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Mycobacterium tuberculosis (M. tuberculosis) infection in humans can cause active

disease or latent infection. However, the factors contributing to the maintenance of

latent infection vs. disease progression are poorly understood. In this study, we used a

genome-wide RNA sequencing (RNA-seq) approach to identify host factors associated

with M. tuberculosis infection status and a novel gene signature that can distinguish

active disease from latent infection. By RNA-seq, we characterized transcriptional

differences in purified protein derivative (PPD)-stimulated peripheral blood mononuclear

cells (PBMCs) among three groups: patients with active tuberculosis (ATB), individuals

with latent TB infection (LTBI), and TB-uninfected controls (CON). A total of 401

differentially expressed genes enabled grouping of individuals into three clusters. A

validation study by quantitative real-time PCR (qRT-PCR) confirmed the differential

expression of TNFRSF10C, IFNG, PGM5, EBF3, and A2ML1 between the ATB and

LTBI groups. Additional clinical validation was performed to evaluate the diagnostic

performance of these five biomarkers using 130 subjects. The 3-gene signature set of

TNFRSF10C, EBF3, and A2ML1 enabled correct classification of 91.5% of individuals,

with a high sensitivity of 86.2% and specificity of 94.9%. Diagnostic performance of the

3-gene signature set was validated using a clinical cohort of 147 subjects with suspected

ATB. The sensitivity and specificity of the 3-gene set for ATB were 82.4 and 92.4%,

respectively. In conclusion, we detected distinct gene expression patterns in PBMCs

stimulated by PPD depending on the status of M. tuberculosis infection. Furthermore,

we identified a 3-gene signature set that could distinguish ATB from LTBI, which may

facilitate rapid diagnosis and treatment for more effective disease control.
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INTRODUCTION

Tuberculosis (TB) remains the leading cause of death as an
infectious pathogen in the world. According to the World
Health Organization (WHO) report, there are approximately
10.4 million new cases and 1.8 million deaths of TB each
year. The interactions between Mycobacterium tuberculosis (M.
tuberculosis) and the host immune responses are complex, and
our understandings of the pathogenesis and protective immune
responses during infection still need to be improved. Most
individuals infected with M. tuberculosis remain asymptomatic,
despite a continued immune response, a condition termed latent
tuberculosis infection (LTBI). The protective immune response
from host cells could presumably prevent replication of M.
tuberculosis but fails to eradicate the pathogen (1, 2). Ten
percentage of individuals with LTBI will progress to active TB
during their lifetime (3). It is also possible for the pathogen
to be successfully eradicated, as indicated by a loss of M.
tuberculosis-specific effectormemory T cells, which are detectable
by measuring interferon-gamma (IFN-γ) production in short-
term assays (4). The mechanisms underlying these differential
outcomes after M. tuberculosis infection remain unclear, and
more studies are needed to determine the immunological basis
underlying active disease, latent infection, or clearance (4–6).

Until now, new diagnostic biomarkers are still urgently
needed due to the lack of suitable tests to detect M. tuberculosis
or its products directly from host samples during LTBI.
The tuberculin skin test (TST) for LTBI cannot differentiate
between M. tuberculosis infection and BCG vaccination. T cell-
based IFN-γ release assays (IGRAs) assess IFN-γ production
after the in vitro stimulation of whole blood or peripheral
blood mononuclear cells (PBMCs) with M. tuberculosis-specific
immunodominant antigens, such as 6 kDa early secretory
antigenic target (ESAT6), 10 kDa culture filtrate antigen (CFP10),
and TB7.7 (7, 8). A meta-analysis has shown that IGRAs have
comparable sensitivity and higher specificity than the TST (9).
However, current IGRAs cannot discriminate active TB (ATB)
from LTBI and are therefore are particularly unsuitable for high
TB endemic areas (10). New host biomarkers are needed to
diagnose tuberculosis, especially to discriminate active TB from
latent infection.

Cytokine responses to M. tuberculosis-specific antigens may

differentiate active from latent TB (11–14). More recently,
several genome-wide transcriptomic studies have identified

differential host gene expression profiles depending on M.

tuberculosis infection states (14–18). One study has identified

nine RNA transcripts (RIN3, LY6G6D, TEX264, C14orf2, SOCS3,
KIAA2013, ASNA1, ATP5G1, and NOLA3) from whole blood
samples with the potential to differentiate between subjects with
active and latent TB (16). Another study has shown that high-
affinity IgG Fc receptor IB (FcγRIB) together with four other
transcripts could discriminate between ATB and LTBI (18). RAS
and RAB interactor 3 (RIN3) have also been identified as potential
biomarkers of active, recurrent, cured, and latent tuberculosis
(16). A recent bioinformatic analysis of public gene expression
microarray data identified a set of three genes (GBP5, DUSP3,
and KLF2) for diagnosis of ATB, with no clinical validation

(19). However, most of these studies have used peripheral whole
blood without antigen stimulation, suggesting the potential for
interference with conditions other than TB. Additionally, the
results may be influenced by variation in genetic background.

This study aims to better understand the immunological
characteristics of different status of TB infection and to identify
new transcriptional diagnostic biomarkers. Blood samples from
individuals with clinically confirmed active disease and different
susceptibility phenotypes were collected. Then, we performed a
genome-wide transcription analysis of purified protein derivative
(PPD)-stimulated PBMCs by a genome-wide RNA sequencing
(RNA-seq) and identified unique transcription profiles in
individuals with ATB and LTBI. A discriminatory signature gene
set that differed among these groups was identified. Subsequent
validation with an independent cohort finally established the
discriminatory value of the gene for the discrimination between
ATB and other diseases.

MATERIALS AND METHODS

Study Design and Case Definitions
To identify and validate a reliable and effective transcriptional
signature for the diagnosis of ATB, three cohorts were included
in the study. The overall study design is summarized in Figure 1.
General information and clinical characteristics of the recruited
participants are summarized in Table 1. The study was approved
by the Ethics Committee of Huashan Hospital, Fudan University
and written informed consent was obtained from all participants.

Subjects were assigned to diagnostic groups, i.e., patients
with ATB (ATB group), subjects with latent TB infection
(LTBI group), and TB-uninfected controls (CON group),
independently by two experienced clinicians. The diagnosis
of ATB was based on the following criteria (20): (1) clinical
characteristics and symptoms including fever, cough, and
productive sputum; and (2) positive acid-fast bacilli (AFB) smear
and/or a positive culture for M. tuberculosis. Patients were
all recruited less than one week before anti-TB treatment to
minimize the impact of treatment on host immune responses.
LTBI group were defined as subjects with positive T-SPOT R©. TB
test (Oxford Immunotec Ltd, Oxford, UK) (T-SPOT) results and
with recent exposure to ATB patients but without radiological
evidence of ongoing or previous ATB. In this study, all the
subjects in LTBI group were recruited from household contacts
of active pulmonary TB patients. The CON group was recruited
from household contacts or subjects for routine physical
examination and only those with no clinical or radiographic
evidence of ATB and negative T-SPOT results were included.

To identify RNA-transcript signatures associated with
different stages of TB infection, a discovery cohort was
first used (Biomarker Identification Cohort). The LTBI and
CON groups in this cohort were recruited from household
contacts of patients with ATB from a 6-year follow-up
study (Supplementary Figure 1) aimed at monitoring the
development of active disease (21). The household contacts that
had a consistent positive T-SPOT test, negative chest radiograph
and no clinical symptoms or evidence of ATB within the 6-year
follow up period were included in LTBI group. The household
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FIGURE 1 | Overall study design and subjects in the Biomarker Identification, Biomarker Validation and Biomarker Application cohorts. The subjects in LTBI and CON

group from Biomarker Identification Cohort were recruited from household contacts of ATB patients from a prospective study during 6-year follow up. Subjects in this

cohort were assigned to either the training set or the test set randomly. Subjects in training set were selected for RNA-seq. The differentially expressed genes found by

RNA-seq were tested in the test set and then validated in an independent Biomarker Validation Cohort by qRT-PCR. The identified diagnostic gene signature was then

applied in the clinical-based Biomarker Application Cohort. ATB group, active TB patients; LTBI group, subjects with latent tuberculosis infection; CON group,

TB-uninfected controls; NTB group, patients without ATB; qRT-PCR, quantitative real-time PCR; T-SPOT, T-SPOT®. TB test (Oxford Immunotec Ltd, Oxford, UK);

AFB, acid-fast bacilli.

contacts with consistent negative T-SPOT results and no clinical
and radiological evidence of ATB were included in the CON
group (Supplementary Tables 1, 2). Subjects in this cohort were
assigned to either the training set for RNA-seq or the test set for
quantitative real-time PCR (qRT-PCR) validation. The RNA-seq
signatures were evaluated in the test set and in an independent
validation cohort (Biomarker Validation Cohort). The diagnostic
performance of the validated genes signature set was finally
assessed in a prospectively recruited clinical cohort (Biomarker
Application Cohort) of ATB suspects and compared with that
of other conventional diagnostic methods. ATB suspects are
defined as patients who presented clinical symptoms (fever, night
sweats, weight loss, or cough) or radiographic characteristics
consistent with ATB. Further details of the study design and case
definitions are provided in Supplementary Methods.

Isolation of PBMCs and RNA Extraction
Peripheral blood (8ml) from each participant was withdrawn
from the median cubital vein of the antecubital fossa in
heparinized vacutainer tubes (Becton Dickinson). PBMCs were

separated within 4 h of blood withdrawal using Lympholyte
Cell Separation Media (CEDARLAN, Canada). The number
of viable cells was counted using Countess Automated Cell
Counter (Life Technologies, USA) by trypan blue staining (14).
The PBMCs from each subject were adjusted to a density
of 2.5 × 106 cells/ml in 1ml of AIM-V (Life Technologies,
USA) and plated in 24-well plates. The PBMCs were incubated
with 10µg/ml M. tuberculosis purified protein derivative (PPD,
MycosResearch LLC, USA) or median alone at 37◦C, 5% CO2

for 4 h. After 4 h, the PBMCs were harvested and suspended
in TRIzol reagent (Invitrogen, CA, USA). The total RNA

was immediately extracted according to the manufacturer’s

instructions. RNase-free DNase I (Life Technologies, USA) was
used to remove genomic DNA contamination. The concentration
of RNA was quantified using a NanoDrop instrument (Thermo
Fisher Scientific Inc., USA). The integrity and quality of
RNA were evaluated by Agilent2100 Bioanalyzer (Agilent
Technologies, USA). RNA with a 2100 RIN (RNA integrity
number)≥ 7.0 and 28S/18S>0.7 was used for library preparation
and RNA-seq.
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TABLE 1 | General information of participants in the Biomarker Identification, Biomarker Validation, and Biomarker Application Cohorts.

I: Biomarker Identification Cohort II: Biomarker Validation Cohort III: Biomarker Application Cohort

Characteristic ATB LTBI CON ATB LTBI CON Patients suspected of ATB

N 28 25 31 51 44 35 147

Median age (range) 41 (21–62) 43 (23–65) 39 (32–58) 45 (18–71) 43 (23–67) 41 (21–64) 44 (28–71)

Men, n (%) 16 (57.1%) 13 (52.0%) 16 (51.6%) 31 (60.8%) 25 (56.8%) 19 (54.3%) 83 (56.5%)

HIV infected, n (%) 0 (0%) 0 (0%) 0 (0%) 1 (2.0%) 0 (0%) 0 (0%) 1 (0.6%)

BCG Status

Vaccinated 19 (67.9%) 18 (72.0%) 24 (77.4%) 36 (70.6%) 35 (79.5%) 27 (77.1%) 109 (74.1%)

Unvaccinated 9 (32.1%) 7 (28.0%) 7 (22.6%) 15 (29.4%) 9 (20.5%) 8 (22.9%) 38 (25.9%)

T-SPOT results

Negative 3 (10.7%) 0 (0%) 31 (100%) 6 (11.8%) 0 (0%) 35 (100%) 24 (35.8%)

Positive 25 (89.3%) 25 (100%) 0 (0%) 45 (88.2%) 44 (100%) 0 (0%) 43 (64.2%)

Extrapulmonary TB 6 (21.4%) – – 16 (31.3%) – – 12 (8.2%)

Microbiologic test

AFB positive 23 (82.1%) 0 (0%) 0 (0%) 41 (80.4%) 0 (0%) 0 (0%) 32 (21.8%)

Culture positive 20 (71.4%) – – 38 (74.5%) – 46 (31.3%)

ATB, active TB patients; LTBI, subjects with latent TB infection; CON, TB-uninfected controls.

Library Preparation, Sequencing, and Data
Analysis
RNA samples extracted from each group were used to generate
cDNA libraries using the Illumina TruSeq RNA Sample
Preparation Kit following the manufacturer’s recommended
procedures. Sequencing was performed on the Illumina
Hiseq 2000 instrument. Detailed information on library
preparation, sequencing, and data processing are provided in the
Supplementary Methods.

In order to focus on differentially expressed genes among
three clinical groups (ATB, LTBI, and CON group), we first
calculated fold change (FC) of each gene for each individual
between PPD-stimulated and unstimulated samples. Then the
FC values were analyzed using the Student’s t-test by pair-
wise comparisons, including ATB vs. LTBI, ATB vs. CON,
and LTBI vs. CON. The ratios of mean FC values between
different groups were also calculated. Differentially expressed
genes between two of the clinical groups were identified and
selected for further analysis based on P < 0.05 by Student’s t-
test and with a ratio of > 2.0 (14, 22). The selected genes were
then applied to functional analysis. The detailed bio-informatic
analysis procedure is provided in the Supplementary Methods.

qRT-PCR Analysis
The expression levels of differentially expressed genes were
validated by qRT-PCR. Briefly, total RNAs were extracted
from PPD-stimulated and unstimulated PBMCs using TRIzol
reagent (Life Technologies, USA) according to themanufacturer’s
instruction. Purified RNA was reverse transcribed to cDNA
using Prime-ScriptH RT reagent Kit (TaKaRa) according to
the manufacturer’s protocol. qRT-PCR was then performed
using SYBRTM Green PCR Master Mix (TaKaRa) following
standard conditions on ABI 7500 Real-time PCR System
(Applied Biosystems, Inc) (14). The relative amount of expressed

RNA was calculated by comparison with the expression of
the housekeeping gene GAPDH using the 2−11Ct method
(23). The qRT-PCR primers of target genes are listed in
Supplementary Table 6.

Statistical Analysis
The PPD-stimulated gene expressions were defined as fold
changes by dividing the value of PPD-stimulated cells by the
value of unstimulated cells. Unsupervised two-way hierarchical
clustering was performed between different clinical groups for
analyzing differential gene expression patterns. Mann–Whitney
U tests were used to compare gene expression levels obtained
by qRT-PCR between groups using SPSS 20.0 (SPSS, Chicago,
IL, USA). The chi-squared test was used to compare the positive
detection rate among diagnostic tests. A ROC analysis was
performed to evaluate the diagnostic ability of selected genes to
distinguish ATB from other diseases and the overall accuracy
was assessed by area under curve (AUC) values. Combinations of
markers were identified by a decision tree analysis using R 2.12.1
(R Foundation for Statistical Computing). Using this algorithm,
the best tree was chosen according to the methods of a previous
study (14). All statistical tests were two-sided. P < 0.05 was
considered statistically significant.

RESULTS

Differential Gene Expression Profiles in
PBMCs in Response to PPD for ATB, LTBI,
and CON Groups by RNA-seq
Genome-wide transcriptional profiles of PBMCs from
individuals with different stages of TB infection, including ATB,
LTBI, and CON (training set in the Biomarker Identification
Cohort), were determined by RNA-seq. The ratios of fold
changes were determined for three pair-wise comparisons (ATB
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vs. LTBI, ATB vs. CON, and LTBI vs. CON). Differentially
expressed genes in the three pair-wise comparisons were
largely dominated by genes encoding cytokines, chemokines,

and receptors. Among them, 136 differentially expressed
genes had a ratio of >8 and 397 genes had a ratio of 2–8. A
Venn diagram of the differentially expressed genes identified

FIGURE 2 | RNA sequencing (RNA-seq) analysis results and function enrichment analysis of differentially expressed genes. (A) Unsupervised hierarchical cluster

analysis of 401 differentially expressed genes in the pair-wise comparisons. There are 4 samples in each group. Pseudocolors indicate differential expression (red,

up-regulation; green, down-regulation; black, no change in expression). (B) Venn diagram of differentially expressed genes in PBMC samples following PPD

stimulation with P < 0.05 by Students’ t-test and ratio >2.0. (C) Regulatory network built from the differentially expressed genes between ATB and LTBI group. Circle

nodes represents genes, while Gray filled rectangle nodes with yellow border color indicate biological processes. For genes, borders of the nodes represent the type

of the gene (up regulated in red, down regulated in green), centers of the nodes indicate the gene expression changes, color intensity is proportional to the level of

regulation. Genes that not quantified are shown in gray. Protein-protein interactions are depicted as gray solid line, dashed lines show the linkage of gene to related

biological processes. Big gray circles indicate main module of biological processes. (D) Gene Ontology (GO) enrichment analysis for differentially regulated genes

between ATB and LTBI group. Only the top false discovery rate (FDR) ranked 10 enrichment of GO terms from “biological process” category were listed.
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in the three pair-wise comparisons is shown in Figure 2B.
Most genes were unique to a single pair-wise comparison,
including 75.9% (154/203) in LTBI vs. CON, 75.6% (149/197)
in ATB vs. LTBI, and 73.7% (98/133) in ATB vs. CON. After
subtracting the number of shared genes among comparisons,
401 differentially expressed genes were identified in the three
groups (Supplementary Table 3). An unsupervised hierarchical
cluster analysis of the differentially expressed genes was used
to successfully assign test individuals to three groups precisely
corresponding to ATB, LTBI, and CON (Figure 2A). One large
cluster containing data of all subjects with LTBI and all CON
subjects was highly distinct from a cluster with data of subjects
with ATB.

Functional Categorization of Differentially
Expressed Genes
According to the results of functional analysis, differentially
expressed genes among ATB, LTBI, and CON groups were
enriched for various GO categories. The detailed results of GO
analyses are shown in Supplementary Table 4.

To identify the difference of major relevant host immune
response between active tuberculosis and latent infection, we
focused on the comparison between ATB and LTBI. A regulatory
network was constructed using information from both a gene
ontology (GO) analysis and protein–protein interaction analysis
(Figure 2C). Differentially expressed genes were overrepresented
for four modules in the biological process category, including
immune response, cell motion, cell interaction, and cell death,
providing insight into the developmental processes of the
active disease vs. latent infection. The 10 most highly enriched
biological processes are shown in Figure 2D. Most genes
involved in immune response systems were upregulated in
ATB, indicating the activation of host defense against M.
tuberculosis. However, genes responsible for cell adhesion,
membrane invasion, and endocytosis were upregulated in LTBI
unlike in ATB, suggesting a possible pathway for M. tuberculosis
survival in host cells during the latent stage. Functional
categorization of differentially expressed genes between LTBI
and CON group revealed that the major biological processes
were immune response, regulation of apoptosis and cell death.
Most genes were upregulated in LTBI group, indicating a high
degree of activation of the immune response and cell death.
The visualization of the regulatory network was shown in
Supplementary Figure 2.

Identification of Differentially Expressed
Genes in Response to PPD Stimulation by
RNA-seq
We used qRT-PCR to verify the expression levels of 37
differentially expressed genes identified by RNA-seq using a test
set including 24 subjects in the ATB group, 21 in the LTBI
group, and 27 in the CON group (Supplementary Table 5). The
37 genes were identified by two rounds of selection: 88 most
highly differentially expressed genes in pair-wise comparisons
with P < 0.05 by Student’s t-test and ratio > 4 were firstly
selected for pre-testing by qRT-PCR in 4 subjects with ATB,

TABLE 2 | Significantly regulated genes in PPD-stimulated PBMCs in pair-wise

comparisons validated in test set from Biomarker Identification Cohort by

qRT-PCR.

Gene symbol Mean fold change Ratio Mann-Whitney U

ATB/LTBI ATB LTBI ATB/LTBI P-value

IFNG 6.63 2.07 3.20 0.0341

PGM5 3.71 1.03 3.60 0.0213

EBF3 3.10 0.71 4.37 0.0151

TNFRSF10C 0.15 1.49 0.10 <0.0001

A2ML1 1.82 0.52 3.50 0.0434

ATB/CON ATB CON ATB/CON P-value

IFNG 2.07 0.71 2.91 0.0115

CXCL10 4.43 0.55 7.99 0.0185

TNFRSF10C 0.15 0.47 0.33 0.0420

ENPP3 2.54 0.53 4.75 0.0321

MYBPH 4.97 0.78 6.39 0.0124

IL26 0.73 0.22 3.38 0.0403

GPR146 0.26 1.25 0.21 0.0321

VCAN 0.32 0.87 0.37 0.0476

GPRC5A 4.61 1.05 4.39 0.0436

GPR64 0.81 2.45 0.33 0.0414

A2ML1 1.82 0.58 3.13 0.0488

EBF3 3.1 0.64 4.84 0.0231

LTBI/CON LTBI CON LTBI/CON P-value

CD1A 3.21 0.85 3.78 0.0325

HBEGF 10.93 1.74 6.30 0.0021

ZBED2 3.80 1.15 3.32 0.0263

HCAR2 5.44 1.39 3.92 0.0302

PDSS1 6.73 2.35 2.86 0.0412

KCNJ10 0.21 0.72 0.30 0.0485

IFNG 6.63 0.71 9.32 0.0051

CXCL10 4.36 0.55 7.87 0.0134

TNFRSF10C 1.49 0.47 3.20 0.0355

Fold change: the fold change was calculated by dividing gene expression level of

PPD-stimulated sample by gene expression level of unstimulated sample by qRT-PCR.

Ratio: the ratio was calculated by dividing mean fold change of one group by mean fold

change of another group.

4 with LTBI and 4 CON by qRT-PCR. Among them, 37
genes showed P < 0.1 in the pre-testing and were selected
for further validation. For the 37 selected genes, differential
expression was confirmed in 26 genes by qRT-PCR, indicating
the same regulatory patterns as those identified by RNA-
seq (Table 2).

Among these genes, TNFRSF10C, IFNG, PGM5, EBF3, and
A2ML1 exhibited statistically significant differences in the
comparison of ATB vs. LTBI in PPD-stimulated PBMCs. IFNG,
EBF3,A2ML1, and TNFRSF10Cwere also differentially expressed
between ATB and CON group. IFNG, CXCL10, and TNFRSF10C
were differentially expressed between ATB and CON or LTBI and
CON groups. Six genes (CD1A,HBEGF, ZBED2,HCAR2, PDSS1,
and KCNJ10) were differentially expressed between LTBI and
CON groups. P-values of these in pair-wise comparisons were
shown in Table 2.
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Validation of the Signature Gene Set for
Discriminating ATB From LTBI in
Independent Cohorts
Since the current commercially available IGRAs cannot
distinguish ATB from latent infection, we focused on evaluating
biomarkers that can discriminate between ATB and LTBI. For
further evaluation of the differentially expressed genes between
ATB and LTBI (TNFRSF10C, IFNG, PGM5, EBF3, and A2ML1),
we expanded the sample size and recruited another independent
set of 130 subjects, including 51 in the ATB group, 44 in the LTBI
group, and 35 in the CON group (Biomarker Validation Cohort).
The expression levels of the selected genes were examined by the
same procedure described above.

Not surprisingly, the PPD-stimulated expression levels of
IFNG, PGM5, EBF3, and A2ML1 were significantly higher
in the ATB group than in the LTBI and CON groups
(Figures 3B–E). The results also indicated that TNFRSF10C
was significantly downregulated after PPD stimulation in ATB
group. The expression level of TNFRSF10C was significantly
lower in the ATB group than in the LTBI and CON
groups (p < 0.0001 and p = 0.021, respectively) (Figure 3A).
We divided the subjects in Biomarker Validation Cohort
into two subgroups based on the BCG vaccination status.
There were no significant differences observed between BCG
vaccinated and unvaccinated individuals for all the five genes
(Supplementary Figure 3). Then we used ROC methodology to
evaluate the discriminatory ability of the five genes between the
ATB and LTBI groups (Supplementary Table 7). According to
the optimal cutoff determined by the ROC analysis, TNFRSF10C
had the highest AUC (0.8725, 95% CI: 0.8017–0.9434) with a
sensitivity of 78.4% (40/51) and a specificity of 84.1% (37/44)
for discriminating between ATB and LTBI (Figure 3F). A2ML1
and EBF3 also had potential diagnostic value with AUC > 0.75
(Supplementary Table 7 and Figure 3F).

We subjected these genes to a decision tree analysis to identify
the best biomarker combination using R with 15-fold cross-
validation. When combining the data for the LTBI and CON
groups in a control group, the combination of TNFRSF10C,
A2ML1, and EBF3 (3-gene signature set) provided the best
predictive ability, with as many as 91.5% (119/130) of individuals
being correctly classified. The sensitivity and specificity of the
3-gene signature set for ATB detection were 86.2% (44/51) and
94.9% (75/79), respectively (Figure 3G).

Clinical Application of the Optimal
Signature Gene Set in Individuals With
Suspected ATB
We next conducted a prospective study of 147 patients with
suspected ATB (Biomarker Application Cohort). The ATB
suspects enrolled were all symptomatic patients who presented
with clinical or radiographic characteristics consistent with ATB
before any treatment. At enrollment, all 147 patients were tested
by an AFB smear, T-SPOT test, and the 3-gene signature set.

Among 147 patients, 68 met the ATB-indicative criteria (see
Materials and Methods for details) and were finally diagnosed
with ATB. We evaluated the diagnostic performance of the

3-gene set for classifying participants according to ATB or
other diseases (including latent infection and TB-uninfected
individuals). A ROC analysis was also performed for the
three individual genes (Supplementary Table 8). The sensitivity,
specificity and diagnostic accuracy of the 3-gene set, T-SPOT,
and AFB were calculated (Table 3). The 3-gene set showed high
diagnostic accuracy with a sensitivity and specificity of 82.4%
(56/68) and 92.4% (73/79), respectively. The sensitivity of the 3-
gene set was significantly higher than that of AFB (P < 0.0001).
Moreover, in patients with ATB with negative AFB results (n =

38), the 3-gene set also showed a high sensitivity of 81.6% (31/38).
The diagnostic accuracy of the 3-gene signature set showed no
significant difference between BCG vaccinated and unvaccinated
individuals (Supplementary Table 9). The T-SPOT test showed a
high sensitivity for ATB detection (59/68, 86.8%), but a relatively
low specificity (57/79, 72.2%). The specificity of the 3-gene set
test was significantly higher than that of the T-SPOT test (P <

0.001). If the 3-gene set test was combined with AFB in a serial
manner such that a positive result was defined when either of the
test results was positive and a negative result was assigned when
both test results were negative, the sensitivity and specificity were
89.7% (61/68) and 91.1% (72/79), respectively. The sensitivity was
higher than that of the 3-gene set alone, but the difference was
not significant.

DISCUSSION

We identified a TB-specific transcriptional signature in
PPD-stimulated PBMCs with promising diagnostic value for
distinguishing ATB from other diseases with similar clinical
features. This 3-gene signature set was finally evaluated
using a prospective clinical cohort including patients with
suspected ATB.

After infection with M. tuberculosis, the host could develop
different outcomes including active disease, latent infection,
or clearance, which depends on both bacterial and host
immune factors. However, TST and commercial IGRA tests
cannot distinguish latent infection from active disease (24).
Previously identified biomarkers of active and latent infection
vary considerably among studies, limiting their utility for clinical
diagnosis (25, 26). This variation may be explained by the
complexity of the infection and disease continuum as well as
variation in immune responses during the infection process.
Furthermore, previous studies have used un-stimulated naïve
PBMCs or peripheral whole blood for gene expression profiling
(17, 18). Accordingly, conditions other than M. tuberculosis
infection could affect the TB-associated transcription profiles and
candidate genes.

Several transcriptional signatures have been proposed as
diagnostic biomarkers for ATB by other studies (19, 25, 27, 28).
Host gene signatures for predicting progression to ATB and
monitoring treatment response have also been demonstrated
(29–31). However, when comparing these identified gene
signatures, the results of our study showed little overlap,
especially in differentially expressed genes between ATB and
LTBI. Different settings (e.g., areas of different TB prevalence

Frontiers in Immunology | www.frontiersin.org 7 December 2019 | Volume 10 | Article 2948

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Biomarkers of Active Tuberculosis

FIGURE 3 | Validation of differentially expressed genes between ATB and LTBI group by qRT-PCR in the Biomarker Validation Cohort. (A–E) Representative scatter

plots of five discriminatively expressed genes (TNFRSF10C, IFNG, PGM5, EBF3, and A2ML1) between ATB and LTBI were shown detected by qRT-PCR. Error bars in

the scatter-dot plots indicate the medians and IQRs fold change of each group following PPD stimulation. Kruskal–Wallis tests with Dunn’s post tests were used to

compare the differences among three groups. *Significant difference: 0.01< P < 0.05; **Significant difference: 0.001< P < 0.01; ***Significant difference: P < 0.0001.

(F) The receiver operating characteristics (ROC) curves for the five genes in discriminating between ATB and LTBI group. The ROC curves were constructed using

data from subjects in ATB group as patients and subjects in LTBI group as controls. (G) The diagnostic performance of the 3-gene signature set in discriminating

between ATB and LTBI, and between ATB and LTBI+CON in the Biomarker Validation Cohort.

TABLE 3 | Diagnostic performances of the 3-gene signature set, AFB and T-SPOT in the Biomarker Application Cohort.

Tests Sensitivity%, (n/N)

95% CI

Specificity%, (n/N)

95% CI

PPV%, (n/N)

95% CI

NPV%, (n/N)

95% CI

Accuracy, (n/N)

95% CI

AFB 44.1 (30/68) 97.5 (77/79) 93.8 (30/32) 67.0 (77/115) 73.5 (108/147)

32.9–55.9 90.7–99.8 78.8–99.3 57.9–74.9 65.8–79.9

T-SPOT 86.8 (59/68) 72.2 (57/79) 72.8 (59/81) 86.3 (57/66) 78.9 (116/147)

76.5–93.1 61.4–80.9 62.2–81.4 75.9–92.9 71.6–84.8

3-gene set 82.4 (56/68) 92.4 (73/79) 90.3 (56/62) 85.9 (73/85) 87.8 (129/147)

71.5–89.8 84.1–96.8 80.1–95.8 76.8–91.9 81.4–92.2

3-gene set+AFB 89.7 (61/68) 91.1 (72/79) 89.7 (61/68) 91.1 (72/79) 90.5 (133/147)

80.0–95.2 82.6–95.9 79.9–95.2 82.6–95.9 84.5–94.4

PPV, positive predictive value; NPV, negative predictive value.

3-gene set: 3-gene signature set including TNFRSF10C, A2ML1, and EBF3.

3-gene set test was combined with AFB in a serial manner such that a positive result was obtained when either of the test results was positive and a negative result was assigned when

both test results were negative.
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rates, differences in the genetic background of patients)
could introduce significant variability of results among studies.
Inclusion criteria for research objects (especially for LTBI and
controls), and the detectionmethod used (whole blood or antigen
stimulation) are also possible explanations for this difference.
Validation of our new test in a large-scale cohort including
subjects from multiple sites and with different status of TB
infection is still needed. In the present study, the PPD-stimulated
IFNG expression was significantly higher in ATB group. The
result is not consistent with our previous study investigating
PPD-stimulated cytokine response, which showed that PPD-
stimulated IFN-γ release was significantly higher in LTBI group
than that in ATB group (32). The main reasons for the contrast
results between studies included the differences in detection
method (mRNA vs. cytokine) and the impact of incubation time
on host immune response (4 h vs.16–20 h). The heterogeneity of
ATB patients and subjects with LTBI could also affect the IFNG
expression, which needs to be further explored.

In this study, we used PPD-stimulated PBMCs to minimize
unrelated background noise and to simultaneously maximize
M. tuberculosis-specific host immune responses. Compared with
other studies using unstimulated whole blood or ESAT-6/CFP-
10 stimulation, PPD stimulation could provoke more diverse
host immune responses, which could improve the discriminatory
capacity of the transcriptional gene profiles. More importantly,
several other studies and our own have demonstrated that PPD-
stimulated gene expressions or cytokine profiles have diagnostic
potential for distinguishing between ATB and LTBI (13, 32–35).
Therefore, evaluating the PPD-induced transcriptional profiles
in different populations could provide more comprehensive
immune factors for specific ATB and LTBI detection. It is worth
noting that PBMC isolation and PPD stimulation procedures of
our 3-gene signature test make it not suitable for a point-of-
care test, which could not totally meet the needs for large-scale
screening or application in resource-limited areas. Therefore, the
detection method needs to be further simplified and optimized
for adaption to a feasible and low-cost test.

Additionally, PPD shares several antigens with BCG, and a
cross-reaction may occur between PPD based tests and BCG
vaccination. However, our results indicated that the expression
levels of the identified genes showed no significant difference
between BCG vaccinated and unvaccinated individuals. BCG
vaccination status did not change the diagnostic accuracy of the
3-gene signature set for discriminating ATB from other diseases.
Such potential influence could also be avoided by combining
with current IGRAs such as T-SPOT assay in a serial way (32).
Further study with larger sample size is necessary to evaluate the
impact of BCG vaccination on the diagnostic performance of the
new test.

Another unique feature of the study is that we recruited
household contacts of patients with smear-positive ATB, which
is an effective strategy for studying the differences in immune
mechanisms in response to TB infection. After 6 years of follow-
up, the overall incidence of active disease in our household
contact cohort was 11.0 per 1000 person-years; the vast majority
of household contacts did not develop active disease and
remained asymptomatic. The immune system of these subjects
may control or eradicate the bacteria, despite frequent and

long-term exposure to patients with active pulmonary TB.
Therefore, gene expression analyses of these subjects may help
to identify profiles that are correlated with disease resistance
and susceptibility. In this study, the T-SPOT test was used
to screen household contacts with latent infection. Owing to
a high BCG-vaccination rate in this area (36), T-SPOT tests
were more specific than the commonly used TST (37, 38).
Moreover, with known exposure to patients with smear-positive
pulmonary TB, T-SPOT-positive results for household contacts
were considered to indicate a recently acquired infection, while
IGRA-positive results without established TB exposure suggest
remote infection (24, 39). In the Biomarker Identification Cohort,
subjects with LTBI were recruited from household contacts of
ATB patients with consistent positive T-SPOT results during 6-
year follow-up, which may be considered as long-standing LTBI
rather than recent LTBI. Since the heterogeneity of LTBI could
result in different transcriptional profiles between remote and
recent infection (5, 25), our 3-gene signature set might be more
appropriate for diagnosing long-standing LTBI rather than recent
infection. Further study will recruit subjects with different status
of LTBI to validate our new biomarkers.

TNFRSF10C was the most highly differentially expressed
gene among the three groups in this study. TNFRSF10C levels
were significantly lower in the ATB group and higher in the
LTBI group than in the control group, suggesting that its
expression is regulated by host cells in a stage-specific manner.
The TNFRSF10C protein, also known as TNF-Related Apoptosis-
Inducing Ligand Receptor 3 (TRAIL-R3), is a member of the
TNF-receptor superfamily. TRAIL-R3 contains an extracellular
TRAIL-binding domain and a transmembrane domain, but no
death domain in the cell. Therefore, this receptor is considered
to function as an antagonistic receptor, which could protect cells
from TRAIL-induced apoptosis (40, 41). The overexpression of
TRAIL-R3 could avoid the TRAIL-induced cell death, which was
proved in several tumor cell lines and primary tumors (42, 43).
In our study, TNFRSF10C expression was decreased in patients
with ATB, potentially eliminating its anti-apoptotic effect; this is
probably a necessary step for protection against bacterial survival
and growth (44–46). An alternative explanation for the elevated
TNFRSF10C expression in the LTBI group is direct inhibition
by M. tuberculosis infection. The significant downregulation of
TNFRSF10C could be a survival mechanism for M. tuberculosis
during latent infection. Future studies are needed to address these
possibilities and to analyze themolecularmechanisms underlying
the regulation of TNFRSF10C.

The present study had some limitations. First, the sample
size for validation was relatively small, and future studies should
evaluate the biomarkers with larger samples, focusing on patients
with ATBwho have immunodeficient conditions, such as subjects
with HIV infection, or patients receiving immunosuppressive
therapy for autoimmune diseases. Second, more symptomatic
individuals suspected of ATB should be recruited for further
evaluation of the new test in clinical application. Third, a small
number of ATB patients in our study received anti-TB treatment
for <1 week before recruitment. It has been demonstrated that
the host transcriptional profiles can change rapidly over time
during treatment (25, 47). Although the impact appeared to be
limited within 1 week of treatment (24), further validation of
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the 3-gene signature is still necessary. Besides, the candidate
biomarkers should be evaluated with an emphasis on the
predictive value for progression to active disease in a large cohort
of subjects at high risk for TB infection. Finally, functional studies
are needed to determine the roles of the identified biomarkers in
the pathogenesis of TB infection.

In summary, we comprehensively analyzed transcription
profiles associated with different TB infectious statuses and
confirmed that a 3-gene signature set (TNFRSF10C, A2ML1, and
EBF3) could be used as a reliable diagnostic biomarker for ATB.
These findings have important implications for the development
of novel diagnostic tests to discriminate ATB from other diseases.
The results could also help us get a better understanding of
immune mechanisms underlying latent infection or progression
to active disease after M. tuberculosis infection and the key
immunological factors of this transformation.
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