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Abstract
Background: The rate of evolution varies spatially along genomes and temporally in time. The
presence of evolutionary rate variation is an informative signal that often marks functional regions
of genomes and historical selection events. There exist many tests for temporal rate variation, or
heterotachy, that start by partitioning sampled sequences into two or more groups and testing rate
homogeneity among the groups. I develop a Bayesian method to infer phylogenetic trees with a
divergence point, or dramatic temporal shifts in selection pressure that affect many nucleotide sites
simultaneously, located at an unknown position in the tree.

Results: Simulation demonstrates that the method is most able to detect divergence points when
rate variation and the number of affected sites is high, but not beyond biologically relevant values.
The method is applied to two viral data sets. A divergence point is identified separating the B and
C subtypes, two genetically distinct variants of HIV that have spread into different human
populations with the AIDS epidemic. In contrast, no strong signal of temporal rate variation is found
in a sample of F and H genotypes, two genetic variants of HBV that have likely evolved with humans
during their immigration and expansion into the Americas.

Conclusion: Temporal shifts in evolutionary rate of sufficient magnitude are detectable in the
history of sampled sequences. The ability to detect such divergence points without the need to
specify a prior hypothesis about the location or timing of the divergence point should help scientists
identify historically important selection events and decipher mechanisms of evolution.

Background
The rate of evolution at a site at one moment in time
depends on the underlying mutation rate and the overly-
ing selective constraints. Both determinants of evolution-
ary rate may change spatially, along the genome, or
temporally, in evolutionary time, to produce evolutionary
rate variation. Many highly important biological proc-
esses manifest in sequence data as spatial or temporal rate

variation, and this signal is often harnessed to extract bio-
logical information from sampled sequences. Sites in a
gene with high nonsynonymous rates may be responding
to positive selection (e.g. [1-3]), while conserved genomic
sites likely carry out mission-critical biological functions
(e.g. [4,5]). Temporal shifts in evolutionary rate suggest
functional change and may be used to explain the evolu-
tion of novel traits (e.g. [6,7]), to characterize functional
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innovation within gene families (e.g. [8-11]), and to
resolve phylogenetic discrepancies (e.g. [12,13]).

As soon as molecular sequence data were available, evolu-
tionary rates were observed to vary among sites. Some
amino acid positions seem completely invariant in pro-
teins [14], and a nucleotide model with an unknown frac-
tion of invariant sites better approximates mitochondrial
data [15]. This two-class, variable or invariant, site classi-
fication can generalize to any discrete distribution of rates
across site [16]. Theory and simulations suggest that phy-
logenetic inference is particularly sensitive to unrecog-
nized site-to-site rate variation [17,18]. Models that
incorporate spatial rate variation often fit biological
sequence data statistically better than models that assume
a constant rate [19-24]. Probably the most common
model for site-to-site rate variation is the discrete approx-
imation to gamma distributed rates [25], but all these
models are collectively referred to as RAS models for rates
across sites.

Temporal rate variation, also known as heterotachy, is not
so easy to observe directly, but it is a long-standing idea
[26,27]. Early work produced the word covarion, concom-
itantly variable codon, also extended to nucleotides [28],
to name the concept of temporal rate variation. In the
original covarion model an approximately constant frac-
tion of sites evolve, accumulating variation, but the site
membership in the variable pool is continuously chang-
ing in time. The covarion model experienced very little
theoretical progress until formalized as a Markov model
in 1998 [29]. Then, phylogenetic implementations fol-
lowed rapidly [30,31]. Recently, the covarion model was
extended to allow switching between more than two site
classes [32]. Heterotachy models have largely assumed the
switching rate is constant throughout time.

There is increasing evidence that heterotachy is an impor-
tant evolutionary phenomenon, perhaps exceeding or
superseding the importance of site-to-site rate variation
[33,34]. Much of this evidence is generated by testing the
hypothesis of equal rates between pre-defined clades, for
which many tests have been derived [10,11,31,33,35-40].
An alternative strategy attempts to detect brief spurts of
evolution presumed to occur coincident with functional
innovation. Such episodic evolution leaves signatures on
branches of phylogenetic trees, where the ratio of nonsyn-
onymous to synonymous substitution rates exceeds one
[41-43]. Application of both kinds of techniques to large
data sets reveals widespread heterotachy [44,45]. These
tests are undoubtedly most sensitive to dramatic shifts in
selection pressure, where many sites simultaneously expe-
rience an altered evolutionary rate. Gene duplication,
environmental changes, and niche invasion are all associ-
ated with large-scale changes in selection pressure affect-

ing many sites in a genome. There are two questions of
interest: (1) whether selection shifts occur, for example
after gene duplication, and (2) when selection shifts occur
in the history of sequences, e.g. to time historical niche
invasion based on a sample of extant species. Henceforth,
we shall call the locations of these shifts divergence points
in time or phylogenetic trees.

Gu [36] describes a maximum likelihood method for
detecting divergence points associated with gene duplica-
tion. Given a set of homologous genes categorized into
paralogous groups separated by gene duplication and the
phylogenetic trees that relate orthologs within groups, the
method can identify amino acid positions that are func-
tionally divergent between the groups. It works by

hypothesizing that a fraction θ of amino acid sites (diver-
gent sites) acquire independent function and thereby inde-
pendent evolutionary rates in two or more of the ortholog
groups. The remaining constrained sites retain function
and evolve at the same dependent rate in all groups. After

maximum likelihood estimation of θ, subtree branch
lengths, and evolutionary parameters, Bayes rule can pre-

dict functionally important residues if the estimate  is
significantly bigger than zero.

The present paper extends the Gu method by performing
inference on a full tree without specifying a priori the
branch where a divergence point is expected. I develop the
method in a Bayesian context for nucleotide sequences
and test it using a panel of simulated sequences. I then
apply the method to study divergence between Human
Immunodeficiency Virus (HIV) subtypes and Hepatitis B
Virus (HBV) genotypes, revealing a substantial selection
event sometime after separation of HIV subtypes B and C
and no evidence of a selection event separating HBV gen-
otypes F and H.

Results and Discussion
Simulation
Varying the magnitude of the selection shift
I simulate data sets assuming a single divergence point in
a topology relating eight hypothetical taxa (Figure 1). I use
a discrete gamma distribution with four rate categories
and the same shape parameter α to approximate the vari-
ation in both spatial and temporal rates [25]. To explore
the sensitivity of the method to the strength of the tempo-
ral selection shift, I vary the degree of rate variation
(smaller α implies greater rate variation) and the fraction
of sites θ experiencing a selection shift across the diver-
gence point. When a site is selected to shift rate, it ran-
domly selects a new rate class from the discrete gamma
distribution. All other parameters do not vary in this first
set of simulations. In particular, the simulated divergence

θ
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point is located at relative position l = 0.9 on branch b = 8
in the topology τ of Figure 1 with tj = 0.1 expected muta-
tions (transition/transversion ratio κ = 2) per site along
each branch j = 1,...,13. C code implementing Markov
chain Monte Carlo sampling of the posterior distribution
analyzes each simulated alignment. Posterior statistics of
model parameters are computed along with the Bayes fac-
tor BDP in favor of a divergence point somewhere in the
tree. When log10BDP > 1, there is strong support for a diver-
gence point, which then allows conditional estimation of
θ, l, and the Bayes factor Bj favoring a divergence point

located specifically on branch j. All these latter statistics
are based on the subset of MCMC samples that have a
divergence point.

Figure 2 plots the method type I error rate and power for
the various simulation conditions (blue bars) when the
null hypothesis is homotachy. Here, type I errors result
when there is no divergence point, but the user concludes
one because log10 BDP > 1. Type I errors do not occur for
any of the 500 simulations without a divergence point.
Power is the probability that the method strongly sup-

Simulation treeFigure 1
Simulation tree. The phylogenetic tree used for simulation. There are eight taxa, labeled 0 to 7, related according to the 
depicted topology with all branch lengths equal. Each simulation assumes a single divergence point (DP) located at a distance l 
= 0.9 away from the right end of the middle branch, known as branch 8. The vertical line, splits the full phylogeny into two sub-
trees. Subtree 2 has a stubbed branch where it connected to subtree 1 of length lt8. Subtree 1 has a stubbed branch of length 
(1 – l)t8.
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ports a divergence point when one is simulated. For fre-
quentist methods, the type II error rate is one minus the
power, i.e. the probability of accepting the null hypothesis
when the alternative hypothesis of heterotachy is actually
true. Bayesian analyses are advantageous when it comes to
assessing the strength of the null hypothesis. In this case,
one should not commit to the null hypothesis of homo-
tachy unless it receives strong support, e.g. log10BDP < -1,
which here occurs for only nine of 2500 datasets simu-
lated with a divergence point and only when θ = 0.1. A
more important concern for the Bayesian method is the
decreasing power to detect the divergence point as rate
variation and the fraction of sites subject to rate shifts
decrease. When θ = 0.1, the divergence point becomes
effectively undetectable. For all other simulated values of
θ, the divergence point is detectable given sufficient rate
variation. When α = 2, the method never works well, and
the rates for the four discrete categories are 0.3, 0.7, 1.1
and 2.0, yielding less than seven-fold differences in rate.
Susko et al. [11] use a regression technique to estimate the
size of rate differences between eukaryotic and archaebac-
terial amino acid sequences of elongation factor 1α and
find rate variation roughly between 3 and 15-fold, just
straddling the level of rate variation detectable in this sim-
ulation.

When a simulated divergence point is highly supported,
the identification of the branch with the divergence point
is exceptionally successful via Bayes factor Bj for branch j.
Out of 1195 simulations with high support for the diver-
gence point, only 4 failed to also identify the true branch
8 as highly likely (log10 B8 > 1) to carry that divergence
point. Only twice, another branch is incorrectly found to
strongly favor a divergence point somewhere along its
length. These results demonstrate the method can not
only detect the presence of a divergence point in a phylo-
genetic tree, but also pinpoint the affected branch with
high confidence.

Table 1 records the posterior mean (indicating accuracy)
and width of the 95% Bayesian credible intervals (indicat-
ing precision) for parameters α, θ and l averaged across
simulated data sets. Figure 3 plots the distributions of pos-
terior means for these parameters as well as κ and two
branch lengths: t8 is the length of the branch carrying the
divergence point and t12 is that of a randomly selected ter-
minal branch. Each entry in Table 1 and boxplot in Figure
3 is based on 100 estimated values except those for θ and
l, which may be estimated in far fewer simulations. Esti-
mates of α, which are logged before plotting in Figure
3(a), tend to overestimate the true value, especially when
true α = 0.01 and as the fraction of heterotachous sites
increases. Evolutionary rate parameter κ, the transition/
transversion ratio, is fairly well estimated but with a slight
upward bias when site-to-site rate variation is high (α <

0.5). In contrast, estimation of θ is poor. While there is rel-
atively low posterior uncertainty in θ (as compared to l),
the estimates are dramatically and increasingly downward
biased as true θ climbs above 0.1. The effect is not just a
consequence of the prior, which would tend to pull esti-
mates toward the prior mean of 0.5, because even for true
θ ≤ 0.5, the bias is downward. The bias is most noticeable
for those datasets that detect the divergence point. When
simulating θ = 0.9 and α = 0.01, the divergence point is
always detected with high confidence, but the 95% Baye-
sian credible intervals for θ never contain the true value.
For estimating the divergence point location l, the fact that
the estimates pull toward the true value 0.9 as heterotachy
increases suggests that there is some information in the
data about this parameter, however the information is
weak as demonstrated by the very wide Bayesian credible
intervals in Table 1. Given this result, a model that simply
places divergence points at internal nodes of the tree may
have just as much power to detect divergence events,
while simplifying the MCMC algorithm and convergence.
Finally, estimates of all branch lengths tend to be less pre-
cise with increasing site-to-site rate variation. In addition,
branch 12 is increasingly overestimated as the amount of
noticeable heterotachy increases. Since temporal and spa-
tial rate variation can be somewhat or completely con-
founded [29], it is not surprising to find estimation of α
and θ somewhat entangled. Additionally, failure to ade-
quately account for site-to-site rate variation, in this case
because α is overestimated, is known to produce biased
branch length estimates [46].

Whether the performance in simulation translates to real
biological sequences is still questionable. Previous analy-
ses suggest that biological site-to-site rate variation falls in
the range α ∈ (0.1, 10), with nonsynonymous (and more
likely selected) rate variation tending to fall below α = 1
[24,46,47]. While there is less information about biologi-
cally relevant ranges for θ, Gu [36] estimates θ = 0.46 for
a study of the cyclooxygenase gene family at the amino
acid level. Comparison of rates between pre-defined
monophyletic groups shows very high proportions of sites
eventually experience heterotachy during evolution, even
in functionally conserved sequences, for example, 66% of
rRNA sites [48] or as high as 47% of the cytochrome b
amino acids [49]. Yang and Nielsen [42] find the propor-
tion of codons undergoing positive selection during epi-
sodic evolution along particular lineages to be between
0.03 and 0.2, depending on the gene analyzed. Thus, it
appears that the power of this method to detect diver-
gence points may falter near the boundary of biological
relevance. In the next section, additional simulations
investigate the amount of information, as measured by
the sequence divergence, alignment length, and number
of taxa, needed to detect divergence points.
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Method comparisonFigure 2
Method comparison. The type I error rate and power of the new method are compared with two other methods, that of 
Ané et al. [33] and Lopez et al. [13]. The null hypothesis is no temporal rate variation or homotachy. Type I error means the 
method rejects the null when it is actually true. Power is the probability the method correctly rejects the null when there actu-
ally is a divergence point. For the Bayesian method, the null hypothesis is rejected if log10 BDP > 1. Error bars indicate 95% con-
fidence intervals accounting for simulation error.
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Varying the amount of data and evolution
To explore the power of the method to detect the diver-
gence point for varying amounts and diversity of input
data, I generate simulated data sets under a variety of con-
ditions. I start by again simulating data alignments using
the tree of Figure 1. For these simulations, I set α = 0.7 and
θ = 0.5 and vary both the branch length (all branches of
the topology are equal) and the length of the alignment.
Figure 4 displays the results, showing that increasing
diversity, as measured by the branch length, and data, as
measured by the alignment length, both improve the
power of the method to detect the divergence point. In
particular, the divergence point is detectable for these α
and θ when the branch length is above 0.07 and the align-
ment length is over 5000. Similar patterns are observed
for different α and θ combinations. As long as θ ≥ 0.3, the
method achieves good power at least for the simulation
with tj = 0.9 and 7500 base pairs (data not shown).

To test the impact of including more sequences, I simulate
data with increasing numbers of taxa in each subtree. This
time, α = 0.5, θ = 0.5, and all branch lengths tj = 0.1 are
selected to demonstrate a range of outcomes in resulting
power. The original simulation tree of Figure 1 has 8 taxa.
I also simulate sequences with 4, 12, or 16 taxa, maintain-
ing the divergence point on the middle branch and adding
taxa in a balanced fashion to both subtrees. Because all
branch lengths are held constant, any effect of adding
more taxa could be a consequence of the additional taxa
or the increase in total evolutionary time simulated. The
power of the method to detect the divergence point
increases substantially with the number of taxa in each
subtree (Figure 5). Unfortunately, the computational cost
also increases substantially. Roughly, based on informal

observation only, 8 taxa take ten times as long as 4 taxa,
and computational times double for every 4 additional
taxa after that. Finally, I also examine the probability of
detecting heterotachy when the divergence point is placed
on a terminal branch rather than the internal branch of
Figure 1. This time α = θ = tj = 0.1. Not surprisingly, power
of the method to detect a terminal branch divergence
point is substantially compromised (Figure 5), indicating
that balanced subtrees including many taxa provide the
ideal conditions for detecting a divergence point.

Comparison to existing heterotachy detection methods
Figure 2 compares the power of the Bayesian divergence
point method with two other statistical tests for hetero-
tachy given pre-defined subgroups. Ané et al. [33] recently
describe a parametric bootstrap test of the covarion model
that tests the degree of independence in the proportion of
invariant sites in the two subgroups. When applied to the
first set of simulated data, this method demonstrates a low
type I error rate in the absence of heterotachy and compa-
rable power to the Bayesian method in the presence of
heterotachy except when θ = 0.1 and α is small. However,
the method is not ideally matched to the simulations
since it specifically tests the covarion model with invariant
sites, but the simulation model allows no truly invariant
sites. A more appropriate test is suggested by Lopez et al.
[49], who describe a method to compare the number of
substitutions in each subgroup at each site. Under the
homotachous model, the number of substitutions at a site
should be proportional to the amount of evolution, or
tree length, of each subtree. Substantial deviations from
this expectation, as measured by a chi-square statistic,
indicate a change in evolutionary rate between the two
subtrees. As expected, this method has more power than

Table 1: Estimation of α, θ, and l.

Estimation of α Estimation of θ Estimation of l
θ\α 2.0 1.0 0.5 0.1 0.01 2.0 1.0 0.5 0.1 0.01 2.0 1.0 0.5 0.1 0.01

0.0 2.05 0.99 0.49 0.10 0.04 NA NA NA NA NA NA NA NA NA NA
1.90 0.61 0.23 0.05 0.07 NA NA NA NA NA NA NA NA NA NA

0.1 2.18 1.07 0.54 0.11 0.05 0.76 0.68 NA 0.17 0.15 0.55 0.58 NA 0.51 0.51
2.14 0.69 0.28 0.08 0.08 0.99 0.96 NA 0.21 0.17 0.97 0.99 NA 0.97 0.97

0.3 2.77 1.23 0.59 0.11 0.05 NA 0.49 0.38 0.26 0.26 NA 0.53 0.57 0.58 0.57
3.42 0.91 0.36 0.08 0.08 NA 0.55 0.48 0.22 0.19 NA 0.97 0.97 0.96 0.97

0.5 3.27 1.41 0.60 0.11 0.06 0.79 0.56 0.43 0.40 0.40 0.37 0.56 0.57 0.63 0.61
4.59 1.21 0.40 0.09 0.10 0.85 0.73 0.47 0.23 0.21 0.88 0.99 0.96 0.96 0.95

0.7 4.87 1.45 0.62 0.12 0.08 0.80 0.62 0.52 0.55 0.54 0.50 0.53 0.58 0.66 0.65
7.85 1.49 0.40 0.08 0.10 0.89 0.74 0.50 0.24 0.22 0.95 0.96 0.95 0.94 0.94

0.9 6.74 1.62 0.65 0.13 0.10 0.86 0.74 0.66 0.69 0.69 0.47 0.56 0.61 0.67 0.66
11.44 1.83 0.40 0.08 0.10 0.86 0.72 0.48 0.24 0.23 0.92 0.97 0.94 0.94 0.93

Each pair of entries summarizes the posterior estimation of model parameters α, θ, and l from 100 random data sets simulated assuming various 
choices of θ (rows) and α (columns). The first row, where θ = 0 is for data simulated without a divergence point. First in each pair is the average 
posterior mean, summarizing accuracy; second is the average width of the 95% Bayesian credible interval, summarizing precision. Statistics for θ and 
l are based only on those simulations strongly supporting a divergence point, which may be substantially fewer than 100 simulations. NA means a 
divergence point was never strongly supported for that simulation condition.
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the Ané et al. and also beats the Bayesian method. In par-
ticular, it is better able to detect heterotachy when α > 0.5
and there is low site-to-site rate variation. However, these
conditions are also the ones where the method's type I
error rate begins to exceed expectation (see Figure 2, No
divergence point and θ = 0.1). Thus, it may be that the
conservative behavior of both the Ané et al. and Bayesian
methods in the presence of low rate variation are desira-
ble.

HIV
As HIV spread into the human population in the last cen-
tury, genetically distinct lineages arose [50]. These so-
called subtypes have distinct geographic distributions
[51]. In particular, subtype B dominates throughout much
of the non-African and non-Asian world, while subtype C
dominates in southern and eastern Africa, parts of the
Middle East, and India [51]. Much of the geographic
restriction of subtypes can be explained by the travels of a

Parameter estimationFigure 3
Parameter estimation. Boxplots of posterior mean estimates of (a) α, (b) κ (c) θ, (d) l, (e) branch length of the 8th branch 
t8 (the one with the divergence point), and (f) branch length of the 12th branch t12. Each boxplot is based on 100 simulations, 
except (c) and (d), where posterior means of θ and l are only estimated for those simulations strongly supporting the diver-
gence point. Results are grouped by simulated θ value as marked on the x-axis. There are five simulations per group, with sim-
ulated α decreasing 2.0, 1.0, 0.5, 0.1, 0.01. The arrangement is such that temporal rate variation is generally increasing from left 
to right. The estimates of α are logged before plotting to better show the variation in the smaller values. The location of the 
true value(s) of each parameter are marked by a + just right of its plot.
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few infected individuals [52], however there is also evi-
dence of population level selection on the virus, particu-
larly in relation to immune selection [53]. I hypothesize
that if the virus encounters substantial population-specific
selection pressures when entering a new population, a
selection shift signature may be detectable on the
branches of phylogenetic trees that separate subtypes.

To test the hypothesis, I align 10 HIV sequences, five from
subtype B and five from subtype C. Summaries of the mar-
ginal posterior distributions for each continuous parame-
ter of the model are shown in Table 2. The reported
potential scale reduction factors [54] demonstrate healthy
agreement between the six independent MCMC runs and

all six runs are combined for statistical estimation. The
Bayes factor in favor of a divergence point cannot be com-
puted because the support for a divergence point is unan-
imous in the posterior sample. The model clearly
identifies a highly supported divergence point on the
branch separating subtypes B and C, with log10 BBC = 4.08,

where indexing is meant to indicate the branch separating
B and C. Figure 6 shows the location of the estimated
divergence point along with its 95% Bayesian credible
interval on the phylogeny drawn with branch lengths at
their posterior means. The precise location of the diver-
gence point along the branch is poorly estimated, but the
selected branch is highly supported. Considering the esti-

Sample size and powerFigure 4
Sample size and power. The proportion of simulations that strongly support the simulated divergence point when α = 0.7 
and θ = 0.5. Each group of bars corresponds to a different alignment length ranging through 1000, 2500, 5000, and 7500. 
Within the group, there are four different branch lengths assigned to every branch in the simulation topology of Figure 1, 
either 0.03, 0.05, 0.07, or 0.09. Error bars indicate 95% confidence intervals accounting for simulation error.
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mated values of α = 0.23 and θ = 0.28, the alignment

length L = 6610, and the average branch length (  = 0.04)
of this data set, simulation results (not shown) suggest
that the method just has enough power to detect the pres-
ence of a divergence point. It may not be possible to detect
heterotachy for shorter regions of HIV.

HBV
Like HIV, HBV has diverged into genetically distinct line-
ages with nonuniform geographic distribution around the
world [55]. In the case of HBV, these lineages are called
genotypes. Although the origins of HBV are unclear, HBV
is most likely to have evolved with humans since our emi-
gration from Africa [56]. The genotypes and their geo-

graphic distribution can thus be associated with major
migration events, but it remains unclear whether the gen-
otypes express distinct disease phenotypes [57-59]. HBV
genotypes F and H are restricted to the Americas, probably
arriving on these continents with the first human immi-
grants [57]. Genotype H is found much less frequently
than F, and its origin is uncertain [60]. In fact, its classifi-
cation as a separate genotype is controversial [61]. Given
the best estimate of HBV origins, it is not likely that the
spread of HBV into new human populations has exerted
recent selective pressure on the virus, however co-evolu-
tion of the virus along with the human host may create
divergence points along branches where humans and
viruses co-adapted to new ecological niches.

t

Power as a function of group sizeFigure 5
Power as a function of group size. The power of the method to detect the divergence point with strong support as the 
branch location of the divergence point or the size of the topology changes. For the first set, the divergence point is located on 
the middle branch or a terminal branch of the 8-taxa tree of Figure 1 and α = 0.5, θ = 0.5, tj= 0.1, and L = 1000. For the second 
set, the divergence point is located on the middle branch of a 4-, 8-, 12-, or 16-taxa tree, and α = 0.1, θ = 0.1, tj = 0.1, and L = 
1000. Error bars indicate 95% confidence intervals accounting for simulation error.
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To look for divergence points related to the emergence of
HBV genotypes F and H, I align seven genotype F
sequences and three genotype H sequences. Posterior
summaries are in Table 3. Figure 7 displays the estimated
phylogeny relating these 10 sequences with the branch
lengths drawn proportional to their posterior means. The
number accompanying each branch is the conditional
posterior probability that the divergence point lies some-
where along that branch given one exists somewhere in
the tree. In contrast to the HIV results, a divergence point
is not supported by the data with log10 BDP = -0.64. Con-
sidering only the posterior sample supporting a diver-
gence point (1123 samples), no branch shows evidence of
strong heterotachy, although the posterior distribution
across branches is significantly different from the uniform
prior (p-value < 0.001). The alternative hypothesis of
homotachy is substantially, but not strongly supported,
and the method may simply have insufficient power to
detect heterotachy in this data set. Notably, because H is a
poorly sampled genotype, the three representatives
included here are highly similar, thereby forcing any
potential genotype-associated divergence point onto what
is effectively a terminal branch. Table 4 suggests power is
low under this condition, but I performed no simulations
with parameters matching the HBV data, so it is unclear
whether the method should have sufficient power to esti-
mate the presence of a divergence point. Evidence of site-
to-site rate variation is high, with the posterior mean α =
0.04, however the low diversity (average branch length
0.015) and short alignment (3,215 base pairs) sharply
reduce the power of the method.

In addition, strong spatial rate variation may not translate
to strong temporal rate variation in the case of HBV. Nor-
mally, the magnitude of temporal rate variation is
expected to approximately match the magnitude of spatial
rate variation, because choosing a new function for a site
is roughly equivalent to selecting a new site at random
from the same protein [29,62]. The model makes this
assumption by using the same rate class distribution for

spatial and temporal rate variation. Strong purifying selec-
tion combined with an error-prone reverse transcriptase is
expected to produce highly heterogeneous rates in HBV,
with widespread conservation due to overlapping reading
frames interrupted by a limited number of mutation-tol-
erant sites [63]. But for a dual-coding nucleotide to tem-
porally shift rate class, it must acquire a new function in
both reading frames. This dual constraint may eliminate
the possibility of divergence points in HBV and certainly
reduces both the magnitude of temporal rate shifts and
the number of affected sites. In short, the biology of HBV
may limit both the presence of and the power to detect
divergence points. Increasing the number of sampled
sequences per genotype may restore power, but this
option is not examined further here.

Conclusion
Spatial and temporal rate variation is the signature left on
genomic sequences by the force of selection. Although
mechanistic differences can also generate evolutionary
rate variation, it appears that the selection signal is
stronger [24]. A flurry of new methods have emerged to
detect and utilize this signal to inform on function
[43,64,65]. I propose a new method for inferring the loca-
tion of divergence points in phylogenies. The method
joins a host of existing tests to detect selection sweeps
along pre-specified branches of a phylogeny
[10,11,31,33,35-40,42,43]. Unlike existing methods,
however, the proposed method does not require a priori
branch specification.

The method is developed in a Bayesian context and
applied to two viral data sets. The HIV data strongly sup-
port the presence of at least one divergence point, while
the HBV data fit a model with substantial site-to-site rate
variation but no sudden or dramatic temporal rate shifts.
Heterotachy may still occur in the HBV sequences, per-
haps more subtly, accumulating slowly and methodically
over time as in the covarion model [29]. The presence of
a divergence point between HIV subtypes B and C indi-

Table 2: HIV estimated parameters.

Parameter Posterior Mean LBCI UBCI PSRF

θ 0.27 0.18 0.38 1.01
l 0.56 0.21 0.89 1.03
α 0.23 0.19 0.26 1.00
κ 5.32 4.89 5.77 1.01
t3 0.01 0.00 0.01 1.02

log10 BDP ≈ inf (decisive support for)
log10 BBC = 4.08 (decisive support for)

The posterior mean, upper and lower 95% Bayesian credible interval bounds (UBCI and LBCI) and potential scale reduction factor (PSRF) [54] for 
all continuous parameters of the model. Data for the branch length with largest PSRF is reported. The last two rows report the Bayes factor in 
support of a divergence point and the Bayes factor in support of a divergence point along the middle branch.
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Phylogenetic tree of HIV subtypes B and CFigure 6
Phylogenetic tree of HIV subtypes B and C. Phylogenetic tree inferred from HIV data. The topology is not estimated, but 
branch lengths are shown at their posterior means. The posterior mean location of the divergence point is shown along with a 
parallel bar demarcating the 95% Bayesian credible interval. The numbers indicate the conditional posterior probability that the 
indicated branch carries the divergence point given there is a divergence point in the tree. For reference, the length of the mid-
dle branch is 0.12.
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cates a profound rate change after the split of these two
subtypes. It does not prove that the divergence point
occurred concurrent with the split or caused it in any way.
However, it is plausible that host population differences

are related to the apparent selection differences, and fur-
ther testing may reveal specific cause-and-effect relation-
ships between host differences and rate differences in the
HIV genome. Finally, I make no effort to detect the possi-

Table 3: HBV estimated parameters.

Parameter Posterior Mean LBCI UBCI PSRF

θ 0.37 0.01 0.94 1.01
l 0.42 0.02 0.96 1.01
α 0.04 0.00 0.08 1.03
κ 4.00 3.38 4.70 1.00
t11 0.01 0.00 0.01 1.02

log10 BDP = -0.64 (substantial support against)
log10 BFH = -0.71 (substantial support against)

See the caption of Table 2. The second Bayes factor is the support for a divergence point along the middle branch separating the two genotypes.

Phylogenetic tree of HBV subtypes F and HFigure 7
Phylogenetic tree of HBV subtypes F and H. Phylogenetic tree inferred from HBV data. The topology is not estimated, 
but branch lengths are shown at their posterior means. The numbers by each branch indicate the conditional posterior proba-
bility that the indicated branch carries the divergence point given a divergence point is present in the tree. In fact, there is sub-
stantial support against a divergence point in this data set. For reference, the length of the middle branch is 0.07
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ble presence of other, weaker divergence points in this set
of HIV data. A natural extension of the current Bayesian
method is to allow and estimate more than one diver-
gence point per phylogenetic tree. Interestingly, the epi-
sodic evolutionary events sought by methods that detect
high nonsynonymous rates on particular branches
[42,43] consist of two divergence points appearing close to
or on the same branch of a phylogeny. Thus, multi-diver-
gence point models may be better equipped to detect and
quantitate temporary shifts in evolution. In the limit as
the number of divergence points d increases and the pro-
portion of diverging sites θ decreases, the model
approaches the covarion model.

Recombination between subtypes/genotypes is a com-
mon phenomena in both HIV [66] and HBV [67] that can
result in a non-constant topology or branch lengths along
an alignment. Another oversight that could lead to non-
constant branch lengths along the alignment is the fact
that both data sets consist of multiple genes. While site-to-
site rate variation can account for some rate variation

along the alignment, it does not adequately model whole-
gene shifts in rate that can result when different genes
evolve according to different processes. In assuming that a
fixed topology and a single set of branch lengths applies
to the full alignment, I prohibit the possibility of recom-
bination or gene effects and may force the wrong topology
and or branch lengths on some sites if these assumptions
are not met. Forcing either an incorrect topology or incor-
rect branch lengths could affect inference of heterotachy.
The first set of simulations and Figure 2 demonstrate that
branch length estimation can depend on the estimation of
heterotachy and rate variation. The reverse must also be
true, such that incorrect branch lengths and especially
topology, could influence inference on θ, l, and possibly
even the presence of a divergence point. To limit the pos-
sibility of such an artifact, all selected viral sequences had
been previously reported as nonrecombinant or verified
so using recombination detection software [68]. This step
insures that the two subtrees are consistent throughout
the alignment, however it does not guarantee that the sub-
tree topologies are consistent. Another natural extension

Table 4: Proposal distributions.

Param. Proposal Distribution Tuning Param. MH Ratio

κ κ* = κ exp [κt(U - 0.5)], U ~ Unif(0, 1) κt = 1.0

α α* ~ Normal(α, αt) αt = 0.5

ti
 = ti exp [tt(U - 0.5)], U ~ Unif(0, 1)

tt = 1.0

θ θ* ~ Normal(θ, θt) θt = 0.2

l* ~ Normal(l, lt) lt = 0.2

b* ~ Unif(1,...,2N - 3), l* ~ Unif(0, 1) NA

d d* = 1 - d NA

For each parameter listed, a new value (starred, e.g. κ*) is proposed according to the listed distribution. Branch lengths ti are updated one at a time 
for i = 1,...,2N - 3. Tuning parameters are subscripted by t. Updates of either l or (b, l) are mixed with probability mt. Update of d is a trans-
dimensional move. The Metropolis-Hastings acceptance ratios are given in the last column. Dependence on parameters not involved in the update 
is not shown.
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of the current model is to include recombination models
that allow topology and branch length variation along the
alignment while simultaneously estimating heterotachy.
Both models are already computationally difficult when
considered separately, and combining them obviously
represents a major computational challenge.

The current approach does not estimate the phylogenetic
tree, assuming that it can be derived confidently using
other methods. This assumption requires serious recon-
sideration since heterotachy can affect phylogenetic tree
estimation [13,69]. In addition, including additional taxa
should improve the power of the method to detect selec-
tion and estimate θ, yet adding taxa increases the chance
of topological uncertainty. The ideal solution is to simul-
taneously estimate phylogeny and divergence point loca-
tion. Unfortunately, because branches do not retain
definition across different topologies, divergence points
may also lose definition. Presumably, however, a simulta-
neous estimation procedure should be able to detect
strong divergence points on supported branches while
allowing for topological uncertainty within clades.

A persistent question lurking behind these analyses is
whether detected rate variation is actually connected to
selection and function [70]. Lopez et al. [49] suggest that
temporal rate variation need not relate to function
because even mitochondrial cytochrome b, whose func-
tion is highly conserved among all vertebrates, tests posi-
tive for heterotachy. Comparison of vertebrate α and β
globins revealed a similar disconnect between signifi-
cantly heterotachous sites and those sites most likely
responsible for protein functional differences [71], lead-
ing Philippe et al. [72] to conclude heterotachy may be a
largely neutral evolutionary process on alternative, but
viable protein conformations. In order to identify func-
tionally important rate shifts, it may be necessary to
design models that separate this neutral heterotachy, e.g.
covarion-like models, from the sudden and temporary
heterotachy of the type expected after gene duplication or
other environmental shifts. Yet even these models may be
over-simpistic. Protein models [73,74] that allow amino
acid sites to self-classify into highly flexible evolutionary
classes, reveal that sites with different functional or struc-
tural jobs differ not only in their evolutionary rates, but
also in how they mutate. The divergence point described
here allows no such changes in site properties. For exam-
ple, if transitions are much more likely than transversions
in one rate class, they are identically skewed in all other
rate classes. Yet it is plausible that the skew will shrink at
certain codon positions or within some amino acid con-
texts. Despite all these caveats, a recent large-scale analysis
of proteins with known function reveals that shifts in rate
are good predictors of differing functional classes [75].

Although the role of heterotachy in evolution remains to
be clearly defined, the ability to detect rate variation from
sequences alone is a powerful resource provided by com-
parative genomics. I did not use the results to predict func-
tionally important sites in the viral data sets, but the
forward-backward algorithm can compute the most likely
unobserved state, diverged or not, of each nucleotide site
[76]. In a Bayesian context, the prediction can be inte-
grated against the MCMC-approximated posterior density
to improve robustness. Specific predictions can generate
hypotheses and focus future biological experiment.

Methods
Model
We start with an alignment X of N sequences of length L.
Nucleotide Xij ∈ {A, C, G, T, U, –} is the nucleotide at
position j of sequence i, which may be a gap (–). Sites X.j
are treated as independent for all j = 1,...,L. The evolution-
ary rate at site j is assumed to be selected at random from
a discretized gamma distribution with four equi-probable
rates and shape parameter α [25]. Site-to-site rate varia-
tion is greater for smaller α, particularly for α < 1. Because
the actual evolutionary rate of site j is unknown, the like-
lihood of the site j data is integrated against all possible
rates, using the discrete gamma approximation and
removing explicit dependence on the site-specific rate rj.
The site likelihood is

where τ is the unrooted topology, t = (t1,...,t2N-3) are the
branch lengths, κ is the transition/transversion ratio
assuming the HKY85 nucleotide substitution model [19],
and P(rj|α) = 0.25 is the probability of drawing rate rj from
the discrete gamma distribution. Because sites are
assumed independent, the full data likelihood is

The model just described is commonly referred to as the
variable rates across sites or RAS model.

I now introduce the possibility of a divergence point (DP)
into the model. Place a divergence point (DP) in the phy-
logenetic tree (τ, t) (Figure 1), on branch b ∈ {1,...,2N - 3}
at relative position l ∈ [0, 1] with respect to an arbitrary
root. A fraction θ of sites randomly select a new rate after
crossing the divergence point, so rate rj1 applies along all
the branches in subtree τ1, including the stub of the
branch dissected by the DP and rj2 applies throughout
subtree τ2 along with the other part of the dissected
branch. When there is a divergence point, the full site like-
lihood is

P X t P X r t P rj j j j
rj

( . | , , , ) ( . | , , , ) ( | ),α τ κ τ κ α= ( )∑ 1
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where X(1)j are the site j data for sequences of subtree 1 and
X(2)j are the data for the sequences of subtree 2. The first
term is the likelihood of the site j data if the site diverges
across the DP, with data X(1)j produced by an evolutionary
process with rate rj1 and data X(2)j produced by a process
with rate rj2. The second term is the likelihood of site j if
there is no divergence across the DP and both data X(1)j
and X(2)j, i.e. the full site data X.j evolve with common rate
rj. Again, whether site j diverges across the DP is not
known, so the full site likelihood is obtained by integrat-
ing against the Bernoulli probability distribution for
divergence at the DP. If there is no divergence point in the
phylogenetic tree, then θ = 0 and the site likelihood is
given by equation (1) under the RAS model.

Prior Distributions
Because the model is implemented in a Bayesian context,
a prior distribution must be specified for all model param-
eters. Table 5 lists all prior distributions. Uninformative or
nearly uninformative priors are used for most model
parameters. The continuous parameters, transition/trans-
version ratio κ ∈ [0, ∞), branch lengths tκ ∈ [0, ∞), κ =
l,...,2N - 3, and discrete gamma shape parameter α ∈ [0,
∞) are assumed uniform over a wide range well beyond
biologically relevant limits. The DP location l ∈ [0, 1] is
uniform throughout its range. The discrete parameter b,
indicating the branch of the DP, is uniform over all possi-
ble branches. We assume the topology τ is known and do
not estimate it using the model.

In addition, we place a prior on the presence or absence of
a divergence point somewhere in the phylogenetic tree.
Let d be the number of divergence points in the tree. With
probability P(d = 1) = 0.5 there is a single divergence point
at location (b, l). Otherwise and also with probability P(d
= 0) = 0.5 there is no divergence point and the RAS model
applies. In fact, it may be biologically possible for more
than one divergence point to coexist in a phylogenetic
tree. We do not consider these more complex models by
setting P(d > 1) = 0.

MCMC
The posterior distribution is estimated via MCMC using
Metropolis-Hastings (MH) within Gibbs sampling. Sup-
plemented with d, the parameter vector is now either (1,
κ, α, t, θ, l, b) when there is a divergence point or (0, κ, α,
t) in the absence of a divergence point. Clearly, the dimen-
sion of the parameter space changes with d and there are
two types of MCMC updates, those within a fixed dimen-
sion and trans-dimensional moves. For fixed dimensional
updates, the following sequence of moves is applied
within a Gibbs cycle to update from (κn, αn, tn, θn, ln, bn) to

(κn+1, αn+1, tn+1, θn+1, ln+1, bn+1) via incremental proposals
of (κ*, α*, t*, θ*, l*, b*).

κ* | κn, αn, tn, θn, ln, bn = κne(U-0.5), U ~Unif(0,1)

α* | κn+1, αn, tn, θn, ln, bn = Normal(αn, 0.5)

| κn+1, αn+1, tni, θn, ln, bn = tnie(U-0.5), U ~Unif(0, 1), i =

1,...,2N – 3

θ* | κn+1, αn+1, tn+1, θn, ln, bn ~ Normal(θn, 0.2)

l* | κn+1, αn+1, tn+1, θn+1, ln, bn ~ Normal(ln, 0.2)

b*, l* | κn+1, an+1, tn+1, θn+1, ln, bn via b* ~ Uniform (1,...,b -
1, b + 1,...,2N - 3),l* ~ Uniform(0,1) independently.

Here tni is the ith branch length listed in vector tn of the nth
MCMC sample. Following Minin et al. [68], most param-
eters defined on the positive real line are updated using an
exponential updater that proposes large changes when the
parameter is large and small changes when the parameter
is small. The DP location, θ, and α are updated using a
reflected normal updater. A large variance is applied
because posterior variances tend to be large. To update the
branch b containing the DP, a joint move is used that pro-
poses a new branch b* uniformly from among all but the
current DP branch and proposes a new l* uniformly from
the prior Unif(0,1). During each cycle, only one of the last
two moves, either updating l separately or (b, l) jointly, is
attempted according to a user-specified mixing probabil-
ity. For all MCMC samples, this mixing parameter was set
to 0.5.

I use reversible jump MCMC [77] to carry out trans-
dimensional moves. When proposing to increase d from
zero to one, the parameter space of the model is supple-
mented by drawing random variables zb, zl, and zθ inde-
pendently from the prior distributions of b, l, and θ,
respectively. The one-to-one transformation across
dimensions is

d* = 1 - d 

θ* = zθ

κ* = κ

l* = zl

α* = α

b* = zb
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 = ti for all i,

which has a Jacobian determinant of one. A trans-dimen-
sional move is attempted during every Gibbs cycle.

Most proposal distributions can be tuned with user-
defined tuning parameters. Tuning parameter values used
to compute all results in this report are listed in Table 4
along with a summary of all proposal distributions,
including Metropolis-Hastings (MH) acceptance ratios.
All Metropolis-Hastings acceptance ratios reduce to sim-
ple expressions of the likelihoods under the current and
proposed states.

The specified model and MCMC algorithm is imple-
mented in a computer program written in C and available
upon request from the author.

Hypothesis Testing
To estimate error rates and power, I compute the Bayes
factor [78] in favor of the hypothesis of a divergence point
somewhere in the phylogeny vs. the hypothesis of the RAS
model without a divergence point. Due to the chosen
prior on the divergence point indicator d, this Bayes factor
is particularly simple

Following [78], log10 BDP > 1 is taken to indicate strong
support for a divergence point. Conversely, log10 BDP < -1
lends strong support to the absence of a divergence point.
For Bayes factor falling in the region of ambiguity between
-1 and 1, no decision can be made with confidence.

It is also possible to compute Bayes factors to test the pres-
ence of divergence points on particular branches. Specifi-
cally, the Bayes factor in favor of a divergence point along
branch j is

where b is the branch with the divergence point and P(b =
j) is the prior probability of a divergence point along
branch j in the simulation topology. Because each branch
is equally likely to carry the divergence point a priori, P(b

= j) =  for all j. I compute Bj when BDP > 1 or

regardless of BDP in the case of the HBV data. For the viral

data sets I denote BBC and BFH to be the Bayes factors for

the branches separating particular named subtrees.

Simulation
I design a simulation study to verify the code and examine
the sensitivity of the method. All sequences are evolved
assuming the divergence model described above and
assuming the HKY85 [19] model of evolution. I vary α ∈
{0.01, 0.1, 0.5, 1.0, 2.0} and θ ∈ {0.0, 0.1, 0.3, 0.5, 0.7,
0.9} to produce a grid of simulation conditions. Note,
that the condition θ = 0 implies no divergence point. I
then simulate 100 datasets for each combination of (α, θ)
assuming the topology of Figure 1, with a DP located at
position l = 0.9 on the middle branch. All simulated data
sets are 1,000 nucleotides long and all branch lengths are
fixed at 0.1. At the root, each simulated site is assigned a
rate, from a choice of 4 possibilities obtained via
equiprobable discretization of the gamma distribution
[25]. At the DP, a site is induced to select a new rate class
with probability θ. Sites that experience a selection shift,
i.e. they select a new rate class at the DP, may choose the
same rate class with probability 0.25.

I also carry out a number of other simulations. I start by
simulating data sets while simultaneously varying L ∈
{1000, 2500, 5000, 7500}, tj∈ {0.03, 0.05, 0.07, 0.09}, α
∈ {0.7,0.5,0.3,0.1}, and θ ∈ {0.1, 0.3, 0.5, 0.7}. Each
simulation condition is replicated only 10 times and are
not shown. They are used principally to select conditions
for other more extensive simulations. For example for Fig-
ure 4, I simulate 100 data sets of varying length L = 1000,
2500, 5000, or 7500 and with varying branch length tj =
0.03, 0.05, 0.07, or 0.09 for all branches j. The other
parameters are fixed at α = 0.7, θ = 0.5, and l = 0.9. For Fig-
ure 5, I simulate 40 data sets either with the divergence
point on a terminal branch or on the middle branch, but
with varying numbers of taxa, either 2, 4, 6, or 8, in each
subtree. When the divergence point is on a terminal
branch, the other parameters are α = θ = 0.5, all branch
lengths tj = 0.1, and alignment length is L = 1000. When
varying the number of taxa, the other parameters are α =
θ = tj = 0.1 and the alignment length L = 1000.

Each simulated data set is examined in a single MCMC
run of length 6000, burnin 1000, and subsample rate 5.
To assess whether this MCMC length, burnin, and sub-
sample are sufficient for convergence, I randomly select
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Table 5: Prior distributions

Parameter Distribution

κ Unif(0, 1000)
α Unif(0, 100)
ti Unif(0, 100), for i = 1,...,2N - 3
θ Unif(0, 1)
l Unif(0, 1)
b Unif(l,...,2N - 3)
τ Not estimated
d P(d = 0) = P(d = 1) = 0.5
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one simulated data set per simulation condition and com-
pute a second MCMC sample starting from a distinct ini-
tial state. For each pair of MCMC samples, I compute the
potential scale reduction factor (PSRF) [54] for the log
likelihood and parameters α, κ, and all branch lengths tj,
as well as θ and l wherever the latter are applicable. The
PSRF statistic compares the between sample variance to
within sample variance and should be near 1. Of 150
PSRF statistics computed, 2 are above 1.1 and 15 are
above 1.01. In addition, I perform a test of proportions for
the posterior support of a divergence point, and found 2
significant results at the level of 0.05, for a error rate of
about 0.07. In neither case, did the classification of the
sample as supporting heterotachy or homotachy differ
between the samples.

Comparison to existing methods
To compare the proposed method with existing methods
for detecting temporal rate variation at specific branches,
I implement two techniques and apply them to the simu-
lated data. Both techniques rely on specifying two groups
of sequences a priori. Naturally, the groups I utilize are 0,
1, 2, 3 from subtree 1 and 4, 5, 6, 7 from subtree 2 in Fig-
ure 1.

Ané et al. [33] propose to compare two groups by compar-
ing the proportions of invariable sites. Their test statistic is

where L12 is the number of sites that vary in both subtrees,
L1 is the number of sites that vary in subtree 1, and L2 is the
number of sites that vary in subtree 2. When the two sub-
trees are completely independent, W = 0, however
because of a shared ancestor nucleotide and site-to-site
rate variation, W will usually exceed zero. The presence of
a divergence point on the branch separating the two sub-
trees will decrease W by increasing the independence of
rates between the two subtrees. Parametric bootstrapping
is used to determine whether W is significantly smaller
than would be expected given statistical variation under
the RAS model. For each simulated data set, I estimate α,
κ, stationary nucleotide frequencies π and branch lengths
t using PHYML [79]. I do not estimate, rather assume the
true topology. Seq-Gen [80] generates 100 parametric
bootstrap datasets under the RAS model using the
PHYML-generated parameter estimates, and the W statis-
tic is computed for each. The proportion of bootstrap rep-
licates whose statistic falls below the W observed for the
original simulated dataset is the p-value for rejecting the
RAS model.

Lopez et al. [13] describe another test for comparing not
just the invariant sites, but the distribution of mutations

at all variable sites between two subtrees. One first esti-
mates the number of mutations in each subtree, using the
method of Gu and Zhang [81]. Because the Gu and Zhang
method returns non-integer estimates of the number of
mutations within the subtrees, I round these numbers to
the nearest integer before preceeding. The distribution of
mutations across sites is then compared between the two
subtrees using a chi-square statistic for a 2 × L table. Since
the asymptotic properties of the chi-square distribution
generally do not apply to such data, significance is
assessed by 100 permutations of the data while keeping
the total number of mutations at each site and within each
group (i.e. row and column totals) constant.

Viral data sets
I collect 5 subtype B [GenBank:AB097870, AY037269,
AY037270, AY173959, AY180905] and 5 subtype C [Gen-
Bank:AF286224, AF457054, AF361874, AF443088,
AY463228] sequences from the HIV database [82] and
align them using clustalW [83]. The final alignment is
6610 base pairs long and represents 68% of the entire HIV
genome. I collect 7 subtype F [GenBank:AB036905,
AB036910, AB064316, AF223965, AY090456, AY090461,
X69798] and 3 subtype H [GenBank:AB059661,
AY090457, AY090460] sequences from GenBank and
align them using clustalW [83]. The final alignment is
3215 base pairs long and represents the entire HBV
genome. For each viral data set, I produce 6 MCMC sam-
ples of size 1000 from a run of length 6000, burnin 1000,
and subsample rate 5. To assess convergence, I compute
PSRF [54] of all parameters θ, α, κ, b, t, l.
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