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Abstract: A new type of near-infrared (NIR)-sensing organic phototransistor (OPTR) was designed
and fabricated by employing a channel/dielectric/sensing (CDS) triple layer structure. The CDS
structures were prepared by inserting poly(methyl methacrylate) (PMMA) dielectric layers (DLs)
between poly(3-hexylthiophene) (P3HT) channel layers and poly[{2,5-bis-(2-octyldodecyl)-3,6-bis-
(thien-2-yl)-pyrrolo[3,4-c]pyrrole-1,4-diyl}-co-{2,2′-(2,1,3-benzothiadiazole)-5,5′-diyl}] (PODTPPD-BT)
top sensing layers. Two different thicknesses of PMMA DLs (20 nm and 50 nm) were applied to
understand the effect of DL thickness on the sensing performance of devices. Results showed that
the NIR-OPTRs with the CDS structures were operated in a typical n-channel mode with a hole
mobility of ca. 0.7~3.2 × 10−4 cm2/Vs in the dark and delivered gradually increased photocurrents
upon illumination with an NIR light (905 nm). As the NIR light intensity increased, the threshold
voltage was noticeably shifted, and the resulting transfer curves showed a saturation tendency in
terms of curve shape. The operation of the NIR-OPTRs with the CDS structures was explained by
the sensing mechanism that the excitons generated in the PODTPPD-BT top sensing layers could
induce charges (holes) in the P3HT channel layers via the PMMA DLs. The optically modulated and
reflected NIR light could be successfully detected by the present NIR-OPTRs with the CDS structures.

Keywords: near infrared; organic phototransistors; conjugated polymers; dielectric layers;
photocurrent; threshold voltage; on/off modulation; LiDAR

1. Introduction

Organic phototransistors (OPTRs) have recently attracted considerable interest because they
are capable of delivering flexible and wearable photosensor modules for various applications in the
rapidly growing flexible electronics era [1–7]. Compared to inorganic photosensors (phototransistors),
OPTRs have an advantage of low-cost fabrication when it comes to their wet-coating processes at
room temperature [8–12]. Due to the three-electrode geometry, the photosensitivity of OPTRs can be
controlled and amplified by adjusting the gate voltage (VG) between the source and gate electrodes in
the devices [13–17].

Particular attention has been very recently paid to the near-infrared (NIR) light-sensing OPTRs
since the NIR technology has become one of the most important cores for advanced control and sensing
systems such as night vision for cars and airplanes, light detection and ranging (LiDAR) sensors
for autonomous cars and drones, probe beams for biomedical devices and diagnostics, and optical
communications. [18–24]. However, the NIR-absorbing organic materials are very rare because of the
difficulty in synthesis to meet the narrow energy band (level) gap of ca. 0.89~1.65 eV, which corresponds
to the wavelength (λ) range of ca. 750~1400 nm [25–31]. In this regard, conjugated polymers have been
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considered a viable chemical platform for the NIR-absorbing materials since their energy band gaps
can be narrowed by combinations of electron-donating and electron-accepting comonomers [32–38].

In the basic structure of OPTRs, which is actually identical to organic field-effect transistors
(OFETs), the channel layers should play a sensing role simultaneously [1]. However, some conjugated
polymers do not have sufficient charge carrier mobility for the operation of OFETs even though they
deliver good NIR-absorbing characteristics [39]. On this account, the NIR-absorbing conjugated
polymers have been applied as a gate-sensing layer (GSL) in the advanced structure of OPTRs [40]. It is
considered that the GSL concept could expand the choice of NIR-absorbing organic materials, regardless
of whether they are semiconductors or not. Our recent work has demonstrated that the OPTRs with
the GSL structure can be properly operated by applying the top channel layers with a sensing efficiency
of 40~60% (λ = 780~1000 nm) compared to the theoretical maximum photoresponsivity [41]. However,
further progress in device design on a microscale and/or nanoscale is required for the advancement of
NIR-OPTRs which can be applied for various system environments [42–45].

Here, we demonstrate a new type of NIR-OPTR which consists of polymeric
channel/dielectric/sensing (CDS) triple layers in the transistor geometry of bottom-gate and
bottom- source/drain contact. The CDS structure was prepared by sequential spin-coating
processes of poly(3-hexylthiophene) (P3HT), poly(methyl methacrylate) (PMMA), and poly[{2,5-bis-(2-
octyldodecyl)-3,6-bis-(thien-2-yl)-pyrrolo[3,4-c]pyrrole-1,4-diyl}-co-{2,2′-(2,1,3-benzothiadiazole)-5,5′-
diyl}] (PODTPPD-BT) on the silver electrode-deposited PMMA gate-insulating layers. The PMMA
dielectric layer (DL) in the middle of the CDS structure was designed to play a dual role for
the protection of beneath channel layers upon spin-coating as well as the dipole induction by
photogenerated excitons (charges). To investigate the influence of PMMA DLs on the sensing
performances, two different DL thicknesses (20 and 50 nm) were employed for the fabrication of the
CDS structures. For practical applications, the sensing performances of the NIR-OPTRs with the CDS
structures were examined under on/off modulation of NIR light and for the reflected (scattered) NIR
light from an object.

2. Materials and Methods

2.1. Materials and Solutions

The P3HT polymer (weight-average molecular weight = 50 kDa) was purchased from Solaris Chem
(USA). The PODTPPD-BT polymer (weight-average molecular weight = 8.7 kDa, polydispersity index
(PDI) = 1.34) was synthesized via Suzuki coupling reaction using a palladium catalyst as reported in our
previous work [41]. The P3HT solutions were prepared by employing toluene (Sigma-Aldrich, St. Louis,
MO, USA) as a solvent at a solid concentration of 26 mg/mL, while the PODTPPD-BT solutions were
prepared using chlorobenzene (Sigma-Aldrich, USA) at a solid concentration of 15 mg/mL. The PMMA
polymer (weight-average molecular weight = 120 kDa) was purchased from Sigma-Aldrich (USA).
For the preparation of gate-insulating layers, the PMMA solutions (80 mg/mL) were made using
chlorobenzene as a solvent. To form the dielectric layers (DLs), n-butyl acetate was used as a solvent
for the PMMA solutions with two different concentrations (3.6 and 9 mg/mL). All solutions prepared
were subjected to continuous stirring on a hot plate at 60 ◦C for 24 h.

2.2. Thin Film and Device Fabrication

The OFETs with a bottom-gate–bottom-source/drain contact structure were fabricated using the
patterned indium–tin–oxide (ITO)-coated glass substrates (ca. 20 Ω/cm2). The ITO–glass substrates
were immersed in acetone and underwent ultrasonication processes for 30 min. Then the initially
cleaned ITO–glass substrates were cleaned and rinsed with isopropyl alcohol using the same ultrasonic
cleaner, followed by drying with nitrogen gas flow. The dried ITO–glass substrates were subjected
to the 20 min treatment of ultraviolet (UV)/ozone using a UV/ozone cleaner (50 mW/cm2, AC-6,
AHTECH LTS Co., Ltd., Anyang-si, Gyeonggi-do, Korea). On top of the ITO-coated sides of the
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treated substrates, the PMMA solutions (solvent: chlorobenzene) were spun at 2000 rpm for 60 s,
leading to a 450 nm-thick gate-insulating layer. The PMMA layer-coated ITO–glass substrates were
thermally treated at 120 ◦C for 60 min. After transferring these samples to a vacuum chamber, which is
equipped inside an argon-filled glovebox, the 60 nm-thick silver (Ag) source/drain electrodes were
deposited on the PMMA layers by thermal evaporation processes. Note that a shadow mask leading to
a channel length of 70 µm and channel width of 2 mm was used during the deposition of Ag electrodes.
The Ag electrode-deposited samples were moved out and thermally treated at 120 ◦C for 30 min.
Next, the P3HT solutions were spun on top of the Ag electrode-deposited samples at 1500 rpm for 30 s,
followed by soft-baking at 120 ◦C for 30 min. To form DLs, the two PMMA solutions (solvent: n-butyl
acetate) were spun on the P3HT layers at 2000 rpm for 60s and then soft-baked 120 ◦C for 30 min.
The thickness of the PMMA DLs was 20 nm and 50 nm for 3.6 mg/mL and 9 mg/mL, respectively.
Finally, The PODTPPD-BT layers were formed on the PMMA DLs by dropping the PODTPPD-BT
solutions upon spinning the DL-coated sample substrates at 1500 rpm for 60 s. The resulting thickness
of the PODTPPD-BT layers was 50 nm. All devices fabricated were stored inside the argon-filled
glovebox before measurement to minimize a possible attack of moisture and oxygen.

2.3. Measurement

A surface profilometer (Dektak XT, Bruker, Billerica, MA, USA) was used for the measurement
of film thickness. A UV–visible-NIR spectrometer (Lambda 750, PerkinElmer, Waltham, MA, USA)
was employed to measure the optical absorption spectra of film samples. The channel area of
OFETs was examined on a microscale using an optical microscope (SV-55, Sometech, Seoul, Korea).
The transistor performances were measured using a semiconductor parameter analyzer (2636B,
Keithley, Cleveland, OH, USA). For the measurement of phototransistor performances, the channel
area of devices was illuminated with a laser diode (905 nm, VD9030V, Delos Laser, Seoul, Korea).
All devices and laser diodes were placed inside a dark metal box to avoid any influence by ambient light.
The incident light intensity (PIN) of the laser diode was measured using a calibrated photodiode (818-UV,
Newport, Irvine, CA, USA), while it was adjusted using a neutral density filter set (CVI Melles-Griot
SP Pte. Ltd., Singapore). For the measurement of reflected and scattered NIR light, the 905 nm light
from the laser diode was irradiated to an object (optical post holder, PH-3, NAMIL Optical Instrument
Co.), and the resulting scattered light was detected by the OPTRs fabricated in this work.

3. Results and Discussion

As illustrated in Figure 1a, the present OPTRs feature polymeric channel/dielectric/sensing
(CDS) triple layers which are composed of the multi-stacked P3HT/PMMA/PODTPPD-BT polymers.
The P3HT channel layers can be protected by the PMMA dielectric layers from the solvent attack
upon spin-coating using the PODTPPD-BT solution (solvent: CB) for the preparation of the top
sensing layers. Note that PMMA was dissolved in n-butyl acetate only at a high temperature (>70 ◦C)
and n-butyl acetate did not dissolve the P3HT layers at all. Similarly, the thick (450 nm) PMMA
gate-insulating layers were found not to be seriously affected by the CB solvent when it comes to the
short spin-coating time (30 s) for the preparation of the P3HT channel layers. In order to minimize
any possible influence on the very thin (20~50 nm) PMMA DLs, the PODTPPD-BT solutions were
dropped when spinning the PMMA DL-coated samples so that the contact time of CB solvent could
be as short as 1 or 2 s. The resulting CDS structures were prepared on quartz substrates for the
examination of optical absorption properties. As shown in Figure 1b, the prepared CDS structures
(P3HT/PMMA/PODTPPD-BT) delivered a broadband absorption covering whole visible light and
the NIR region up to 1100 nm even though the pristine P3HT and PODTPPD-BT layers could absorb
limited visible and NIR regions, respectively. The inset photographs in Figure 1b provide eye-catching
evidences for the well-prepared CDS structures. This result confirms that the PMMA DLs did
successfully play a role in protecting the P3HT channel layers from the CB solvent upon spin-coating
of the PODTPPD-BT top sensing layers.
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(PODTPPD-BT) triple layers (note that two different thicknesses (t = 20 nm and t = 50 nm) were 
applied for the PMMA dielectric layers (DLs)). (b) Optical absorption spectra of films coated on quartz 
(1) substrates: (2) PODTPPD-BT (50 nm), (2) P3HT (100 nm), (3) PMMA/P3HT/PMMA/PODTPPD-BT 
(CDS). Inset photographs show the color difference of films. 

The performances of the present OPTRs in the dark were measured to understand the basic 
characteristics of the transistors with the CDS structures. As observed from the output curves in 
Figure 2a, the devices showed a typical p-channel transistor behavior with a clear dependency of 
drain current (ID) on the gate voltage (VG) at a fixed drain voltage (VD). Here, interestingly, the level 
of drain current was relatively lower for the devices with the 20 nm-thick PMMA DLs than those 
with the 50 nm-thick DLs. A similar trend of drain current difference was measured for the transfer 
curves (see Figure 2b). The sweeping test in the dark unveiled almost no hysteresis in the output 
curves but very slight hysteresis in the transfer curves (see the inset graphs in Figure 2). In addition, 
the off current was considerably poor for the devices with the 20 nm-thick PMMA DLs compared to 
the devices with the 50 nm-thick DLs (refer to the gate current (IG) for each case). 

 
Figure 2. (a) Output and (b) transfer curves (left: drain current, right: gate current) of the NIR-OPTRs 
with the CDS structures in the dark according to the thickness (t) of PMMA DLs (left: t = 20 nm, right: 
t = 50 nm). The inset graphs in (a) show the representative output curves (swept between VD = 0 V 
and VD = −30 V) at VG = −30 V, while those in (b) show the representative transfer curves (swept 
between VG = 0 V and VG = −30 V) at VD = −30 V. 

Figure 1. (a) Illustration of the cross-sectional structure of the device (see chemical structures on
the right) and optical microscope images of the channel part for the near-infrared-sensing organic
phototransistors (NIR-OPTRs) with the channel/dielectric/sensing (CDS) structures consisting of
poly(3-hexylthiophene) (P3HT)/poly(methyl methacrylate) (PMMA)/poly[{2,5-bis-(2-octyldodecyl)-3,6-bis-
(thien-2-yl)-pyrrolo[3,4-c]pyrrole-1,4-diyl}-co-{2,2′-(2,1,3-benzothiadiazole)-5,5′-diyl}] (PODTPPD-BT)
triple layers (note that two different thicknesses (t = 20 nm and t = 50 nm) were applied for
the PMMA dielectric layers (DLs)). (b) Optical absorption spectra of films coated on quartz (1)
substrates: (2) PODTPPD-BT (50 nm), (2) P3HT (100 nm), (3) PMMA/P3HT/PMMA/PODTPPD-BT
(CDS). Inset photographs show the color difference of films.

The performances of the present OPTRs in the dark were measured to understand the basic
characteristics of the transistors with the CDS structures. As observed from the output curves in
Figure 2a, the devices showed a typical p-channel transistor behavior with a clear dependency of drain
current (ID) on the gate voltage (VG) at a fixed drain voltage (VD). Here, interestingly, the level of drain
current was relatively lower for the devices with the 20 nm-thick PMMA DLs than those with the
50 nm-thick DLs. A similar trend of drain current difference was measured for the transfer curves
(see Figure 2b). The sweeping test in the dark unveiled almost no hysteresis in the output curves but
very slight hysteresis in the transfer curves (see the inset graphs in Figure 2). In addition, the off current
was considerably poor for the devices with the 20 nm-thick PMMA DLs compared to the devices with
the 50 nm-thick DLs (refer to the gate current (IG) for each case).
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Figure 2. (a) Output and (b) transfer curves (left: drain current, right: gate current) of the NIR-OPTRs
with the CDS structures in the dark according to the thickness (t) of PMMA DLs (left: t = 20 nm,
right: t = 50 nm). The inset graphs in (a) show the representative output curves (swept between
VD = 0 V and VD = −30 V) at VG = −30 V, while those in (b) show the representative transfer curves
(swept between VG = 0 V and VG = −30 V) at VD = −30 V.
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The poor dark performances of the devices with the 20 nm-thick PMMA DLs can be attributed
to the imperfect protection role of the 20 nm-thick DLs against the attack of CB solvent during the
PODTPPD-BT top sensing layers when it comes to the higher possibility of pinhole generation in a
thinner film than a thicker film. In more detail, some parts of the CB solvents might permeate through
pinholes in the 20 nm-thick DLs and cause partial damage to the P3HT channel layers, leading to such a
poor device performance. From the ID

0.5-VG curves, the hole mobility (µh) of the present OPTRs in the
dark was calculated as ~0.7 × 10−4 cm2/Vs and ~3.2 × 10−4 cm2/Vs for the 20 nm-thick and 50 nm-thick
PMMA DLs, respectively (see Table 1). The high threshold voltage (VTH) toward a positive voltage
direction may reflect the existence of interfacial charges formed in due course of multi-layer deposition
processes in the present device structures [46].

Table 1. Summary of parameters (dark condition) for the NIR-OPTRs with the CDS structures according
to the thickness (t) of PMMA DLs. The data were extracted from the transfer curves in Figure 2b
at VG = −30 V, VD = −30 V. ID,max and RON/OFF denote the maximum drain current (VG = −30 V,
VD = −30 V) and on/off ratio, respectively.

t (nm) ID,max (nA) VTH (V) RON/OFF µh (10−4 cm2/V·s)

20 17.7 36.7 23.8 0.7
50 28.5 17.5 2930 3.2

Next, the OPTRs with the 20 nm-thick and 50 nm-thick PMMA DLs were subjected to the
examination of photosensing characteristics under illumination with NIR light using a high-power
laser diode used for practical LiDAR applications (wavelength (λ) = 905 nm). First, the NIR sensing
characteristics were measured by adjusting the output of laser diode to a lower light density level of ca.
2.3~742 µW/cm2. As shown in Figure 3a, for both 20 nm-thick and 50 nm-thick PMMA DLs, the output
curves at VG = −30 V were gradually shifted toward a (negatively) higher drain current direction
with increasing the incident NIR intensity (PIN). This result basically informs that the present OPTRs
with the CDS structures did properly work and respond to the incident NIR light. Because the P3HT
channel layers and PMMA layers do not absorb any NIR light, it is obvious that the PODTPPD-BT
top sensing layers should absorb the incident NIR light, and the generated excitons might act as a
floating gate (external bias) to induce charges in the P3HT channel layers via the PMMA DLs. A similar
working mechanism has been reported by applying liquid crystals (LCs) with a high dielectric constant
in our previous reports [46–48]. Here, it is also worth noting that the drain current difference became
larger at the higher drain voltage. This may directly reflect that more charges (holes) in the P3HT
channel layers, which were induced by the photo-generated excitons in the PODTPPD-BT top sensing
layers, could be transported at higher drain voltages. Further investigation into the transfer curves
at VD = −30 V finds that there were gradual shifts in threshold voltages with the incident NIR light
intensity (see Figure 3b). Note that the intrinsic off-current characteristics were not changed upon the
NIR light illumination as the poor off current of the devices with the 20 nm-thick PMMA DLs was kept
for all PIN cases. Considering that the threshold voltage shift does in principle indicate the charge
trapping phenomena in devices, it is supposed that the charges induced from the excitons generated in
the PODTPPD-BT top sensing layers might be trapped at the layer interfaces of the CDS structures.
The threshold voltage shift toward a positive voltage reflects that the trapped charges in the CDS
structure did mainly induce holes in the P3HT channel layers.



Micromachines 2020, 11, 1061 6 of 12Micromachines 2020, 11, x FOR PEER REVIEW 6 of 12 

 

 
Figure 3. (a) Output and (b) transfer curves for the NIR-OPTRs with the CDS structures under 
illumination with the NIR light (905 nm). The incident NIR light intensity (PIN) was varied between 
2.3 and 742 mW/cm2. 

To understand the detailed trend, the device parameters were plotted as a function of the 
incident NIR light intensity. As shown in Figure 4a top panel, the overall drain current was almost 
linearly increased with the incident NIR light intensity for both cases (20 nm-thick and 50 nm-thick 
PMMA DLs). After removing the dark current portion, the linearity was still kept with the incident 
NIR light intensity (see Figure 4a bottom panel). This result implies that the similar portion (ratio) of 
charges induced by the excitons generated in the PODTPPD-BT top sensing layers was transported 
between the source and drain electrodes irrespective of the incident NIR light intensity. Taking into 
account the linearly increasing trend of threshold voltage (see Figure 4b top panel), the ratio of 
trapped charges might be proportionally increased with the incident NIR light intensity for both 
devices. However, a close look into the slopes of net photocurrent (ΔID) as well as net threshold 
voltage shift (ΔVTH) may deliver that, as the incident NIR light intensity increased, the ratio of charge 
transport to charge trap became higher for the OPTRs with the thinner (20 nm) PMMA DLs. In other 
words, more charges could be trapped for the OPTRs with the thinner (20 nm) PMMA DLs at higher 
incident NIR light intensity. This result can give a rough clue regarding the degree of film perfectness 
(vice versa, pinhole-like defects) in the two different thicknesses of PMMA DLs. Given that, over the 
whole range of incident NIR light intensity, the net photocurrent was always higher for the OPTRs 
with the thinner PMMA DLs than those with the thicker DLs (see Figure 4a bottom panel), the charges 
induced via the DLs from the excitons generated in the PODTPPD-BT top sensing layers might follow 
the basic relation of capacitance–thickness that defines higher capacitances at lower thicknesses [49]. 

 
Figure 4. Variation of sensing parameters (taken from the transfer curves in Figure 3) as a function of 
the incident low-power NIR light intensity (PIN = ca. 2.3~140.2 µW/cm2): (a) drain current (ID) and net 

Figure 3. (a) Output and (b) transfer curves for the NIR-OPTRs with the CDS structures under
illumination with the NIR light (905 nm). The incident NIR light intensity (PIN) was varied between 2.3
and 742 mW/cm2.

To understand the detailed trend, the device parameters were plotted as a function of the incident
NIR light intensity. As shown in Figure 4a top panel, the overall drain current was almost linearly
increased with the incident NIR light intensity for both cases (20 nm-thick and 50 nm-thick PMMA DLs).
After removing the dark current portion, the linearity was still kept with the incident NIR light intensity
(see Figure 4a bottom panel). This result implies that the similar portion (ratio) of charges induced by
the excitons generated in the PODTPPD-BT top sensing layers was transported between the source
and drain electrodes irrespective of the incident NIR light intensity. Taking into account the linearly
increasing trend of threshold voltage (see Figure 4b top panel), the ratio of trapped charges might be
proportionally increased with the incident NIR light intensity for both devices. However, a close look
into the slopes of net photocurrent (∆ID) as well as net threshold voltage shift (∆VTH) may deliver
that, as the incident NIR light intensity increased, the ratio of charge transport to charge trap became
higher for the OPTRs with the thinner (20 nm) PMMA DLs. In other words, more charges could be
trapped for the OPTRs with the thinner (20 nm) PMMA DLs at higher incident NIR light intensity.
This result can give a rough clue regarding the degree of film perfectness (vice versa, pinhole-like
defects) in the two different thicknesses of PMMA DLs. Given that, over the whole range of incident
NIR light intensity, the net photocurrent was always higher for the OPTRs with the thinner PMMA
DLs than those with the thicker DLs (see Figure 4a bottom panel), the charges induced via the DLs
from the excitons generated in the PODTPPD-BT top sensing layers might follow the basic relation of
capacitance–thickness that defines higher capacitances at lower thicknesses [49].

For the practical applications, a stronger NIR light with a power density of ca. 2.8~3.8 mW/cm2

was exposed to the present OPTRs with the CDS structures. As shown in Figure 5a, the output curves
were largely shifted with the incident NIR intensity for both devices. In addition, the higher drain
current difference was measured at the higher drain voltage, which was similarly observed in the case
of low-power NIR irradiations in Figure 3. This result supports the notion that the present OPTRs
with the CDS structures function properly for the detection of high-power NIR light as well. Note that
the drain current measured at PIN = 3.8 mW/cm2 was still higher for the OPTRs with the 20 nm-thick
PMMA DLs than those with the 50 nm-thick DLs. In particular, all the transfer curves in Figure 5b
showed a largely different shape from those in Figure 3b, as the drain current in the positive voltage
region was not steeply dropped. This can be ascribed to the considerably shifted threshold voltages
by the trapped charges under the high-power NIR light illumination. As the incident NIR intensity
increased from PIN = 2.8 mW/cm2 to PIN = 3.8 mW/cm2, the transfer curves were gradually shifted
toward a higher drain current direction. Note that the sweeping test revealed almost no hysteresis in
the output curves but very slight hysteresis in the transfer curves (see the inset graphs in Figure 5).
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Figure 4. Variation of sensing parameters (taken from the transfer curves in Figure 3) as a function of
the incident low-power NIR light intensity (PIN = ca. 2.3~140.2 µW/cm2): (a) drain current (ID) and
net drain current (∆ID), (b) threshold voltage (VTH) and threshold voltage shift (∆VTH). The slope
(∆VTH/PIN) was 6.22 × 104 V·cm2/W (t = 20 nm) and 7.63 × 104 V·cm2/W (t = 50 nm).
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Figure 5. (a) Output and (b) transfer curves for the NIR-OPTRs with the CDS structures under
illumination with the NIR light (905 nm). The incident NIR light intensity (PIN) varied between 2.8 and
3.8 mW/cm2. The inset graphs in (a) show the representative output curves (swept between VD = 0 V
and VD = −30 V) at VG = −30 V and PIN = 3.80 mW/cm2, while those in (b) show the representative
transfer curves (swept between VG = 0 V and VG = −30 V) at VD = −30 V and PIN = 3.80 mW/cm2.

The detailed changes of drain current and threshold voltage were analyzed and plotted as a
function of the high-power incident NIR intensity. As shown in Figure 6a top panel, the overall
drain current showed a linearly increasing trend with the high-power incident NIR intensity between
2.8 mW/cm2 and PIN = 3.8 mW/cm2. The net photocurrent (∆ID) was linearly increased with the
high-power incident NIR intensity irrespective of the thickness of DLs (see Figure 6a bottom panel),
while the increasing slope was slightly higher for the OPTRs with the 20 nm-thick PMMA DLs than
those with the 50 nm-thick PMMA DLs. This trend was in accordance with the result in Figure 4a.
However, as observed from Figure 6b, the slope of threshold voltages was almost similar for both
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devices, which is different from the result in Figure 4b. Therefore, it is considered that the degree of
threshold voltage shift might be less sensitive to the incident NIR intensity in the case of a high-power
regime because the interfaces and/or channels could be considerably saturated by the induced charges
(holes) due to the high population of excitons generated in the PODTPPD-BT top sensing layers.
Here, it is worth noting that the net threshold shift (∆VTH) was still higher for the OPTRs with the
20 nm-thick PMMA DLs than those with the 50 nm-thick PMMA DLs.
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Figure 6. Variation of sensing parameters (taken from the transfer curves in Figure 5) as a function
of the incident high-power NIR light intensity (PIN = 2.8~3.8 mW/cm2): (a) drain current (ID) and
net drain current (∆ID), (b) threshold voltage (VTH) and threshold voltage shift (∆VTH). The slope
(∆VTH/PIN) was 4.11 × 104 V·cm2/W (t = 20 nm) and 3.7 × 104 V·cm2/W (t = 50 nm).

Finally, the present OPTRs with the CDS structures were tested for the direct or indirect detection
of NIR (905 nm) light that is optically modulated with a constant on/off frequency. As shown in Figure 7,
the drain current was quickly increased when the modulated NIR light was incident to the OPTRs
irrespective of the thickness of DLs. However, there was a delayed increase after the initial quick
jump for both devices, which can be attributed to the charging behavior of devices when the OPTRs
were exposed to the NIR light for such a long time. When the NIR light was blocked (off phase in
modulation), the drain current was quickly dropped in the presence of a marginal drain current tail.
The slope of the tail drain current signals was slightly higher for the OPTRs with the 50 nm-thick
PMMA DLs than those with the 20 nm-thick PMMA DLs, indicative of more charge trapping behavior
in the thicker PMMA DLs.
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(PIN = 0.695 mW/cm2, 905 nm) for the optimized NIR-OPTRs with the CDS structures at VD = −30 V
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As illustrated in Figure 8a, the reflected NIR light was detected by the present OPTRs. When the
moving wheel was slowly rotated, the NIR light was reflected or scattered by the wheel frame, and then
some part of the reflected NIR light could be incident to the OPTR mounted inside the sample holder.
As shown in Figure 8b, the OPTRs could successfully detect the reflected NIR light irrespective of the
thickness of PMMA DLs. This result implicates that the present OPTRs can be potentially used as
an actual sensor for the LiDAR systems which should properly detect a reflected NIR light from an
object [22].
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Figure 8. Sensing test for the reflected (scattered) NIR light from an object (moving wheel) using the
optimized NIR-OPTRs with the CDS structures: (a) photograph for the measurement setup in which
the NIR-OPTR is mounted inside the sample holder; (b) drain current signals from the NIR-OPTR
upon slow moving of the wheel. The initial light intensity from the 905 nm laser diode (LD) was ca.
3.8 mW/cm2, while the applied drain and gate voltages were VD = −30 V and VG = −30 V, respectively.

4. Conclusions

The NIR-OPTRs with the channel/dielectric/sensing (CDS) triple layers were successfully fabricated
by applying two different thicknesses of the PMMA DLs. The devices with the CDS structures showed
typical p-channel transistor performances in the dark irrespective of the DL thickness, while their hole
mobility was measured in the range of 0.7~3.2 × 10−4 cm2/Vs. Upon illumination with the low-power
NIR light (905 nm), the drain current of devices was gradually increased with the NIR light intensity
in both output and transfer curves. In addition, the threshold voltage in the transfer curves was
shifted proportionally with the intensity of the low-power NIR light. The similar gradual drain current
increase was measured upon illumination with the higher power NIR light, while the shape of transfer
curves was almost identical for the NIR-OPTRs with the same DL thickness. The net photocurrent was
higher for the NIR-OPTRs with the 20 nm-thick DLs than those with the 50 nm-thick DLs, which can be
explained by the basic capacitance–thickness relation defining higher capacitances at lower thicknesses.
These results confirm that the CDS structures in the present devices do actually function as a sensing
medium for NIR light via a charge induction mechanism that forms charges (holes) in the P3HT channel
layers through the PMMA DLs from the excitons generated in the PODTPPD-BT top sensing layers.
The optimized NIR-OPTRs with the CDS structures exhibited stable sensing performances upon on/off

modulation of NIR light and could sense the reflected (scattered) NIR light from an object. This test
supports that the present NIR-OPTRs with the CDS structures are promising as a potential NIR sensor
for LiDAR systems.
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