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Diabetic complications are a leading cause of acquired blindness, end-stage renal failure, and accelerated atherosclerosis, which
are associated with the disabilities and high mortality rates seen in diabetic patients. Continuous hyperglycemia is involved in the
pathogenesis of diabetic micro- and macrovascular complications via various metabolic pathways, and numerous hyperglycemia-
induced metabolic and hemodynamic conditions exist, including increased generation of various types of advanced glycation
end-products (AGEs). Recently, we demonstrated that glyceraldehyde-derived AGEs, the predominant structure of toxic AGEs
(TAGE), play an important role in the pathogenesis of angiopathy in diabetic patients. Moreover, recent evidence suggests that the
interaction of TAGE with the receptor for AGEs (RAGE) elicits oxidative stress generation in numerous types of cells, all of which
may contribute to the pathological changes observed in diabetic complications. In this paper, we discuss the pathophysiological

role of the TAGE-RAGE system in the development and progression of diabetic retinopathy.

1. Introduction

Diabetic complications are a leading cause of end-stage
renal failure, acquired blindness, and cardiovascular disease
(CVD) and are involved in the disabilities and high mortality
rates observed in patients with type 1 or type 2 diabetes
[1]. Although various hyperglycemia-induced metabolic and
hemodynamic conditions are proposed to contribute to
complications in diabetes [2, 3], recent clinical studies have
suggested the concept of “hyperglycemic memory” in the
pathogenesis of vascular injury in diabetes [4-6]. Indeed,
the Diabetes Control and Complications Trial-Epidemiology
of Diabetes Interventions and Complications (DCCT-EDIC)
Study demonstrated that the reduction in the risk of
progressive retinopathy and nephropathy brought about by
intensive therapy in patients with type 1 diabetes persisted
for at least eight years, despite increasing hyperglycemia
[4, 5]. The intensive therapy administered during the DCCT

resulted in decreased progression of intima media thickness
(IMT) and had reduced the risk of nonfatal myocardial
infarction, stroke, or death from CVD by 57% by 11 years
after the end of the trial [6].

Furthermore, a recent follow-up study, the United
Kingdom Prospective Diabetes Study (UKPDS), has also
shown that the benefits of intensive therapy in patients
with type 2 diabetes were sustained after the cessation
of the trial [7]. In this study, despite the early loss of
glycemic differences between intensive and conventional
therapy, the reductions in microvascular risk and emergent
risk reductions for myocardial infarction and death from any
cause were maintained during 10 years of posttrial follow-
up [7]. These observations indicate that intensive therapy to
control blood glucose has long-term beneficial effects on the
risk of diabetic retinopathy, nephropathy, CVD, and death in
patients with type 1 or type 2 diabetes, strongly suggesting
that so-called “metabolic memory” causes chronic damage



in diabetic vessels that is not easily reversed, even by
subsequent, relatively good control of blood glucose. Among
the various pathways activated under diabetes, as described
above, the biochemical nature of advanced glycation end-
products (AGEs) and their mode of action are the most
compatible with the theory of “hyperglycemic memory”
(8,9].

There is a growing body of evidence to suggest that con-
tinuous hyperglycemia under diabetic conditions enhances
the formation of AGEs, senescent macroprotein deriva-
tives, through nonenzymatic glycation (called the “Maillard
reaction”). There is also accumulating evidence that the
binding of the receptor for AGEs (RAGE) with AGEs
elicits oxidative stress generation and subsequently evokes
inflammatory and/or thrombogenic responses in various
types of cells, thus participating in the development and
progression of diabetic angiopathies [10-18]. Recently, we
demonstrated that glyceraldehyde-derived AGEs (Glycer-
AGEs), the predominant structure of toxic AGEs (TAGE),
play an important role in the pathogenesis of angiopathy in
diabetic patients [10, 19, 20]. Furthermore, there is a growing
body of evidence to suggest that the interaction of TAGE
with the RAGE alters intracellular signaling, gene expression,
and the release of proinflammatory molecules and elicits
oxidative stress generation in numerous types of cells, all of
which may contribute to the pathological changes seen in
diabetic complications. Therefore, the inhibition of TAGE
formation, blockade of TAGE-RAGE interactions, and the
suppression of RAGE expression or its downstream pathways
are promising targets for therapeutic intervention against
diabetic complications.

In this paper, we discuss the pathophysiological role of
the TAGE-RAGE-oxidative stress system in the development
and progression of diabetic retinopathy and related thera-
peutic interventions.

2. Alternative Routes for the Formation of
AGEs In Vivo

AGE:s are formed by the Maillard process, a nonenzymatic
reaction between aldehyde or ketone group of the reducing
sugars (such as glucose, fructose, and trioses etc.) and the
amino groups of proteins that contribute to the aging of
proteins and to the pathological complications of diabetes
[10-13, 19-24]. In the hyperglycemia elicited by diabetes,
this process begins with the conversion of reversible Schiff
base adducts to more stable, covalently bound Amadori
rearrangement products. Over the course of days to weeks,
these Amadori products undergo further rearrangement
reactions to form irreversibly bound moieties known as
AGEs. AGEs were originally characterized by their yellow-
brown fluorescent color and their ability to form cross-links
with and between amino groups, but the term is now used for
a broad range of advanced products of the glycation process,
including N-(carboxymethyl)lysine (CML) and pyrraline,
which show neither color nor fluorescence and are not cross-
linked proteins [8, 21-25]. The formation of AGEs in vivo
is dependent on the turnover of the chemically modified
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target, the time available, and the sugar concentration. The
structures of the various cross-linked AGEs that are gener-
ated in vivo have not yet been completely determined. Due
to their heterogeneity and the complexity of the chemical
reactions involved, only some AGEs have been structurally
characterized in vivo. The structural identities of AGEs with
cytotoxic properties therefore remain unknown.

Recent studies have suggested that AGEs can arise
not only from reducing sugars, but also from carbonyl
compounds derived from the autoxidation of sugars and
other metabolic pathways [26-28]. Indeed, we have recently
demonstrated that glucose, a-hydroxyaldehydes (glycer-
aldehyde and glycolaldehyde), and dicarbonyl compounds
(methylglyoxal; MGO, glyoxal; GO, and 3-deoxyglucosone,
3-DG) are actively involved in the protein glycation process
[21, 29-31]. Six immunochemically distinct classes of AGEs
(glucose-derived AGEs; Glc-AGEs, glyceraldehyde-derived
AGEs; Glycer-AGEs, glycolaldehyde-derived AGEs; Glycol-
AGEs, MGO-derived AGEs; MGO-AGEs, GO-derived AGEs;
GO-AGEs, and 3-DG-derived AGEs; 3-DG-AGEs) are found
in the sera of type 2 diabetic patients during hemodialysis
[21, 29-31]. Based on these data, we proposed a pathway for
the in vivo formation of distinct AGEs involving the Maillard
reaction, sugar autoxidation, and sugar metabolic pathways,
as shown in Figure 1.

3. Receptors for AGEs

Such receptors may play a critical role in AGEs-related biol-
ogy and the pathology associated with diabetic complications
and aging disorders. Several types of AGEs binding proteins
and/or receptors for AGEs such as RAGE [32-36]; oligosac-
charyl transferase-48 (AGE-R1) [37]; galectin-3 (AGE-R3)
[38]; CD36 [39]; macrophage scavenger receptors types 1
and 2 (MSRs-1 & -2) [40]; and fasciclin EGF-like, laminin-
type EGF-like, and link domain-containing scavenger recep-
tors 1 and 2 (FEELs-1 & -2) [41] have been reported.
The relative pathogenic contributions of these receptors to
diabetic complications are poorly defined, although RAGE
is by far the best characterized, and mechanistic in vitro
and in vivo studies on AGEs and their regulatory fragments
such as soluble RAGE (sRAGE) have indicated that they play
important roles in pathobiology [36, 42]. RAGE is normally
expressed in a variety of cells, including endothelial cells
(EC), pericytes, neurons, and microglia, [32-34]. We have
recently found that glyceraldehyde rapidly reacts with the
amino groups of proteins to form Glycer-AGEs both in vitro
and in vivo [19, 21, 30]. Furthermore, Glycer-AGEs have
the strongest binding affinity for RAGE and subsequently
elicit oxidative stress generation and vascular inflammation
and are therefore implicated in accelerated atherosclerosis in
diabetes [43, 44]. Recently, we also demonstrated that Glycer-
AGEs, the predominant structure of toxic AGEs (TAGE),
play an important role in the pathogenesis of angiopathy
in diabetic patients [19, 20]. Moreover, there is a growing
body of evidence to suggest that the interaction of TAGE with
RAGE elicits oxidative stress generation in numerous types of
cells, all of which may contribute to the pathological changes
observed in diabetic complications [10, 19, 20].
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FIGURE 1: Alternative routes for the formation of various distinct AGEs in vivo. Glc-AGEs; glucose-derived AGEs, Glycer-AGEs; glyceraldehyde-
derived AGEs, Glycol-AGEs; glycolaldehyde-derived AGEs, MGO-AGEs; methylglyoxal (MGO)-derived AGEs, GO-AGEs; glyoxal (GO)-
derived AGEs, and 3-DG-AGEs, 3-deoxyglucosone (3-DG)-derived AGEs, CML; N-(carboxymethyl)lysine, and P-NH,; free amino residue

of protein.

4. Pathway of Glycer-AGEs (TAGE) Formation
In Vivo

Glyceraldehyde is derived from two distinct pathways in vivo,
(1) the glycolytic pathway and (2) the fructose metabolism
pathway [19, 20, 45]. (1) The glycolytic intermediate
glyceraldehyde-3-phosphate (G-3-P) is normally catabolized
by the enzyme glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). With a decline in GAPDH activity, G-3-P
accumulates intracellularly. G-3-P metabolism then shifts
to another route, and the amount of glyceraldehyde is
increased, which leads to an increase in the formation of
TAGE. This suggests a positive feedback mechanism; that
is, the TAGE-induced GAPDH suppression further stim-
ulates the generation of TAGE. (2) Under hyperglycemic
conditions, the increased intracellular glucose concentration
stimulates the polyol pathway to generate fructose in insulin-
independent tissues such as the lens, kidney, nerve tissue,
brain, and red blood cells [46—48]. Furthermore, fructose, a
component of table sugar and high-fructose corn syrup, is
also obtained from the diet [49]. Fructose is phosphorylated

to fructose-1-phosphate (F-1-P) and then catabolized to
glyceraldehyde and dihydroxyacetone-phosphate by aldolase
B [48-51]. The newly synthesized glyceraldehyde is then
transported or leaks passively across the plasma membrane.
Glyceraldehyde promotes the formaion of TAGE both intra-
cellularly and extracellularly (Figure 2).

5. Diabetic Retinopathy

Diabetic retinopathy is one of the most important microvas-
cular complications in diabetes and is a leading cause
of acquired blindness among people of occupational age
[52]. Hyperglycemia damages retinal microvascular cells and
causes various changes in retinal tissues such as enhanced
vascular permeability due to pericyte loss, which is fol-
lowed by microvascular occlusion in the retina [53, 54].
Pericytes are elongated cells of mesodermal origin, which
wrap around and along the EC of small vessels [55]. As
pericytes contain contractile muscle filaments on their EC
side, they are regarded as microvascular counterparts of
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FIGURE 2: Production routes of glyceraldehyde-derived AGEs (Glycer-AGEs) in vivo. TAGE; toxic AGEs (glyceraldehyde-derived AGEs), RAGE;
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smooth muscle cells and are considered to be involved in
the maintenance of capillary tone [56, 57]. AGEs have been
postulated to play a role in the development and progression
of microvascular disease in diabetes. Vascular endothelial
growth factor (VEGF) is a specific mitogen to EC, which is
also known as vascular permeability factor and is generally
thought to be involved in the pathogenesis of prolifera-
tive diabetic retinopathy. Indeed, clinical observations have
demonstrated that the VEGF level in ocular fluid is positively
correlated with the amount of neovascularization in diabetic
retinopathy [58, 59].

Retinal pericytes accumulate AGEs during diabetes [60],
which is expected to have a detrimental influence on pericyte
survival and function [61]. We have found that TAGE
causes the apoptosis of retinal pericytes and induces the
expression of VEGF by interacting with RAGE, indicating
the involvement of TAGE in the pathogenesis of diabetic
retinopathy, especially in the early stage [62-64]. TAGE also
induces VEGF expression, DNA synthesis, and angiogenesis
in EC. These changes are the hallmark of proliferative
diabetic retinopathy [65, 66]. These findings suggest that
the TAGE-RAGE interaction facilitates angiogenesis by two
distinct mechanisms, by relieving the restriction on EC
growth due to the apoptotic cell death of pericytes and
by autocrine and paracrine induction of VEGF proteins by
vascular wall cells. Although the molecular mechanisms of
the VEGF overexpression elicited by TAGE are not fully
understood, our recent investigation suggested that the
TAGE-RAGE interaction increases VEGF gene transcription
in EC by NADPH oxidase-mediated reactive oxygen species
(ROS) generation and the subsequent activation of nuclear

*; TAGE.

factor kB (NF-xB) via the Ras-mitogen activated protein
kinase pathway [65, 66]. There has been increasing interest
in the role of inflammatory reaction in diabetic retinopathy
[67]. AGEs have recently been shown to increase leukocyte
adhesion to cultured retinal microvascular EC by inducing
intracellular cell adhesion molecule-1 (ICAM-1) expression
[68]. Furthermore, TAGE also induces monocyte chemoat-
tractant protein-1 (MCP-1) expression in EC through intra-
cellular ROS generation [69].

6. Postprandial Hyperglycemia is Associated
with Increased Risk of Diabetic Retinopathy

While it is well known that postchallenge and postprandial
hyperglycemia are related to the development and pro-
gression of diabetic macrovascular disease [70, 71], there
are limited data on the relationship between postprandial
hyperglycemia and microvascular complications. A recent
observational prospective study from Japan demonstrated
that postprandial hyperglycemia is a better predictor of
diabetic retinopathy that glycated hemoglobin A, (HbA.)
[72]. Shiraiwa et al. performed a cross-sectional study of 232
people with type 2 diabetes who were not being treated with
insulin injections. Multiple regression analysis revealed that
postprandial hyperglycemia was independently correlated
with the incidence of diabetic retinopathy and neuropathy.
Additionally, postprandial hyperglycemia was also found
to be associated, although not independently, with the
incidence of diabetic nephropathy.

We have previously shown that glyceraldehyde reacts
rapidly with the amino groups of proteins to form TAGE
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in vivo, which evokes vascular inflammation and oxidative
stress generation, thereby implicating them in accelerated
atherosclerosis in diabetes [10, 19, 20]. More recently, we
investigated the effects of nateglinide, which has been known
to improve postprandial hyperglycemia, on HbA,., Glc-AGE,
and TAGE levels in Goto-Kakizaki (GK) rats, one of the
rat models of type 2 diabetes, fed twice a day [73]. After
6 weeks, nateglinide treatment was found to not only pre-
vent postprandial hyperglycemia, but also to reduce TAGE
levels in GK rats. However, it did not cause a significant
difference in HbA;, or Glc-AGE levels [73]. This study
suggests that TAGE is formed more rapidly than HbA,, a
precursor of Glc-AGEs, under postprandial hyperglycemic
states and shows potential as novel markers of cumulative
postprandial hyperglycemia. In this study, although we did
not clarify the exact molecular mechanism by which TAGE
is formed under postprandial hyperglycemic conditions,
hyperglycemia-induced oxidative stress-mediated inhibition
of GAPDH may lead to the elevation of glyceraldehyde levels
and subsequently enhance the formation of TAGE during
the postprandial period [74]. The relative contribution of
postprandial glucose decreased progressively from the lowest
to the highest quintile of HbA,;; whereas, the relative
contribution of fasting glucose increased gradually with
increasing levels of HbA;, [75]. These observations suggest
that a decrease in HbA,. levels does not necessarily reflect
a reduction in postprandial hyperglycemia, especially in
poorly controlled diabetic patients.

7. Serum Levels of TAGE in Diabetes

The above-discussed effect of TAGE strongly suggests a
pathological role for these senescent macroproteins in dia-
betic complications. Furthermore, Glc-AGEs and TAGE are
present in human serum, and the level of both AGEs is
elevated in type 1 and type 2 diabetes [76-79]. These AGEs,
especially TAGE-epitopes, elicit angiogenesis at the concen-
trations present in the sera of diabetic patients. These results
suggest the involvement of TAGE-epitopes in pathologic
angiogenesis in vivo. Recently, we demonstrated that the
vitreous levels of both TAGE and VEGF were significantly
higher in diabetic patients than in control subjects and that
these levels were elevated in association with the severity
of neovascularization in diabetic retinopathy. In addition,
there was a significant correlation between vitreous TAGE
and VEGEF levels [80, 81]. Furthermore, we have recently
found that serum TAGE levels are positively correlated with
thrombogenic markers in humans. Plasminogen activator
inhibitor-1 and fibrinogen levels are positively associated
with serum TAGE levels [82].

While many of the reported studies measured a range of
ill-defined AGEs moieties, others evaluated defined adducts
such as CML, pentosidine, and crossline in association with
diabetic retinopathy [83, 84]. In addition, other studies have
reported no correlation between AGE levels and retinopathy
in diabetic patients [83, 85], although the apparent disparity
between the findings of various studies may be related to
variations in patient populations and/or the nonuniform

assays used for plasma AGEs-quantification. Our studies
suggest that an elevated TAGE level in diabetic patients is
an important factor for the initiation and progression of
retinopathy. Therefore, the inhibition of TAGE formation
and the blockade of TAGE-RAGE interactions are poten-
tial therapeutic strategies for the prevention of diabetic
retinopathy.

8. Serum Levels of Soluble RAGE in Diabetes

The administration of a recombinant soluble form of
RAGE (sRAGE) consisting of its extracellular ligand-binding
domain has recently been shown to not only suppress
the development of atherosclerosis but also to stabilize
established atherosclerosis in diabetic apolipoprotein E-null
mice [86, 87]. The blockade of the AGEs-RAGE axis by the
administration of SRAGE also ameliorates neuronal dysfunc-
tion and reduces the development of acellular capillaries
and pericyte ghosts in hyperglycemic and hyperlipidemic
mice [88]. Furthermore, Kaji et al. have also shown that
attenuation of the RAGE axis with sRAGE inhibits retinal
leukostasis and blood-retinal barrier breakdown in diabetic
C57/BJ6 and RAGE-transgenic mice, which are accompanied
by decreased expression of VEGF and ICAM-1 in the
retina [89]. These observations suggest that exogenously
administered sRAGE captures and eliminates circulating
AGEs, thus protecting against AGEs-elicited tissue damage
by acting as a decoy.

Recently, endogenous sRAGE has been identified in
humans [42]. Endogenous sRAGE may be generated from
the cleavage of cell surface full-length RAGE or novel
splice variants of RAGE (the C-truncated splice isoform of
secretory RAGE; esRAGE) [42]. Endogenous total sRAGE
levels are elevated in patients with type 1 or 2 diabetes
[90-93]. Furthermore, we, along with others, have recently
demonstrated that serum total sSRAGE levels are positively,
rather than inversely, associated with TAGE levels in both
nondiabetic and diabetic subjects [93, 94]. Age-, sex-, and
body mass index-adjusted TAGE levels are also significantly
increased in proportion to the increasing levels of sSRAGE
in nondiabetic subjects [93, 94]. These findings suggest
that the sRAGE pool is not able to efficiently capture and
eliminate circulating TAGE in vivo by working as a decoy
receptor. Since TAGE is a positive regulator of the cell
expression of RAGE, circulating sSRAGE levels may reflect
tissue RAGE expression and be elevated in parallel with
serum TAGE levels as a counter system against TAGE-elicited
tissue damage [95-98].

The serum levels of esRAGE are also correlated with the
levels of circulating AGEs such as CML and pentosidine
in type 1 diabetes [99]. However, in contrast to the case
for total SRAGE, circulating esRAGE levels are decreased,
rather than increased, in both type 1 and 2 diabetes.
Katakami et al. reported in Japanese that the serum levels
of esRAGE were significantly decreased in patients with
type 1 diabetes compared with nondiabetic subjects [100],
and esRAGE levels were found to be significantly lower
in type 1 diabetic patients with retinopathy than in those



without retinopathy [100, 101]. Decreased esRAGE levels
were also found to be an independent risk factor for carotid
atherosclerosis [102]. Indeed, Koyama et al. reported that
esRAGE levels were decreased in Japanese type 2 diabetic
patients compared with nondiabetic subjects and that low
levels of esRAGE were associated with the components of
metabolic syndrome and carotid atherosclerosis [102]. These
observations were contrary to the finding of previous reports
that total SRAGE levels were associated with conventional
coronary risk factors including inflammatory markers and
were independent determinants of coronary artery disease
in diabetes [91, 95, 96]. Therefore, the kinetics and role of
SsRAGE and esRAGE in diabetes may differ [97]. Decreased
levels of esRAGE may be associated with comorbidities such
as diabetic retinopathy and atherosclerosis via mechanisms
other than its role as a decoy because esRAGE levels are
approximately 3~4-fold lower than total sSRAGE levels and
may not be sufficient to efficiently eliminate circulating
AGEs in humans. Furthermore, sSRAGE, but not esRAGE,
was recently found to be independently correlated with
albuminuria in type 2 diabetic patients [103].

9. Agents That Could Potentially Suppress
TAGE-RAGE Interaction

9.1. Inhibitors of the Renin-Angiotensin System (RAS). The
interaction of the RAS and TAGE-RAGE systems has also
been proposed. We have found that angiotensin II potentiates
the deleterious effects of TAGE in pericytes by inducing
RAGE protein expression [64]. In vivo, TAGE-injection
stimulated RAGE expression in the eyes of spontaneously
hypertensive rats, which was blocked by telmisartan. In vitro,
angiotensin II-type 1 receptor-mediated ROS generation
elicited RAGE gene expression in retinal pericytes through
NF-xB activation. Furthermore, angiotensin II augmented
TAGE-induced pericyte apoptosis, the earliest hallmark of
diabetic retinopathy. Telmisartan also blocks angiotensin II-
induced RAGE expression in EC [104].

There is an increasing interest in the role of inflammatory
reactions and immune phenomena in the pathogenesis of
diabetic complications [105-107]. Indeed, leukocyte adhe-
sion to diabetic retinal vasculature is considered to be a
critical early event in diabetic retinopathy, the development
of which is mainly mediated by VEGE, ICAM-1, and MCP-
1 expression [105-107]. ICAM-1 and MCP-1 are essential
chemokines that mediate the recruitment of leukocytes to
mesangial lesions [108, 109]. The selective targeting of
ICAM-1 or MCP-1 was also shown to markedly decrease
albuminuria and renal injury in experimental diabetic
nephropathy [108, 109]. Furthermore, several experimental
studies have supported the pathological role of VEGF in
diabetic nephropathy: antibodies raised against VEGF have
been reported to improve hyperfiltration and albumin-
uria in diabetic rats [110, 111]. In addition, atheroscle-
rosis is also an inflammatory-proliferative disease [112],
and the administration of VEGF is reported to enhance
atherosclerotic plaque progression in animals [113]. We have
recently found that treatment with telmisartan or olmesartan
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inhibits the TAGE-evoked inflammatory responses in EC
via downregulation of RAGE expression [114-118]. These
observations suggest that the blockade of the TAGE-RAGE
signaling pathways by RAS inhibitors may be clinically
relevant to the prevention of diabetic complications.

9.2. Pigment-Epithelium-Derived Factor (PEDF). PEDF is
a glycoprotein that belongs to a superfamily of serine
protease inhibitors with complex neurotrophic, neuropro-
tective, antiangiogenic, antioxidative, and anti-inflammatory
properties, any of which could potentially be exploited
as a therapeutic option for the treatment of vascular
complications in diabetes [119, 120]. PEDF inhibits TAGE-
induced ROS generation and subsequently prevents apop-
totic cell death in pericytes by restoring downregulation
of the gene expression of the antiapoptotic factor bcl-
2 [121]. Furthermore, PEDF also inhibits TAGE-induced
ICAM-1, VEGE and MCP-1 upregulation as well as NO
suppression in EC by blocking NADPH oxidase-mediated
ROS generation [69, 122—126]. In vivo, the administration of
PEDF or pyridoxal phosphate, an AGEs inhibitor, decreased
the retinal levels of 8-hydroxydeoxyguanosine (8-OHdG),
an oxidative stress marker, and subsequently suppressed
ICAM-1 gene expression and retinal leukostasis in diabetic
rats [127]. Moreover, intravenous administration of TAGE
to normal rats increased ICAM-1 gene expression and
retinal leukostasis, which were blocked by PEDF [127].
PEDF inhibited diabetes- or TAGE-induced RAGE gene
expression by blocking superoxide-mediated NF-«B acti-
vation [128]. In addition, we have recently found that
intravenous administration of TAGE to normal rats not only
increases retinal vascular permeability by stimulating VEGF
expression, but also decreases retinal PEDF levels [129].
Simultaneous treatment with PEDF inhibited TAGE-elicited
VEGF-mediated permeability by downregulating the mRNA
levels of p22P"** and gp91P"°*, membrane components of
NADPH oxidase, and subsequently decreasing retinal levels
of the oxidative stress marker, 8-OHdG. PEDF also inhibited
TAGE-induced vascular hyperpermeability (as measured by
transendothelial electrical resistance) by suppressing VEGF
expression. PEDF decreased ROS generation in TAGE-
exposed EC by suppressing NADPH oxidase activity via
downregulation of the mRNA levels of p22P"** and gp91P"°x,
This led to blockade of TAGE-elicited Ras activation and
NF-«B-dependent VEGF gene induction in EC. These results
indicate that the central mechanism of PEDF inhibition of
the TAGE-signaling related to vascular permeability is the
suppression of NADPH oxidase-mediated ROS generation
and subsequent VEGF expression [129].

The PEDF levels in the aqueous humor and vitreous
are decreased in diabetic patients, especially in those with
proliferative retinopathy, suggesting that loss of PEDF in
the eye contributes to the pathogenesis of proliferative
diabetic retinopathy [130, 131]. We have also found that the
vitreous levels of TAGE and VEGF are significantly higher in
diabetic patients than in control subjects [81] and detected
a significant correlation between vitreous TAGE and VEGF
levels. Total antioxidant status was also decreased in the
vitreous in patients with diabetes compared with that in
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the controls. Furthermore, both the TAGE and VEGF levels
(inversely) and those of PEDF (positively) were associated
with the total antioxidant status of the vitreous [132, 133].
These observations further support the concept that PEDF
is an endogenous anti-inflammatory and antioxidative agent
that blocks the TAGE-VEGEF axis, thereby protecting against
the progression of diabetic retinopathy.

9.3. Statins and Bisphosphonates. We have found that protein
prenylation is crucial for TAGE-RAGE signaling in EC
[65, 66]. Cerivastain completely prevented TAGE-induced
increases in NF-xB activity and VEGF expression and the
resultant increase in DNA synthesis as well as tube formation
in microvascular EC [65]. Since mevalonate blocked the
growth-inhibitory effects of cerivastatin on TAGE-exposed
EC and that FTI-276, an inhibitor of farnesyltransferase,
mimicked the effects of cerivastatin, cerivastatin may block
the TAGE-RAGE signaling involved in vascular hyperperme-
ability and angiogenesis via the suppression of protein preny-
lation. Furthermore, we have recently found that atorvastatin
dose-dependently inhibited TAGE-induced ROS generation
in Hep3B cells [134]. Atorvastatin as well as the antioxidant
N-acetylcysteine (NAC) was found to suppress C-reactive
protein (CRP) expression in TAGE-exposed Hep3B cells
at both the mRNA and protein levels [134]. These results
demonstrate that atorvastatin is able to block the TAGE-
signaling involved in CRP expression through its antiox-
idative action. Taken together, these observations suggest
that statins have vasculoprotective effects by inhibiting the
deleterious effects of TAGE via the suppression of their
downstream signaling.

Bisphosphonates are potent inhibitors of bone resorption
and are widely used for the treatment of osteoporosis,
osteolytic bone metastasis, and tumor-associated hypercal-
cemia [135-137]. These compounds have a high affinity for
calcium ions and therefore target bone mineral, where they
are internalized by bone-resorbing osteoclasts and inhibit
osteoclast function. Recently, farnesyl pyrophosphate syn-
thase has been shown to be a molecular target of nitrogen-
containing bisphosphonates such as incardronate disodium
and minodronate, and the inhibition of the posttranslational
prenylation of small molecular weight G proteins including
Ras and Rac-1 is probably involved in their antiresorptive
activity in osteoclasts [135-137]. Since the protein preny-
lation of GTP-binding proteins is associated with various
cellular functions such as cell growth and differentiation
[135-137], nitrogen-containing bisphosphonates may have
pleitrophic effects by blocking the synthesis of isoprenoid
intermediates. Indeed, incardronate disodium was found to
inhibit TAGE-induced increases in NF-xB activity and VEGF
expression as well as the proliferation and tube formation
of EC [66]. Furthermore, we have recently found that
minodronate inhibits TAGE—induced NF-«B activation and
subsequently suppresses VCAM-1 gene expression by reduc-
ing ROS generation in EC [135]. Geranylgeranyl pyrophos-
phate reversed the antioxidative properties of minodronate
in TAGE-exposed EC [135]. Taken together, these findings
suggest that nitrogen-containing bisphosphonates are able to
inhibit TAGE-elicited inflammatory-proliferative changes in

EC by suppressing NADPH oxidase-derived ROS generation,
probably via the inhibition of the geranylgeranylation of Rac-
1, a component of endothelial NADPH oxidase [136, 137].

10. Conclusion

There is accumulating evidence that the TAGE-RAGE-
oxidative stress system is actively involved in the pathogenesis
of diabetic complications, especially diabetic retinopathy. We
have reviewed the inhibitors of the TAGE-RAGE axis and
their potential therapeutic implications in these devastating
disorders.

Expert Opinion. Two recent large prospective clinical studies,
DCCT and UKPDS, have shown that intensive blood glucose
control effectively reduces the incidence of vascular compli-
cations among patients with diabetes [138, 139]. However,
strict control of hyperglycemia is often very difficult to
maintain and may increase the risk of severe hypoglycemia
in diabetic patients. Inhibition of TAGE formation, blockade
of TAGE-RAGE interactions, and the suppression of RAGE
expression or its downstream pathways by the agents dis-
cussed here are promising novel therapeutic strategies for
the treatment of patients with diabetic retinopathy. Further
clinical studies are needed to clarify whether the use of
these agents is able to reduce the risk of diabetic retinopathy
beyond blood glucose-, blood pressure- or cholesterol-
lowering effects.
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