mathrm{N}, 15^{\circ} \\ & 59^{\prime} 07,7^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
25	R. gracilis	Poland, Podkarpackie, Pod Lasem, near Rzeszów	$\begin{aligned} & 49^{\circ} 53^{\prime} 42,5^{\prime \prime} \mathrm{N}, 21^{\circ} \\ & 35^{\prime} 52,1^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
26	R. henrici-egonis	Poland, Opolskie, Barnice near Głubczyce	$\begin{aligned} & 50^{\circ} 03^{\prime} 02,5^{\prime N} \mathrm{~N}, 17^{\circ} \\ & 47^{\prime} 38,5^{\prime \prime} \mathrm{E} \\ & \hline \end{aligned}$	Kosiński, Tomaszewski, Zieliński; KOR
27	R. hercynicus	Poland, Dolnośląskie, Stare Bogaczowice near Wałbrzych	$\begin{aligned} & 50^{\circ} 50^{\prime} 53,7^{\prime \prime} \mathrm{N}, 16^{\circ} \\ & 11^{\prime} 37,4^{\prime \prime} \mathrm{E} \end{aligned}$	Boratyńśki, Zieliński; KOR

(Continued)

Table 2. (Continued)

No	Species	Localities	Geographical coordinates	Collector, herbarium
28	R. hevellicus	Poland, Wielkopolskie, Tarce near Jarocin	$\begin{aligned} & 52^{\circ} 00^{\prime} 02,4^{\prime \prime} \mathrm{N}, 17^{\circ} \\ & 35^{\prime} 26,1^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
29	R. idaeus	Poland, Kujawsko-Pomorskie, Brodnica near Bydgoszcz	$\begin{aligned} & 53^{\circ} 15^{\prime} 29,2^{\prime \prime} \mathrm{N}, 19^{\circ} \\ & 23^{\prime} 57,9^{\prime \prime} \mathrm{E} \end{aligned}$	Tomlik; KOR
30	R. koehleri	Poland, Dolnośląskie, Mirsk near Świeradów-Zdrój	$\begin{aligned} & 50^{\circ} 58^{\prime} 19,9^{\prime N} \mathrm{~N}, 15^{\circ} \\ & 23^{\prime} 08,9^{\prime \prime} \mathrm{E} \end{aligned}$	Boratyński; KOR
31	R. lamprocaulos	Poland, Dolnośląskie, Serby near Głogów	$\begin{aligned} & 51^{\circ} 41^{\prime} 04,1^{\prime \prime} \mathrm{N}, 16^{\circ} \\ & 06^{\prime} 42,9^{\prime \prime E} \end{aligned}$	Maliński, Zieliński; POZNF
32	R. macrophyllus	Poland, Dolnosląskie, Przywsie near Rawicz	$\begin{aligned} & 51^{\circ} 34^{\prime} 37,1^{\prime \prime} \mathrm{N}, 16^{\circ} \\ & 52^{\prime} 36,1^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
33	R. marssonianus	Poland, Pomorskie, near Kartuzy	$\begin{aligned} & 54^{\circ} 20^{\prime} 03,2^{\prime \prime} \mathrm{N}, 18^{\circ} \\ & 11^{\prime} 50,5^{\prime \prime} \mathrm{E} \end{aligned}$	Boratyński; KOR
34	R. micans	Poland, Opolskie, Wieszczyna near Prudnik	$\begin{aligned} & 50^{\circ} 19^{\prime} 18,2^{\prime \prime} \mathrm{N}, 17^{\circ} \\ & 34^{\prime} 48,4^{\prime \prime} \mathrm{E} \end{aligned}$	Kosiński, Tomaszewski, Zieliński; KOR
35	R. mollis	Poland, Dolnosląskie, Lądek-Zdrój, Trzykrzyska Mt.	$\begin{aligned} & 50^{\circ} 20^{\prime} 54,6^{\prime N} \mathrm{~N}, 16^{\circ} \\ & 52^{\prime} 39,9^{\prime \prime} \mathrm{E} \end{aligned}$	Kosiński, Tomaszewski, Zieliński; KOR
36	R. montanus	Poland, Dolnośląskie, Kowary near Kostrzyca	$\begin{aligned} & 50^{\circ} 47^{\prime} 37,5^{\prime N} \mathrm{~N}, 15^{\circ} \\ & 50^{\prime} 01,8^{\prime \prime} \mathrm{E} \end{aligned}$	Zieliński; KOR
37	R. nessensis	Poland, Dolnośląskie, Karczmisko near Kłodzko	$\begin{aligned} & 50^{\circ} 17^{\prime} 56,7^{\prime N} \mathrm{~N}, 16^{\circ} \\ & 49^{\prime} 32,8^{\prime \prime} \mathrm{E} \end{aligned}$	Kosiński; KOR
38	R. odoratus	Poland, Lubelskie, Niedrzwica Duża near Lublin	$\begin{aligned} & 51^{\circ} 06^{\prime} 51,3^{\prime \prime} \mathrm{N}, 22^{\circ} \\ & 23^{\prime} 16,2^{\prime \prime} \mathrm{E} \end{aligned}$	illegible name; KOR
39	R. opacus	Poland, Wielkopolskie, Starkowo near Leszno	$\begin{aligned} & 51^{\circ} 58^{\prime} 37,7^{\prime \prime} \mathrm{N}, 16^{\circ} \\ & 18^{\prime} 35,7^{\prime \prime} \mathrm{E} \end{aligned}$	Zieliński; KOR
40	R. orthostachys	Poland, Wielkopolskie, Ostatni Grosz near Krotoszyn	$\begin{aligned} & 50^{\circ} 39^{\prime} 54,4^{\prime \prime} \mathrm{N}, 17^{\circ} \\ & 21^{\prime} 18,9^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
41	R. ostroviensis	Poland, Wielkopolskie, Wielkopolski National Park near Poznań	$\begin{aligned} & 52^{\circ} 16^{\prime} 26,5^{\prime \prime} \mathrm{N}, 16^{\circ} \\ & 46^{\prime} 50,1^{\prime \prime} \mathrm{E} \end{aligned}$	Zieliński, Maliński; POZNF
42	R. parthenocissus	Poland, Podkarpackie, Koniusza near Przemyśl	$\begin{aligned} & 49^{\circ} 40^{\prime} 57,4^{\prime \prime} \mathrm{N}, 22^{\circ} \\ & 40^{\prime} 47,2^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
43	R. pedemontanus	Poland, Dolnośląskie, Nowy Kościół near Złotoryja	$\begin{aligned} & 51^{\circ} 04^{\prime} 20,1^{\prime \prime} \mathrm{N}, 15^{\circ} \\ & 52^{\prime} 05,3^{\prime \prime} \mathrm{E} \end{aligned}$	Boratyńśki, Zieliński; KOR
44	R. perrobustus	Poland, Podkarpackie, Dudyńce near Sanok	$\begin{aligned} & 49^{\circ} 39^{\prime} 04,9^{\prime \prime} \mathrm{N}, 22^{\circ} \\ & 04^{\prime} 31,9^{\prime \prime} \mathrm{E} \end{aligned}$	Oklejewicz; KOR
45	R. pfuhlianus	Poland, Wielkopolskie, Mieczewo near Kórnik	$\begin{aligned} & 52^{\circ} 14^{\prime} 20,8^{\prime \prime} \mathrm{N}, 17^{\circ} \\ & 00^{\prime} 27,8^{\prime \prime} \mathrm{E} \end{aligned}$	Zieliński; KOR
46	R. plicatus	Poland, Lubuskie, Różanówka near Bytom Odrzański	$\begin{aligned} & 51^{\circ} 46^{\prime} 05,4^{\prime \prime} \mathrm{N}, 15^{\circ} \\ & 52^{\prime} 29,5^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
47	R. posnaniensis	Poland, Opolskie, Szybowice near Prudnik	$\begin{aligned} & 50^{\circ} 21^{\prime} 09,5^{\prime N} \mathrm{~N}, 17^{\circ} \\ & 29^{\prime} 11,9^{\prime \prime E} \end{aligned}$	Kosiński, Tomaszewski, Zieliński; KOR
48	R. pyramidalis	Poalnd, Wielkopolskie, Chruszczyny near Ostrów Wielkopolski	$\begin{aligned} & 51^{\circ} 38^{\prime} 41,4^{\prime N} \mathrm{~N}, 17^{\circ} \\ & 35^{\prime} 42,6^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
49	R. radula	Poland, Podkarpackie, Hermanowa near Rzeszów	$\begin{aligned} & 49^{\circ} 56^{\prime} 07,4^{\prime \prime} \mathrm{N}, 22^{\circ} \\ & 00^{\prime} 40,4^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
50	R. saxatilis	Sweden, Abisko Östra	$\begin{aligned} & 68^{\circ} 20^{\prime} 56,3^{\prime N} \mathrm{~N}, 18^{\circ} \\ & 49^{\prime} 43,7^{\prime \prime} \mathrm{E} \end{aligned}$	illegible name; KOR
51	R. schleicheri	Poland, Wielkopolskie, Kościan	$\begin{aligned} & 52^{\circ} 05^{\prime} 10,7^{\prime \prime N}, 16^{\circ} \\ & 38^{\prime} 41,9^{\prime \prime} \mathrm{E} \end{aligned}$	Maliński, Zieliński; POZNF
52	R. scisus	Poland, Śląskie, Rudniki near Częstochowa	$\begin{aligned} & 50^{\circ} 52^{\prime} 33,6^{\prime \prime} \mathrm{N}, 19^{\circ} \\ & 14^{\prime} 28,5^{\prime \prime} \mathrm{E} \end{aligned}$	Zieliński; KOR
53	R. seebergensis	Poland, Wielkopolskie, Wielkopolski National Park near Poznań	$\begin{aligned} & 52^{\circ} 16^{\prime} 26,5^{\prime \prime} \mathrm{N}, 16^{\circ} \\ & 46^{\prime} 50,1^{\prime \prime} \mathrm{E} \end{aligned}$	Danielewicz; POZNF

(Continued)

Table 2. (Continued)

No	Species	Localities	Geographical coordinates	Collector, herbarium
54	R. siemianicensis	Poland, Wielkopolskie, Psienie-Ostrów near Pleszew	$51^{\circ} 57^{\prime} 48,2^{\prime \prime} \mathrm{N}, 17^{\circ}$ $45^{\prime} 51,5^{\prime \prime} \mathrm{E}$	Danielewicz, Maliński; POZNF
55	R. sprengelii	Poland, Wielkopolskie, Borownica near Zduny	$51^{\circ} 38^{\prime} 20,8^{\prime \prime} \mathrm{N}, 17^{\circ}$ $24^{\prime} 23,3^{\prime \prime} \mathrm{E}$	Maliński, Zieliński; POZNF
56	R. spribillei	Poland, Wielkopolskie, Gądki near Kórnik	$52^{\circ} 18^{\prime} 45,4^{\prime \prime} \mathrm{N}, 17^{\circ}$ $02^{\prime} 47,8^{\prime \prime} \mathrm{E}$	Zieliński; POZNF
57	R. wimmerianus	Poland, Podkarpackie, Gniewczyna Łańcucka near Przeworsk	$50^{\circ} 06^{\prime} 19,5^{\prime \prime} \mathrm{N}, 22^{\circ}$ $29^{\prime} 43,7^{\prime \prime} \mathrm{E}$	Oklejewicz, Zatorski; POZNF
58	R. xanthocarpus	Poland, Świętokrzyskie, Miedzianka near Kielce	$50^{\circ} 50^{\prime} 22,5^{\prime \prime} \mathrm{N}, 20^{\circ}$	Maciejczak, Bróż, Zieliński; KOR

KOR—Herbarium of the Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland, PZNF—Herbarium of the Department of Forest Botany, Poznań University of Life Sciences.
https://doi.org/10.1371/journal.pone.0221607.t002
variance (MANOVA) was performed on the basis of the following model using the MANOVA procedure in GenStat (18th edition): $\mathbf{Y}=\mathbf{X T}+\mathbf{E}$, where: \mathbf{Y} is the ($n \times p$)-dimensional matrix of observations, n is the number of all observations, p is the number of traits (in this study $p=11), \mathbf{X}$ is the $(n \times k)$-dimensional matrix of design, k is the number of species (in this study $k=58$), \mathbf{T} is the ($k \times p$)-dimensional matrix of unknown effects and \mathbf{E}-is the ($n \times p$)-dimensional matrix of residuals. Next, one-way analyses of variance (ANOVA) were carried out to determine the effects of species on the variability of examined traits, for each trait independently, on the basis of the following model: $y_{i j}=\mu+\tau_{i}+\varepsilon_{i j}$, where: $y_{i j}$ is the j th observation of the i th species, μ is the grand mean, τ_{i} is the effect of the i th species and $\varepsilon_{i j}$ is an error observation. The arithmetical means and standard deviations of traits were calculated. Moreover, Fisher's least significant differences (LSDs) were also estimated at the significance level $\alpha=0.001$. The relationships between observed traits were assessed on the basis of Pearson's correlation. Results were also analysed using multivariate methods. The canonical variate analysis was applied in order to present multitrait assessment of similarity for the tested species in a lower number of dimensions with the least possible loss of information [54]. This makes it possible to illustrate variation in species in terms of all the observed traits in the graphic form. The Mahalanobis distance was suggested as a measure of "polytrait" species similarity [55], which significance was verified by means of critical value D_{α} called "the least significant distance" [56]. Mahalanobis distances were calculated for species. The differences between the analysed species were verified by cluster analysis using the nearest neighbour method and Euclidean distances [57]. All the analyses were conducted using the GenStat (18th edition) statistical software package [58].

Results

General morphological description of pollen

A description of pollen grain morphology of the Rubus species studied is given below and illustrated with several SEM photographs (Figs 1-3). The morphological observations for the other quantitative characters of pollen grains are summarised in Table 3.

Pollen grains of the Rubus species studied were tricolporate, isopolar monads (Fig 1A-1H). According to the pollen size classification by Erdtman [50], analysed pollen grains were medium (25.1-50 $\mu \mathrm{m} ; 56.7 \%$) or small ($10-25 \mu \mathrm{~m} ; 43.3 \%$). The analysed pollen had a small range of average values for trait P , ranging from 20.57 to $30.20 \mu \mathrm{~m}$. Therefore, most of the

Fig 1. Equatorial and polar views, apertures and exine ornamentation in scanning electron microscope (SEM). (A-C) R. chlorothyrsos, R. pedemontanus, R. mollispollen grains in equatorial views, two colpori and exine ornamentation. (D-F) R. fabrimontanus, R. pfuhlianus, R. lamprocaulos pollen in polar views, three colpori and exine ornamentation. (G-H) R. angustipaniculatus, R. hevellicus six and four pollen grains in equatorial and polar views.
https://doi.org/10.1371/journal.pone.0221607.g001

Fig 2. Box-and-whisker diagram of \mathbf{P} values for 58 studied Rubus species. The mean length of the equatorial diameter (E) was 21.66 (14-32) $\mu \mathrm{m}$. The shortest mean equatorial diameter was recorded in pollen of R. canadensis $(18.47 \mu \mathrm{~m})$, while the longest was found in R. czarnunensis ($26.87 \mu \mathrm{~m}$; Table 3).
https://doi.org/10.1371/journal.pone.0221607.g002

Fig 3. The participation of studied species in types and subtypes of striate exine ornamentation (according to Ueda [47]). (A) R. lamprocaulos (subtype-IA). (B) R. angustipaniculatus (IIA). (C) R. orthostachys (IIB). (D) R. canadensis (IIIA). (E) R. montanus (IIIB). (F) R. saxatilis (V). (G) R. odoratus (striate-verrucate ornamentation). (H) R. plicatus (IA/IIA), (I) R. apricus (IIA/IIB).
https://doi.org/10.1371/journal.pone.0221607.g003
pollen grains belong to the upper limit of small pollen or to the lower medium-sized pollen range.

The average length of the polar axis (P) was $25.72(18-38) \mu \mathrm{m}$ (Fig 2, Table 3). The smallest mean P was found for pollen of R. xanthocarpus $(20.57 \mu \mathrm{~m})$, while the largest-for R. dollnensis $(32.27 \mu \mathrm{~m})$ (Fig 2, Table 3). In the R. xanthocarpus sample all measured pollen grains were small at a narrow range of polar axis length $(18-24 \mu \mathrm{~m})$. On the other hand, the longest pollen grains were found in R. dollnensis (26-38 $\mu \mathrm{m}$).

The outline in the polar view was mostly circular with obtuse apices, more rarely elliptic, whereas in the equatorial view the outline was mostly elliptic, rarely circular (Fig 1).

The mean P/E ratio was 1.19 , ranging from 0.85 in R. pedemontanus to 1.71 in R. saxatilis (Table 3). On average the P/E ratio values were always above 1 and they ranged from 1.05 in R. pedemontanus to 1.32 in R. chaerophylloides. Pollen grains of the species examined were most frequently subprolate ($57.3 \%-997$ pollen grains) or prolate-spheroidal ($24.3 \%-422$), rarely
Table 3. Mean values and standard deviations (s.d.) for individual species and observed traits.

Species	P		E		Le		d		Exp		Exe		P/E		Le/P		d/E		Exp/P		Exe/E	
	Mean	s.d.	ean	s.d.	ean	s.d.	Mean	s.d.	Mea	s.d.	Mean	s.d.	Mean	s.d.	Mean	s.d.	ean	s.d.	Mean	s.d.	Mean	s.d.
R. acanthodes	7.47	2.097	3.27	2.196	22.8	2.325	4.267	1.363	1.4	0.332	1.45	0.442	1.185	0.084	0.829	0.041	0.183	0.057	0.051	0.013	0.063	0.020
egh	24.47	1.7	21.2	1.	20.8	1.627	4.267	1.363	1.967	0.434	. 883	0.215	58	0.095	0.851	0.058	. 201	0.062	0.081	0.021	089	0.011
R. angustipanicula	26.8	2.203	22.53	1.	22	1.965	4.8	1.252	1.85	0.233	1.933	0.17	1.195	10	0.821	0.038	0.216	. 05	0.069	. 00	086	0.010
R. apricus	25.2	1.627	20.6	2.581	20.2	1.2	533	1.737	. 85	0.268	1.883	0.215	1.237	132	0.803	0.045	0.216	0.06	. 074	0.012	093	0.018
R. bavaricus	26.53	1.889	20.73	1.530	22	1.871	4.067	1.437	1.967	0.12	. 967	0.127	1.283	0.0	0.846	0.015	0.195	0.062	0.074	0.007	095	0.010
R. bifrons	25.6	1.694	. 93	1.	21.47	1.570	3.667	1.061	1.817	0.308	1.767	0.365	1.23	0.106	0.839	0.040	0.174	0.0	. 071	0.012	. 85	0.020
caesius	25.6	1.694	23.27	1.	21.2	1.710	4.8	0.99	85	0.233	1.85	0.233	1.102	0.074	0.82	0.03	. 207	0.045	073	010	080	0.011
	22.67	1.8	9 4	1.0	. 07	1.780	4.533	1.279	2	0.000	1.783	0.364	1.172	0.117	0.797	0.040	0.232	0.061	0.089	0.007	092	0.019
canadensis	21.27	1.2	8.47	1.4	13	1.570	2.6	0.855	1.083	0.437	1.1	0.462	1.157	0.096	0.853	0.054	0.140	0.042	0.051	0.021	0.059	. 025
R.capiulatus	29.67	2.	26.13	2.6	24.2	2.5	5.66	1.749	1.26	302	1.1	0.227		0.115	. 81	0.058	0.217	0.06	0.043	0.010	0.042	0.009
R. chaerophylloid	8.4	1.850	21.73	2.	24	2.	4.13	1.57	1.63	0.370	1.63	0.37	1.321	. 16	0.84	0.04	0.19	0.07	0.058	0.0	0.076	0.018
R. chlorothyrsos	26.2	1.769	22.33	1.7	21.13	1.717	4.733	1.43	1.883	0.252	1.9	0.242	1.177	0.08	0.807	0.040	0.210	0.055	0.072	0.010	085	. 012
,	23.93	1.5	9.8	1.	19.67	1.58	867	1.042	1.733	0.286	1.833	0.240	1.213	0.09	0.823	0.054	0.195	0.052	0.073	0.013	0.093	0.014
ii	6.47	2.389	20.27	1.	20.67	1.845	5.333	1.322	1.833	0.330	1.817	0.334	1.319	0.194	0.78	0.111	0.264	0.062	0.070	0.015	090	. 018
onstric	47	1.961	22.2	1.690	21.4	1.	, 733	1.701	1.917	0.190	1.95	153	1.15	0.086	0.842	0.055	0.213	0.074	0.076	0.009	0.088	0.010
R. corylifolius	29.73	2.815	25.8	1.690	25	2.852	5.133	1.008	1.7	0.282	1.733	. 28	1.154	0.096	. 84	0.0	. 19	0.0	. 05	0.01	. 06	0.012
R. czarnunensis	28.53	2.0	26.87	2.	23.2	2.4	7.333	1.6	2	0.0	2	0.000	1.068	0.10	0.812	0.045	0.274	0.06	0.070	0.00	0.075	0.007
R. divaricatus	22.87	1.634	19.67	1.295	19.2	1.	. 67	0.950	1.883	0.215	1.86	0.225	1.16	08	0.842	0.049	0.16	0.04	. 083	0.01	0. 095	0.014
dollnensis	32.27	3.	. 27	1.6	26.8	3.	6.067	1.617	2	0.0	2	. 00	1.279	0.133	0.82	0.035	0.240	0.064	0.063	0.007	079	0.005
R. fabrimontanus	25.67	1.7	2.87	1.717	21.13	1.45	4.933	1.258	1.933	0.173	1.9	0.275	1.127	0.094	0.825	0.046	0.217	0.057	0.076	0.008	084	0. 01
R. fasciculatus	27.2	1.937	23.27	1.929	23	1.875	67	1.398	. 73	14	1.683	359	1.174	104	0.845	0.021	0.157	0.056	0.064	0.01	. 073	0. 017
R. glivicensi	26.	2.0	21.53		21.47	1.655	, 933	1.230	1.717	0.284	1.733	0.286	1.214	0.100	. 82	0.06	0.228	0.05	. 06	0.01	. 08	0.01
R. gothicus	26.	1.773	23.4		22.07	1.780	3.933	1.	1.95	0.201	1.917	0.231	1.133	0.08	0.836	0.038	0.167	0.051	0.074	0.00	0.082	0.01
R. grabowsk	23.53	1.137	19.93	1.4	19.67	1.0	3.9	1.125	1.667	0.40	1.7	0.38	1.186	0.092	0.83	0.050	0.196	0.053	0.07	0.01	. 08	0.01
R.gracilis	26.87	1.9	21.9	2.	22.4	1.9	5.6	1.27	1.85	0.37	1.767	0.41	1.231	. 10	0.83	0.042	0.25	0.050	. 06	0.015	0	0.018
R. henrici-ego	24.13	1.8	19.4	1.	19.87	1.479	3.7	1.022	1.8	. 282	1.8	. 282	1.247	0. 08	0.825	0.050	0.190	0.050	0.075	0.01	. 093	0.017
R. hercynicus	26.2	1.	. 27	1.	. 07	1.929	4.067	1.112	1.933	0.173	1.933	0.173	1.297	0.103	0.842	0.021	0.200	0.052	0.074	0.009	0.096	0.012
R. hevellicus	. 47		21.13		53	1.570	3.467	, 42	1.817	08	1.817	0.308	1.16	082	83	0.017	. 164	0.048	. 075	0.014	. 086	0.01
R. idaeus	22.6	1.673	20.37	1.	. 53	1.65	4.2	0.925	1.817	0.35	1.733	0.430	1.114	0.09	0.822	0.071	0.207	0.049	0.081	0.017	0.085	0.02
R. koehleri	25.47	1.	22.13	1.570	21.53	1.	3.733	1.015	1.933	0.217	, 33	0.217	1.155	0.089	0.84	0.015	0.16	0.04	0.07	0.00	0.088	0.01
R. lamprocaulos	24.67	1.	21.47	1.	. 67	1.7	3.6	1.329	1.833	0.330	.817	0.3	1.152	0.084	0.83	0.011	0.167	0.058	0.075	0.014	. 085	0.01
R. macrophylus	28.13	1.655	3.33	1.	22.47	2.209	4.6	673	1.867	0.225	.833	240	1.21	0.103	0.798	0.056	. 199	0.074	. 066	0.00	. 079	0.011
marssonianus	25.47	2.403	22.3	1.985	20.73	1.617	4.5	1.167	1.55	0.422	1.533	0.370	1.147	0.113	0.817	0.051	0.202	0.051	0.061	0.018	0.069	0.018
R. micans	24.33	2.294	20.2	1.215	20.4	1.773	267	1.363	1.85	0.268	1.9	242	1.20	10	0.840	0.039	0.212	0.06	0.077	0.014	0. 094	0.014
R. mollis	26	1.287	21.47	1.6	21.	1.279	4.133	1.16	1.899	0.205	1.9	0.203	1.217	0.09	0.841	0.019	0.193	0.054	0.073	0.009	. 08	0.01
R. montanus	24.27	1.363	20	1.2	19.93	0.980	4.067	0.868	1.933	0.173	1.867	0.225	1.217	0.08	0.823	0.054	0.204	0.044	0.080	0.009	0.09	0.01
R. nessensis	24.27	1.363	20.03	1.450	19.33	1.422	3.967	0.964	1.967	0.127	1.933	0.254	1.216	0.099	0.797	0.049	0.199	0.051	0.081	0.007	0.097	0.014
R. odoratus	23.4	2.387	19.37	1.450	18.53	2.285	5.633	1.033	1.65	0.494	1.617	0.583	1.211	0.113	0.791	0.041	0.291	0.05	0.071	0.021	0.084	0.030
R. opacus	22.4	1.221	19.27	1.780	18.2	1.518	3.233	0.898	1.75	0.254	1.783	0.252	1.172	0.124	0.812	0.049	0.168	0.045	0.078	0.012	0.093	0.017

Table 3. (Continued)

Species	P		E		Le		d		Exp		Exe		P/E		Le/P		d/E		Exp/P		Exe/E	
	Mean	s.	Mean	s.d.																		
R. orthostachys	25.53	1.871	21.07	1.946	20.53	1.737	4.8	1.448	1.933	0.217	1.917	0.190	1.219	0.109	0.804	0.036	0.227	0.062	0.076	0.011	0.092	0.011
R. ostroviensis	26.33	1.493	22.67	1.688	22.13	1.655	4.4	0.968	1.667	0.303	1.75	0.254	1.167	0.091	0.841	0.048	0.194	0.040	0.063	0.011	0.078	0.013
R. parthenocissus	24.47	1.252	20.47	1.358	20.33	1.061	3.333	0.959	1.917	0.231	1.933	0.217	1.199	0.077	0.832	0.032	0.163	0.046	0.079	0.010	0.095	0.012
R. pedemontanus	24.27	1.946	23.2	1.710	19.93	2.132	5	1.259	1.983	0.091	1.95	0.201	1.051	0.103	0.822	0.072	0.216	0.053	0.082	0.007	0.085	0.011
R. perrobustus	23.97	1.299	20.53	1.889	19.73	1.461	3.633	0.615	1.783	0.387	1.867	0.346	1.173	0.088	0.824	0.048	0.178	0.032	0.075	0.017	0.091	0.018
R.pfuhlianus	30.2	2.592	22.33	1.583	25.73	2.504	4.733	1.337	1.783	0.252	1.767	0.254	1.357	0.135	0.852	0.031	0.211	0.053	0.060	0.012	0.080	0.014
R. plicatus	24.4	1.102	21.4	1.831	20	1.050	3.867	1.570	1.767	0.430	1.833	0.379	1.146	0.088	0.820	0.030	0.179	0.063	0.072	0.017	0.086	0.018
R. posnaniensis	27.4	2.737	21.33	1.093	22.87	2.389	6	1.819	1.767	0.286	1.783	0.252	1.285	0.113	0.836	0.051	0.280	0.079	0.065	0.013	0.084	0.013
R. pyramidalis	27.4	1.831	23.6	1.694	22.47	2.209	4.8	1.243	1.717	0.252	1.733	0.254	1.164	0.076	0.819	0.047	0.203	0.049	0.063	0.009	0.074	0.012
R. radula	27.4	2.298	23.6	2.127	23	2.449	5.133	1.634	1.783	0.284	1.783	0.252	1.165	0.091	0.839	0.045	0.218	0.072	0.065	0.011	0.076	0.013
R. saxatilis	22.27	1.461	18.67	1.605	18.2	1.606	4	1.462	1.817	0.278	1.817	0.334	1.201	0.131	0.817	0.051	0.212	0.069	0.082	0.013	0.098	0.022
R. schleicheri	26.2	1.424	21.87	1.961	21.27	1.617	5.133	1.456	1.7	0.249	1.717	0.252	1.205	0.096	0.812	0.042	0.235	0.062	0.065	0.009	0.079	0.014
R. scisus	27	2.393	22.93	1.799	21.8	2.369	5.667	1.398	1.867	0.320	1.883	0.252	1.18	0.099	0.808	0.058	0.248	0.061	0.069	0.012	0.083	0.013
R. seebergensis	25.27	1.856	22.87	2.330	21.07	1.639	5	1.554	1.75	0.341	1.75	0.341	1.112	0.101	0.834	0.019	0.216	0.057	0.070	0.015	0.078	0.018
R. siemianicensis	27.4	2.527	21.6	1.773	22.73	2.545	4.867	1.548	1.767	0.286	1.75	0.341	1.275	0.136	0.830	0.045	0.225	0.070	0.065	0.013	0.081	0.016
R. sprengelii	25.07	1.639	21.13	2.013	20.53	1.479	4.267	1.258	1.833	0.240	1.867	0.225	1.192	0.097	0.820	0.043	0.201	0.053	0.073	0.009	0.089	0.013
R. spribillei	27.67	1.668	22.07	1.999	22.8	1.789	3.467	1.074	1.44	0.338	1.2	0.288	1.261	0.103	0.825	0.054	0.156	0.045	0.052	0.013	0.055	0.015
R. wimmerianus	28.2	1.789	23.33	2.354	22.57	2.192	4.5	1.196	1.983	0.091	1.817	0.382	1.215	0.088	0.800	0.053	0.192	0.047	0.071	0.005	0.079	0.018
R. xanthocarpus	20.57	1.431	17.6	1.545	16.23	1.305	3.867	1.074	1.75	0.388	1.8	0.337	1.175	0.110	0.791	0.055	0.219	0.054	0.085	0.019	0.103	0.021
$\mathrm{LSD}_{0.001}$	1.63		1.5		1.61		1.1		0.244		0.251		0.089		0.040		0.048		0.011		0.013	

P-the length of polar axis, E-the length of equatorial axis, Le-the length of ectocolpi, d-the distance between the apices of two ectocolpi, Exp-the thickness of exine along polar axis, Exe-the thickness of exine along equatorial axis
https://doi.org/10.1371/journal.pone.0221607.t003
prolate $(8.9 \%-155)$ or spheroidal $(8.6 \%-150)$ and very rarely oblate-spheroidal $(0.7 \%-12)$ and perprolate $(0.2 \%-4)$. The highest number of subprolate pollen grains was recorded in R. henriciegonis and R. montanus (each at $80 \%,-24$ grains), of prolate-spheroidal pollen-in R. idaeus ($53.3 \%-16$ grains) and of prolate grains-in R. chaerophylloides ($50 \%-15$).

The exine was two-layered, with the ectexine and endexine of about the same thickness. Mean exine thickness was $1.79(0.5-4.0) \mu \mathrm{m}$; on average Exp $-1.79 \mu \mathrm{~m}$ and Exe- $1.78 \mu \mathrm{~m}$. The exine was the thinnest in R. canadensis ($\operatorname{Exp}-0.8 \mu \mathrm{~m}$; Exe-1.1 $\mu \mathrm{m}$), while it was the thickest in R.czarnuensis and R. dollensis (Exp and Exe-2.0 $\mu \mathrm{m}$; Table 3). The relative thickness of the exine (Exp/ P ratio) averaged 0.07 (0.02-0.18) and (Exe/E ratio) 0.08 ($0.02-0.14$). The above results were similar, indicating a more or less equal exine thickness along the entire pollen grain (Table 3).

In all the studied species, exine ornamentation was striate-perforate and very rarely striate, with the exception of R. odoratus, which had a striate-verrucate ornamentation with small perforations (Fig 3). Exine ornamentation elements were highly variable (Fig 3). Striae and grooves usually ran parallel to colpori and the polar axis, but frequently they also formed fin-gerprint-like twists. Striae were straight or forked and of varying length, width and height.

The investigated pollen of the individual Rubus species was classified according to the striate exine ornamentation classification proposed by Ueda [47] into four types (I-III and V) and five subtypes (I A, II A,B and III A,B). The cited author distinguished six types (I-VI) and six subtypes (I-III, each A and B). In our study types IV, VI and subtype IB were not found (Fig 3, Table 4). The greatest number of species (18) belonged to the IIA subtype, which was characterised by fairly distinct striae, narrow grooves and frequently by prominent, numerous perforations. Subtypes IA, IIA/IIB, IIB and IIIA were represented by a relatively large number of species ($8,11,8$ and 9 species, respectively), while types IA/IIA, IIIB and V-by only one species. Among the 58 examined species, 12 had two types of exine ornamentation (Fig 3, Table 4).

In most of the species (56 of the 58), elliptic or circular perforations of different diameters $(0.05-0.4 \mu \mathrm{~m})$ were found at the bottom of the grooves (Fig 3). The perforations were not found in R. canadensis and R. czarnunensis. In the majority of the species studied the perforations were small, with similar diameters $(0.1-0.2 \mu \mathrm{~m})$ and more or less numerous, with the exception of R. bifrons, R. capitulatus, R. constrictus, R. gracilis, R. hercynicus, R. lamprocaulos, R. odoratus, R. opacus, R. orthostachys, R. ostroviensis, R. pedemontanus, R. perrobustus and R.

Table 4. Striate exine ornamentation types and subtypes of studied Rubus species (according to Ueda [47] classification).

Striate exine ornamentation type or subtype	Species
IA	R. chaerophylloides, R. corylifolius, R. fasciculatus, R. henrici-egonis, R. hercynicus, R. lamprocaulos, R. pfuhlianus, R. posnaniensis
IA/IIA	R. plicatus
IIA	R. acanthodes, R. allegheniensis, R. angustipaniculatus, R. camptostachys, R. circipanicus, R. constrictus, R. grabowskii, R. gracilis, R. hevellicus, R. koehleri, R. macrophyllus, R. marssonianus, R. nessensis, R. ostroviensis, R. parthenocissus, R. sprengelii, R. wimmerianus, R. xanthocarpus
IIA/IIB	R. apricus, R. bavaricus, R. bifrons, R. capitulatus, R. clusii, R. micans, R. pyramidalis, R. spribillei, R. chlorothyrsos, R. schleicheri, R. seebergensis
IIB	R. caesius, R. dollnensis, R. glivicensis, R. gothicus, R. idaeus, R. mollis, R. orthostachys, R. siemianicensis
IIIA	R. canadensis, R. czarnunensis, R. divaricatus, R. fabrimontanus, R. opacus, R. pedemontanus, R. perrobustus, R. radula, R. scissus
IIIB	R. montanus
striate-verrucate	R. odoratus
V	R. saxatilis

Fig 4. The bridge and apertures of studied species. A-C. R. macrophyllus, R. circipanicus, R. angustipaniculatus the bridge (exine connection between the margins of an aperture-colporus) in three pollen grains in equatorial view. D-F. R. gothicus, R. scisus, R. nessensis colporus with rugulate membrane in three pollen in equatorial view.
https://doi.org/10.1371/journal.pone.0221607.g004
radula, where they were relatively few. The single perforations were observed in R. corylifolius, R. czarnunensis, R. henrici-egonis and R. pyramidalis.

Pollen grains usually had three apertures-colpori. Ectoapertures-colpi were arranged meridionally, regularly, they were more or less evenly spaced and long, at a mean length of $21.23(14-32) \mu \mathrm{m}$ (Table 3; Fig 4D-4F). On average, the length of colpi constituted 83% (from 60 to 100%) of the polar axis length, with the shortest colpi found in R. xanthocarpus $(16.2 \mu \mathrm{~m})$ and the longest in R. corylifolius $(25.3 \mu \mathrm{~m})$. Colpi were fusiform in outline. Their width was variable and usually greatest in the equatorial region. Sculpturing of ectocolpus membranes approached rugulate, rarely partly psilate (Fig 4D-4F). Colpus margins frequently had small undulations (Fig 4D-4F).

In all of the species studied the colpus was crossed at the equator by a bridge dividing it into two parts, formed by two bulges of the ectexine that meet in the middle (Fig 4A-4C). The bulges were of the same or unequal length.

The polar area index (PAI) or the apocolpium index (d/E ratio) averaged $0.20(0.08-0.45)$. The lowest mean values of this index were recorded in R. canadensis (0.14), while the highest-in R. odoratus (0.29) (Table 3).

Endoapertures were usually located in the middle of colpi, less frequently asymmetrically, usually singly and very rarely in pairs. They were circular or elliptic in outline with irregular margins (Fig 4D-4F).

Pollen key

Pollen key can be seen as a summary of the outcome of our study thus it has been placed at the very end of this chapter.
1 Exine ornamentation striate-verrucate with microgranules and small perforations. R.odoratus
1^{*} Exine ornamentation striate 2
2 Exine ornamentation striate without perforations. 3
2 *Exine ornamentation striate with perforations 4
3 Pollen grains small; P on average from 10 to $25 \mu \mathrm{~m}$. R. canadensis
3^{*} Pollen grains medium; P on average from 25.1 to $50 \mu \mathrm{~m}$. R. czarnunensis
4 Exine subtype IA (grooves distinct with medium width, striae narrow; perforations few orabsent to numerous, small 5
4^{*} Exine type II (grooves distinct, with medium, similar width like striae; perforationsnumerous, medium or large). 7
$4^{* *}$ Exine type III (grooves very distinct and width, striae narrow to wide; perforations few,small).12
$4^{* * *}$ Exine type V (grooves flat and blurred; perforations numerous, large to small).
R. saxatilis
5 Perforations numerous .R. chaerophylloides, R. fasciculatus,
R. pfuhlianus, R. posnaniensis, R. plicatus
5^{*} Perforations few. .R. hercynicus, R. lamprocaulos
$5^{* *}$ Perforations single. 6
6 Pollen grains small. R. henrici-egonis
6^{*} Pollen grains medium R. corylifolius
7 Striae narrow . 8
7* Striae wide 10
8 Perforations numerous 9
8* Perforations few. R. bifrons, R. capitulatus, R. constrictus, R. gracilis,
R. ostroviensis
8** Perforations single. R. pyramidalis
9 Pollen grains small. R. allegheniensis, R. camptostachys,
R. circipanicus, R. grabowskii, R. hevellicus, R. micans, R. nessensis, R. parthenocissus, R. plicatus
R. xanthocarpus
9* Pollen grains medium. .R. acanthodes, R. angustipaniculatus,
R. apricus, R. bavaricus, R. chlorothyrsos, R. clusii, R. koehleri, R. macrophyllus, R. marssonia-nus, R. schleicheri, R. seebergensis, R. sprengelii, R. spribillei, R. wimmerianus10 Perforations numerous.11
10* Perforations few. . .R. bifrons, R. capitulatus, R. orthostachys
$10^{* *}$ Perforations single R. pyramidalis
11 Pollen grains small. .R. idaeus, R. micans, R. plicatus
11* Pollen grains medium. .R. apricus, R. bavaricus, R. caesius,
R. chlorothyrsos, R. clusii, R. dollnensis, R. glivicensis, R. gothicus, R. mollis, R. schleicheri, R. see-bergensis, R. siemianicensis, R. spribillei12 Grooves wide, striae narrow13
12^{*} Grooves very wide, striae medium. .R. montanus
13 Perforations numerous. 14
13* Perforations few. 15
13** Perforations single .R. czarnunensis
14 Pollen grains small. R. canadensis, R. divaricatus
14^{*} Pollen grains medium .R. fabrimontanus, R. scissus
15 Pollen grains small. R. opacus, R. pedemontanus, R. perrobustus.R. radula

Intrageneric and interspecific variability of pollen grains

The results of the MANOVA indicated that all the species were significantly different with regard to all of the 11 quantitative traits (Wilk's $\lambda=0.04048 ; F_{627,18111}=9.98 ; P<0.0001$). The results of analysis of variance for the 11 quantitative traits $\left[\mathrm{P}\left(F_{57,1682}=40.42\right), \mathrm{E}\left(F_{57,1682}=\right.\right.$ 33.51), $\operatorname{Le}\left(F_{57,1682}=32.48\right), \mathrm{d}\left(F_{57,1682}=12.41\right), \operatorname{Exp}\left(F_{57,1682}=11.26\right)$, $\operatorname{Exe}\left(F_{57,1682}=12.11\right), \mathrm{P} /$ $\mathrm{E}\left(F_{57,1682}=9.87\right), \mathrm{Le} / \mathrm{P}\left(F_{57,1682}=3.89\right) \mathrm{d} / \mathrm{E}\left(F_{57,1682}=9.24\right), \operatorname{Exp} / \mathrm{P}\left(F_{57,1682}=15.35\right)$ and Exe/ $\left.\mathrm{E}\left(F_{57,1682}=15.29\right)\right]$ showed variability of the tested species at a significance level $\alpha=0.001$. The mean values and standard deviations for the observed traits indicated a high variability among the tested species, for which significant differences were found in terms of all the analysed morphological traits (Table 3).

The correlation analysis indicated statistically significant correlation coefficients for 25 out of 55 coefficients (Table 5). A total of 16 out of 25 significantly correlated pairs of traits were characterised by positive correlation coefficients. In the case of 30 pairs of traits, no significant correlation was established.

In the presented dendrogram, as a result of agglomeration grouping using the Euclidean distance method, all the examined Rubus species were divided into four groups (Fig 5). The first group (I) comprised one species-R. czarnunensis, while the second one (II) four species (R. dollnensis, R. corylifolius, R. chaerophylloides and R. phuhianus). The third group was divided into two subgroups: III A-R. camptostachys, R. xanthocarpus, R. clussi, R. odoratus, and III B—including all the other species from this group. The fourth group (IV) comprised R. canadensis, R. capitulatus, R. acanthoides and R. spribillei.

Individual traits were of varying importance and had different shares in the joint multivariate variation. A study on the multivariate variation for species includes also identification of the most important traits in the multivariate variation of species. Analysis of canonical variables is a statistical tool making it possible to solve the problem of multivariate relationships. Fig 6 shows the variability of the pollen grain features in 58 studied Rubus species in terms of the first two canonical variables. In the graph the coordinates of the point for particular shrubs were the values for the first and second canonical variable, respectively. The first two canonical

Table 5. Correlation coefficients between all pairs of observed traits.

Trait	P	E	Le	d	Exp	Exe	P/E	Le/P	d/E	Exp/P	Exe/E
P	1										
E	$0.820^{* * *}$	1									
Le	$0.975^{* * *}$	$0.799^{* * *}$	1								
d	$0.575^{* * *}$	$0.614^{* * *}$	0.477***	1							
Exp	0.015	0.015	-0.014	0.186	1						
Exe	-0.034	-0.028	-0.045	0.156	$0.937^{* * *}$	1					
P/E	0.322*	-0.275*	0.310*	-0.026	0	-0.012	1				
Le/P	0.169	0.141	0.380**	-0.285*	-0.139	-0.075	0.028	1			
d/E	0.238	0.17	0.124	0.878***	0.226	0.207	0.143	$-0.454^{* * *}$	1		
Exp/P	$-0.632^{* * *}$	$-0.520^{* * *}$	$-0.641^{* * *}$	-0.22	$0.757^{* * *}$	$0.730^{* * *}$	-0.201	-0.236	0.033	1	
Exe/E	$-0.533^{* * *}$	-0.635***	$-0.537^{* * *}$	-0.245	$0.710^{* * *}$	$0.779^{* * *}$	0.157	-0.184	0.07	0.892***	1
* $\mathrm{P}<0.05$											
${ }^{* *} \mathrm{P}<0.01$											
${ }^{* * *} \mathrm{P}<0.001$											
$\mathrm{P} \text {-the }$ along p	of polar ax is, Exe-th	-the lengt kness of	equatorial along equa	Le-the le 1 axis	of ectocol	-the dista	between	pices of two	tocolpi	-the thi	of ex

https://doi.org/10.1371/journal.pone.0221607.t005

Fig 5. Dendrogram of cluster groupings of Rubus species based on all 11 morphological traits.
https://doi.org/10.1371/journal.pone.0221607.g005
variables accounted for 56.75% of the total multivariate variability between the individual species. Five groups of species were distinguished (Fig 5). A majority of the examined species were found in the first group (I), which means that they had more or less similar pollen features. Only one up to maximum three species (II-R. capitulatus, III-R. xantocarpus, IV—R. acanthoides and R. spribillei, and V-R. corylifolius, R. dollnensis, and R.czarnunensis) fell into the other four groups (Fig 6). Pollen grains of R. capitulatus were the most different from those of the other species (large, with a thin exine and the P / E ratio usually prolate-spheroidal).

Fig 6. Distribution of the studied Rubus species in the space of the first two canonical variables.
https://doi.org/10.1371/journal.pone.0221607.g006
Species from groups IV and V had the largest pollen grains and R. xantocarpus (group III)the smallest ones.

The most significant, positive, linear relationship between the first canonical variables was found for P, E, Le and d, while it was negative for Exp/P and Exe/E (Table 6). The second canonical variable was significantly negatively correlated with Exp, Exe, Exp/P and Exe/E (Table 6). The greatest variation in terms of all the traits jointly (measured Mahalanobis distances) was found for R. canadensis and R. capitulates (the Mahalanobis distance between them amounted to 8.24). The greatest similarity was found for R. lamprocaulos and R. hevellicus (0.313).

Discussion

Similarly to a majority of palynologists, the authors of this study maintain that exine ornamentation features were diagnostic, that means they allow for differentiate species within the genus Rubus [24, 25, 27-31, 33, 34, 38, 39, 42, 46, 59]. The most important exine ornamentation traits include the width, number and course of grooves (muri) and the width of the striae as well as the number and diameter of perforations [31, 33, 34, 42, 46, 59-61]. Some authors considered pollen size and shape as potentially important features in the diagnosis of the analysed Rubus species [27, 28, 33], while others claim that they have no diagnostic significance [31, 45, 46].

Table 6. Correlation coefficients between the first two canonical variables and original traits.

Trait	First canonical variable	Second canonical variable
P	$0.9634^{* * *}$	-0.0536
E	$0.9353^{* * *}$	-0.0382
Le	$0.9427^{* * *}$	-0.0812
d	$0.5995^{* * *}$	-0.1054
Exp	-0.0477	$-0.5907^{* * *}$
Exe	-0.0993	-0.6587***
P/E	0.0751	-0.0254
Le/P	0.1822	-0.1743
d/E	0.1939	-0.087
Exp/P	-0.6568***	-0.3354*
Exe/E	-0.6497***	-0.3919**
Percentage of explained multivariate variability	39.61\%	17.14\%
* $\mathrm{P}<0.05$		
${ }^{* *} \mathrm{P}<0.01$		
*** $\mathrm{P}<0.001$		
P -the length of polar axis, E-the length of equatorial axis, Le-the length of ectocolpi, d-the distance between the apices of two ectocolpi, Exp-the thickness of exine along polar axis, Exe-the thickness of exine along equatorial axis		

https://doi.org/10.1371/journal.pone.0221607.t006

Based on our results, we partially agree with the opinion of these former, because the length of the polar axis (P) has been an important feature.

In a study by Li et al. [42] the 103 examined Rubus species from China belonged to four types of exine ornamentation (rugulate, striate, cerebroid and reticulate-perforate), which were further divided into 11 subtypes. Other palynologists distinguish in blackberries mainly striate or striate-perforate exine ornamentation [24, 25, 28, 29, 31, 33, 34, 38-40, 46, 59]. Except for the typical striate ornamentation, also striate-scabrate, striate-rugulate or rugulate [31, 46], echinate or gemmate [29], verrucate [29, 38, 39], baculate and clavate [24, 25] or reticulate ornamentation [59] have been rarely observed. According to current palynological studies, European blackberry species are slightly less variable in terms of this feature than Asian ones. Our results confirm this thesis, because in the examined pollen grains only two types of exine ornamentation (striate and striate-verrucate with microgranules) were found.

Ueda \& Tomita [61] and Ueda [47] distinguished six types and six subtypes of exine ornamentation in species and other taxa from the genus Rosa and the family Rosaceae, including the genus Rubus. In the current study they were classified into four types (types IV and VI were not identified) and five subtypes (I A, II A, B, III A, B). Our results were similar to the cited authors, since most of the examined pollen belonged to the IIA and IIIA subtypes and no grains were found in the very rarely represented types IV and VI or subtype IB. The only species described both by Ueda [47] and in our study was R. odoratus. Ueda [47] described it as a type VI and we as type V.

The research results obtained in this study confirmed the diagnostic significance of the number and diameter of perforations, found by Hebda \& Chinnappa [38, 39], MonasterioHuelin \& Pardo [28], Tomlik-Wyremblewska [31], Li et al. [42], Wrońska-Pilarek et al. [33] or Ghosh \& Saha [59], because these traits allowed to distinguish certain Rubus species (see: pollen key). On the other hand, groups of species from different sections possess similar numbers of perforations (e.g. R. opacus from the series Rubus, R. canadensis from the series Canadenses or R. henrici-egonis from the series Discolores). However, also species from many different
sections (e.g. Rubus, Alleghenienses, Sylvatici or Micantes) representing the subgenus Rubus were characterised by high numbers of small perforations with similar diameters. Hebda and Chinnappa [38] distinguished two types of perforations in the family Rosaceae (striatemacroperforate and non-striate-macroperforate, each with six subtypes) possibly indicating different evolutionary lines. According to the above cited study, pollen of Rosa (with Prunus, Rubus and Spiraea) belongs to the subcategory with striae separated by grooves, containing larger perforations ($0.1-0.2 \mu \mathrm{~m}$ in diameter). The current data corroborated this latter thesis, with the reservation that some of the species were characterised by ornamentation different than striate (R. odoratus-striate-verrucate with microgranules), and that perforation diameters in Rubus ranged from 0.05 to $0.4 \mu \mathrm{~m}$. In turn, Hebda and Chinnappa [39] classified pollen types in Rosaceae into six main categories: 1-striate and macroperforate, $2-$ striate and microperforate, 3-tuberculate and perforate, 4-microverrucate, 5-verrucate and 6-perforate, without supratectal features. They included species from the Rubus genus, similarly to the study from 1990, in type 1 (striae long and parallel to colpus). Our studies demonstrated that the inclusion of the Rubus genus into one type is too general because, firstly, there were blackberry species with the striate-verrucate exine ornamentation with microgranules (e.g. R. odora$t u s$), with perforations sometimes being large, but also small (type 2-striate and microperforate). Additionally, in some species perforations were very scarce or did not occur at all (e.g. R. corylifolius, R. henrici-egonis, R. canadensis, R. czarnuensis). Consequently, species from the Rubus genus also belong to other types mentioned above, as well as types not mentioned by Hebda \& Chinnappa [39].

Many studies reported that the bridges are located in the most of studied Rubus species. [28, 31, 33, 46]. They were wide, well-developed and with margins. In blackberries TomlikWyremblewska [31] distinguished two bridge types, with margins stretched or constricted at the equator. In our study, bridges were observed in all the analysed blackberry species and this structure was not used as a basis for the identification of species, because its characteristics were too similar. Besides, it usually appeared in mature pollen grains, so it could not be noticed when analysing pollen at other developmental stages.

The presented results shows that studied pollen grains, were small (43.3%) or medium (56.7\%). Similar results regarding pollen size were obtained by all other researchers [24, 25, 27, 28, 32-34, 42, 46, 59].

In the opinion of Li et al. [42] pollen shape varied from spheroidal, subspheroidal, prolate and perpolate, to occasionally rhomboid and hexagonal. In turn, Monasterio-Huelin \& Pardo [28] stated that they were just prolate or spheroidal, while other authors distinguished several pollen shape types-subprolate, prolate spheroidal, prolate or perprolate [31, 33, 34, 40, 46, 59]. We agree with Tomlik-Wyremblewska [31, 46] opinion, that pollen shape turned out to be a poor criterion in identifying blackberry species, because most pollen grains (81.6\%) have a similar shape-subprolate or prolate-spheroidal.

The arrangement of the investigated species on the dendrogram (Fig 5) does not corroborate the division of the genus Rubus into subgenera, sections and series [16], currently adopted in taxonomy.Species from three different subgenera (R. saxatilis and R. xanthocarpus from the subgenus Cylactis, R. odoratus from the subgenus Anoplobatus and R. idaeus from the subgenus Idaeobatus) were found in the same group III, with most of the species from a large subgenus Rubus. Similar results were obtained for the three sections from the subgenus Rubus (Rubus, Corylifolii and Caesii). Thus, R. caesius from the section Caesii and R. gothicus, R. camptostachys, R. mollis or R. fabrimontanus from the section Corylifolii were found in group III, with the species representing the most numerous third section of Rubus. Also in the case of the series it were not observed that species belonging to these taxa formed separate groups (Figs 5 and 6). Other genera of the family Rosaceae (e.g. Spiraea, Rosa, Crataegus) showed a
correlation between pollen morphology and intrageneric taxonomic classification [62-64]. In Rubus the lack of dependence could be the result of apomixis, defined as the replacement of the normal sexual reproduction by asexual reproduction, without fertilisation, which could reduce natural variability.

Acknowledgments

We kindly thank Nuala Scanlon-Mederski (an English native proofreader) for linguistic support. The publication of this article was co-financed by RID ('Wielkopolska Regional Initiative of Excellence in Forest Sciences' 2019-2022).

Author Contributions

Conceptualization: Kacper Lechowicz, Dorota Wrońska-Pilarek, Jan Bocianowski.
Data curation: Kacper Lechowicz, Dorota Wrońska-Pilarek, Jan Bocianowski, Tomasz Maliński.

Formal analysis: Kacper Lechowicz, Dorota Wrońska-Pilarek.
Investigation: Kacper Lechowicz.
Methodology: Kacper Lechowicz, Dorota Wrońska-Pilarek, Jan Bocianowski.
Software: Jan Bocianowski.
Writing - original draft: Kacper Lechowicz, Dorota Wrońska-Pilarek, Jan Bocianowski.

References

1. Gustafsson A. The genesis of the European blackberry flora. Acta Univ Lund. 1943; 39: 1-200.
2. Kurtto A, Weber HE, Lampinen R, Sennikov AN. Atlas Florae Europaeae: Distribution of vascular plants in Europe: Rosaceae (Rubus). Helskinki: The Committee for Mapping the Flora of Europe \& Societas Biologica Fennica Vanamo; 2010.
3. Focke WO. Synopsis Ruborum Germaniae: Die deutschen Brombeerarten ausführlich beschrieben und erläutert. Bremen: C. Ed. Müllers's Verlagsbuchhandlung; 1877.
4. Focke WO. Rosaceae. In: Engler A, PrantI K, editors. Die Natürlichen Pflanzenfamilien III, Leipzig: W. Engelmann; 1894.
5. Gu Y, Zhao CM, Jin W, Li WL. Evaluation of Rubus germplasm resources in China. Acta Hortic. 1993; 352: 317-324.
6. Jennings DL. Raspberries and Blackberries. Their Breeding, Diseases and Growth. London: Academic Press; 1988.
7. Robertson KR. The genera of Rosaceae in the southeastern United States. J Arnold Arbor. 1974; 55: 352-360.
8. Thompso MM. Chromosome numbers of Rubus species at the National Clonal Germplasm Repository. HortScience 1995; 30: 1447-1452.
9. Weber HE. Rubus L. In: Hegi G, Weber HE, editors. Illustrierte Flora von Mitteleuropa IV/2a. 3rd edn. Berlin: Blackwell Wissenschafts-Verlag; 1995. pp. 284-595.
10. Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, et al. Phylogeny and classification of Rosaceae. PI Syst Evol. 2007; 266: 5-43. https://doi.org/10.1007/s00606-007-0539-9
11. Stevens PF. 2001 onwards. Angiosperm Phylogeny Website. July 2017. Available from: http://www. mobot.org/MOBOT/research/APweb/ Cited 16 July 2019.
12. APG IV [Angiosperm Phylogeny Group IV]. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants. Bot J Linn Soc. 2016; 181: 1-20. https://doi.org/10.1111/ boj. 12385
13. Focke WO. Species Ruborum monographiae generis Rubi prodromus. Bibl Bot. 1910; 17: 1-120.
14. Focke WO. Species Ruborum monographiae generis Rubi prodromus. Bibl Bot. 1914; 17: 1-274.
15. Alice LA, Campbell ChS. Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Am J Bot. 1999; 86: 81-97. PMID: 21680348
16. Zieliński J. The genus Rubus (Rosaceae) in Poland. Pol Bot Stud. 2004; 16: 1-300.
17. Stace CA. Plant Taxonomy and Biosystematics. 2nd ed. Cambridge: Cambridge University Press; 1989.
18. Kosiński P, Maliński T, Sliwinska E, Zieliński J. Rubus prissanicus (Rosaceae), a new bramble species from North West Poland. Phytotaxa 2018; 344: 239-247. http://dx.doi.org/10.11646/phytotaxa.344.3.4
19. Piwowarski B. Brambles of the Jędrzejów Plateau (Nida Basin) in the Małopolska Upland. The Polish Dendrology Society Yearbook 2013; 61:21-27.
20. Sudre H. Rubi Europae. Paris: Librairie des Sciences Naturelles; 1917.
21. Almeida GS, Mezzonato-Pires AC, Mendonça CBF, Gonçalves-Esteves V. Pollen morphology of selected species of Piriqueta Aubl (Passifloraceae sensu lato). Palynology 2018; 43: 43-52. https://doi. org/10.1080/01916122.2018.1434252
22. Schori M, Furness CA. Pollen diversity in Aquifoliales. Bot J Linn Soc. 2014; 175: 169-190. https://doi. org/10.1111/boj. 12163
23. Song JH, Oak MK, Roh HS, Hong SP. Morphology of pollen and orbicules in the tribe Spiraeeae (Rosaceae) and its systematic implications. Grana 2017; 56: 351-367. https://doi.org/10.1080/00173134. 2016.1274334
24. Eide F. Key for Northwest European Rosaceae pollen. Grana 1981a; 20: 101-118.
25. Eide F. On the pollen morphology of Rubus chamaemorus L. (Rosaceae). Grana 1981b; 20: 25-27.
26. Erdtman G, Berglund B, Praglowski J. An Introduction to a Scandinavian Pollen Flora. Grana 1961; 2: 3-86.
27. Gonzalez Romano ML, Candau PA. Contribution to palynological studies in the Rosaceae. Acta Bot Malac. 1989; 14: 105-116.
28. Monasterio-Huelin E, Pardo C. Pollen morphology and wall stratification in Rubus L. (Rosaceae) in the Iberian Peninsula. Grana 1995; 34: 229-236.
29. Reitsma TJ. Pollen morphology of some European Rosaceae. Acta Bot Neerl. 1966; 15: 290-379.
30. Teppner H. Zur Kenntnis der Gattung Waldsteinia L.-Schlüssel zum Bestimmen von Rosaceen Polleeinschliesslich ählicher Pollen-formen aus andere Familien. Phyton 1966; 3-4: 224-238.
31. Tomlik-Wyremblewska A. Pollen morphology of genus Rubus L. Part I. Introductory studies of the European representatives of the subgenus Rubus L. Acta Soc Bot Pol Pol. 1995; 64: 187-203.
32. Wrońska-Pilarek D, Danielewicz W, Bocianowski J, Maliński T, Janyszek M. Comparative Pollen Morphological Analysis and Its Systematic Implications on Three European Oak (Quercus L., Fagaceae) Species and Their Spontaneous Hybrids. PLoS One. 2016; 11: 1-19. https://doi.org/10.1371/journal. pone. 0161762
33. Wrońska-Pilarek D, Jagodziński AM, Maliński T. Morphological studies of pollen grains of the Polish endemic species of the genus Rubus L. (Rosaceae). Biologia 2012; 67: 87-96. https://doi.org/10.2478/ s11756-011-0141-z
34. Wrońska-Pilarek D, Maliński T, Lira J. 2006. Pollen morphology of Polish species of genus Rubus L.Rubus gracilis J. Presl \& C PresI Dendrobiology. 2006; 56: 69-77.
35. Fedoronchuk MM, Savitsky VD. Comparativeand morphological analysis of pollen for genera of the family Rosaceae Juss. of the Ukrainian flora. Ukr Bot Z. 1987; 44: 32-38.
36. Ghosh R, Paruya DK, Acharya K, Ghoraid N, Bera S. How reliable are non-pollen palynomorphs in tracing vegetation changes and grazing activities? Study from the Darjeeling Himalaya, India. Palaeogeogr Palaeoclimatol Palaeoecol. 2017; 475: 23-40. https://doi.org/10.1016/j.palaeo.2017.03.006
37. Gupta C, Dash SS. A new species of Rubus (Rosaceae) from Arunachal Pradesh, India. Blumea 2018; 63: 26-30. https://doi.org/10.3767/blumea.2018.63.01.04
38. Hebda RJ, Chinnappa CC. Studies on pollen morphology of Rosaceae in Canada. Rev Palaeobot Palynol. 1990; 64: 103-108.
39. Hebda RJ, Chinnappa CC. Studies on pollen morphology of Rosaceae. Bot Lett. 1994; 141: 183-193.
40. Kasalkheh R, Jorjani E, Sabouri H, Habibi M, Sattarian A. Pollen morphology of the genus Rubus L. subgenus Rubus (Rosaceae) in Iran. Nova Bioliogica Reperta 2017; 4: 9-18.
41. Kosenko VN, Nguen TH, Jacovlev GP. Palynomorphological study of the representatives of the genus Rubus (Rosaceae) in the flora of Vietnam. Bot Z. 1982; 69: 497-503.
42. Li WL, He SA, Gu Y, Shu P, Pu ZM. Pollen morphology of the genus Rubus from China. Acta Phytotax. Sin. 2001; 39: 234-247.
43. Motyleva S, Gruner L, Semenova L. The morphology of pollen grains of some cultivars Rubus fruticosus L. Agrobiodiversity for Improving Nutrition, Health and Life Quality 2018; 2: 1-6. https://doi.org/10. 15414/agrobiodiversity.2018.2585-8246.001-006
44. Naruhashi N, Takano H. Size variation of pollen grains in some Rubus species. J Phytogeogr Taxon. 1980; 28: 27-32.
45. Tomlik-Wyremblewska A, Van der Ham RWJM, Kosiński P. Pollen morphology of genus Rubus L. Part III. Studies on the Malesian species of subgenera Chamaebatus L. and Idaeobatus L. Acta Soc Bot Pol Pol Tow Bot. 2004; 73: 207-227.
46. Tomlik-Wyremblewska A. Pollen morphology of genus Rubus L. Part II. Introductory studies on the Malesian species of subgenus Micranthobatus Fritsch. Acta Soc Bot Pol Pol Tow Bot. 2000; 69: 31-40.
47. Ueda Y. 1992. Pollen surface morphology in the genus Rosa, related genera. Jpn J Palynol. 1992; 38: 94-105.
48. Wang XR, Tang HR, Huang LH, Zong ZD, Xiao LF, Hua QD, et al. Comparative studies on pollen submicroscopic morphology of some wild species and cultivars of bramble (Rubus L.). Yuan Yi Xue Bao. 2007; 34: 1395-1404.
49. Erdtman G. The acetolysis method. A revised description. Sven Bot Tidskr. 1960; 54:561-564.
50. Erdtman G. Pollen morphology and plant taxonomy. Angiosperms. An introduction to palynology. Stockholm: Almquist and Wiksell; 1952.
51. Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A. Glossary of pollen and spore terminology. Rev Palaeobot Palynol. 2007; 1431: 1-81. https://doi.org/10.1016/j.revpalbo.2006.06.008
52. Halbritter H, Hess Ulrich S, Grímsson F, Weber M, Zetter R, Hesse M., et al. Illustrated Pollen Terminology. 2nd ed. Vienna: Springer; 2018.
53. Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika 1965; 52: 591-611.
54. Rencher AC. Interpretation of canonical discriminant functions, canonical variates, and principal components. Am Stat. 1992; 46: 217-225.
55. Seidler-Łożykowska K, Bocianowski J. Evaluation of variability of morphological traits of selected caraway (Carum carviL.) genotypes. Ind Crops Prod. 2012; 35: 140-145. https://doi.org/10.1016/j.indcrop. 2011.06.026
56. Camussi A, Ottaviano E, Caliński T, Kaczmarek Z. Genetic distances based on quantitative traits. Genetics 1985; 111: 945-962. PMID: 4065546
57. Mahalanobis PC. 1936. On the generalized distance in statistics. Proc Natl Acad Sci India A. 1936; 12: 49-55.
58. VSN International. GenStat for Windows 18th edition. VSN International, Hemel Hempstead, UK. www.GenStat.co.uk. 2015.
59. Ghosh A, Saha I. Pollen morphological study of some selected Indian taxa of Rosaceae. Indian J Applied \& Pure Bio. 2017; 32: 121-130.
60. Ueda Y, Okada Y. Discrimination of rose cultivar groups by pollen surface structure. J Hortic Sci. 1994; 69: 601-607.
61. Ueda Y, Tomita H. Morphometric analysis of pollen patterns in Roses. Hort J. 1989; 58: 211-220.
62. Polyakova TA, Gataulina GN. Morphology and variability of pollen of the genus Spiraea L. (Rosaceae) in Siberia and the Far East. Contemp Probl Ecol. 2008; 1: 420-424. https://doi.org/10.1134/ S199542550804005X
63. Wrońska-Pilarek D, Bocianowski J, Jagodziński AM. Comparison of pollen grain morphological features of selected species of the genus Crataegus L. (Rosaceae) and their spontaneous, interspecific hybrids. Bot J Linn Soc. 2013; 172: 555-571. https://doi.org/10.1111/boj. 12033
64. Wrońska-Pilarek D, Jagodziński AM. Systematic importance of pollen morphological features of selected species from the genus Rosa (Rosaceae). Plant Syst Evol. 2011; 295: 55-72.https://doi.org/ 55-72. https://doi.org/10.1007/s00606-011-0462-y
