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Atrial fibrillation (AF) is a highly prevalent arrhythmia that causes high morbidity

and mortality. However, the underlying mechanism of AF has not been fully

elucidated. Recent research has suggested that, during AF, the immune system

changes considerably and interacts with the environment and cells involved in

the initiation and maintenance of AF. This may provide a new direction for

research and therapeutic strategies for AF. In this review, we elaborate the

concept of immune remodeling based on available data in AF. Then, we

highlight the complex relationships between immune remodeling and atrial

electrical, structural and neural remodeling while also pointing out some

research gaps in these field. Finally, we discuss several potential

immunomodulatory treatments for AF. Although the heterogeneity of

existing evidence makes it ambiguous to extrapolate immunomodulatory

treatments for AF into the clinical practice, immune remodeling is still an

evolving concept in AF pathophysiology and further studies within this field

are likely to provide effective therapies for AF.
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Introduction

Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice

and is associated with complications, such as heart failure and stroke (Lippi et al., 2021).

In recent decades, the combination of “trigger” and “substrate” has been considered the

major cause for the initiation and maintenance of AF. In atypical sites, including

pulmonary vein ostia, coronary sinus, ligament of Marshall, abnormal automaticity or

early and delayed afterdepolarizations induce ectopic activity and then initiate AF

(Santangeli and Marchlinski, 2017). The substrate, which manifests as atrial

remodeling, increases the likelihood of ectopic firing or re-entry. There are at least

three main forms of remodeling: electrical remodeling, structural remodeling and

autonomic neural remodeling. Electrical remodeling manifests as changes in the

number and distribution of ion channels and gap junction proteins, leading to a

shortened atrial effective refractory period (AERP) and increased AERP dispersion

(Grunnet et al., 2012). Structural remodeling is characterized by progressive collagen

deposition and atrial fibrosis, which is a consequence of cardiac fibroblast activation and
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extracellular matrix metabolic dysfunction (Sohns and

Marrouche, 2020). Autonomic neural remodeling presents

primarily as nonhomogeneous nerve sprouts and an

imbalance in sympathetic and parasympathetic activity, which

can be related to the release of nerve growth factor (NGF) (Shen

et al., 2011). Interestingly, these mechanisms are not

independent, and the development of AF arises from their

mutual promotion and comprehensive effects (Wijesurendra

and Casadei, 2019; Kusayama et al., 2021).

Furthermore, recent studies have shown that the immune

system changes considerably and plays an essential role in the

pathophysiological process of AF. Here, we regard the change of

the immune system in AF as another form of remodeling and

known as immune remodeling. It refers to the recruitment and

activation of immune cells induced by various factors as well as

the alternation in immune molecular secretion, which shapes a

new immune network during AF (Li et al., 2021; Xiao et al.,

2021). Moreover, immune remodeling goes throughout the

whole process of AF development and maintenance

(Miyosawa et al., 2020). On the one hand, immune

remodeling regulates the known electrical, structural and

neural remodeling to participate in the development of AF; on

the other hand, the AF-related pathological changes including

fibrosis act as a positive regulator of immune remodeling and

further promote the maintenance of AF (Wernli et al., 2009; Rao

et al., 2013; Fu et al., 2015) (Figure 1). Importantly, unlike atrial

remodeling, immune remodeling is not limited to the atria and its

effects on the peripheral circulation can not only facilitate clinical

diagnosis but also show that AF should be considered as a

systemic disease. However, the cause-effect-cause complexity

makes it a bit more difficult to strictly distinguish between

those events that might be the result of AF-induced immune

remodeling or immune remodeling induced AF. Therefore,

related immunology studies will greatly improve

understanding of AF.

In this review, we focus on the association between immune

remodeling and AF. First, we begin with a fundamental

introduction to cardiac immunology components; then, based

on clinical research data, the evidence of immune remodeling

during AF is described in detail. Furthermore, we link immune

remodeling to atrial electrical, structural and neural remodeling

at the cellular and molecular levels. Finally, we summarize some

potential therapies and aim to provide more precise and effective

targets for AF treatment.

Immune cells in cardiac homeostasis

Recent insights into the immune system and cardiology

have suggested that immune cells are integral components for

maintaining homeostasis in cardiac tissue (Hulsmans et al.,

2017). The study on healthy adult mice showed that the

immune cells constituted 4.7% ± 1.5% of the cardiac

tissues. The frequencies of major immune cells in cardiac

muscle were 12-fold higher relative to the skeletal muscles

(Pinto et al., 2016; Ramos et al., 2017). Among them,

approximately 81.4% ± 1.4% were myeloid cells, 8.9% ±

0.6% were B cells, 3.1% ± 0.4% were T cells and 6.6% ±

0.6% were non-myeloid/lymphoid immune cells (Pinto et al.,

2016). However, this previous study is limited to ventricles

without atria and valves. Another study on the adult human

heart demonstrated the presence of 11 major cell types,

including atrial cardiomyocytes, ventricular cardiomyocytes,

fibroblasts, endothelial cells, and immune cells. Among them,

myeloid and lymphoid immune cells accounted for 5.3% of the

ventricular tissues and 10.4% of the atrial tissues (Litviňuková

et al., 2020), which is in line with the findings in mice, which

suggest that immune cells occupy a certain substantial

proportion of the healthy heart. However, some differences

may exist across species. For example, it was thought that the

density of mast cells in the hearts of canines and humans was

higher relative to the mouse heart (Gersch et al., 2002; Ingason

et al., 2019). The distribution of immune cells in distinct

cardiac areas is also non-homogeneous. Only a few studies

have characterized the proportion of immune cell subsets in

the atria. A precise understanding of immune cell subsets and

their proportions in atria will pave the way for illustrating the

mechanism underlying AF. In addition to the myocardium

tissues, the pericardial fluid and adipose tissues contain some

immune cells, which are important sources of tissue

infiltration under stress (Butts et al., 2017; Horckmans

et al., 2018). The origin, phenotypes, and functions of

cardiac immune cells have been summarized in previous

reviews (Lavine et al., 2018; Swirski and Nahrendorf, 2018;

Varricchi et al., 2020).

FIGURE 1
The association between immune remodeling and AF. This
figure recapitulates briefly the association between immune
remodeling and AF. Immune remodeling regulates atrial electrical,
structual and neural remodeling to promote AF. In turn, AF-
related pathologic changes including fibrosis can induce immune
remodeling, which forms a positive circle loop. Abbreviations: AF,
atrial fibrillation.
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Immune remodeling during atrial
fibrillation

Evidence for immune remodeling

Immune remodeling is a multidimensional pathological

process. The changes in the composition and number of

immune cells can be regarded as morphologic or structural

evidence for immune remodeling, while alternations in

immune molecules can be considered as functional evidence

of immune remodeling. In this review, we mainly summarize the

current clinical evidence to support the concept of immune

remodeling in AF.

Table 1 provides a summary of studies on the change in

immune cell types in AF. CD45 is common to all inflammatory

cells. As early as 2008, it was found that, as compared to that in

individuals with normal sinus rhythm (SR), the infiltration of

CD45+ cells was increased markedly in the atria of AF patients.

Among those with AF, no difference in CD45+ inflammatory cell

infiltration was observed between the left and right atria (Chen

et al., 2008). A subsequent study by Yamashita and colleagues

also supported this conclusion. They further demonstrated that

in AF specimens, the infiltration of CD45+ and CD68+ cells in the

atria endo- and sub-endomyocardium was predominantly high

relative to the mid-myocardium and proposed that immune cells

were recruited across the atrial endocardium during AF

(Yamashita et al., 2010). Moreover, the number of peripheral

CD45+ cells was increased significantly in patients with AF

(Aguiar et al., 2019). Dendritic and mast cells have been

observed in the atria of AF patients. The number of dendritic

cells in AF patients was higher relative to those with SR, whereas

the number of mast cells was similar (Smorodinova et al., 2017).

Relative to the subjects with SR, the number of CD3+ T cells was

increased significantly in the atrial tissue of patients with AF,

which has been confirmed in several clinical studies

(Smorodinova et al., 2017; Hohmann et al., 2020; Wu et al.,

2020). However, whether the number of CD3+ T cells differs

significantly in the AF subgroups remains controversial. A

previous study argued that the number of CD3+ T cells

increased from patients with SR to paroxysmal AF (pAF) and

persistent AF (peAF), respectively. The number was lower in

patients with permanent AF (permAF) relative to those with

peAF (Hohmann et al., 2020). However, another study suggested

that no statistical difference existed in CD3+ T cell infiltration

between pAF and peAF/permAF (Wu et al., 2020). Differences in

these findings may be due to the clinical heterogeneity of samples

and the specificity of the antibodies. After all, these findings are

highly dependent on the immunohistochemical and flow

cytometry methods. Additionally, CD20+ B cells are

occasionally present as small clusters in the epicardial layer

and are very rare in the myocardium (Hohmann et al., 2020).

As described previously, adipose tissue usually contains a far

greater number of immune cells. The number of neutrophilic

granulocytes and lymphocytes was higher in the atrial fat tissue of

AF patients relative to SR individuals (Begieneman et al., 2015).

Several animal studies have demonstrated the change in

proportions of cardiac immune cells (especially macrophages)

during the onset and maintenance of AF (Sun et al., 2016; He

et al., 2021). In addition to routine inflammatory cells, activated

platelets have also been proposed to be associated with AF. Toll-

like receptors (TLRs) are expressed on the surface of platelets and

participate in the platelet activation and thrombosis (Dib et al.,

2020). A study found that compared with control group,

peripheral and left atrial platelet TLR2 and TLR4 levels were

significantly higher in AF patients. The above indicators were

higher in atrium of peAF than that in pAF (Gurses et al., 2018).

Another study in 2020 showed that increased platelet activation

was found in peripheral blood from patients with hypertensive

AF and the platelets were largely accumulated in these atriums

(Liu et al., 2020), which implied the potential relation between

platelets and AF. Taken together, the composition and number of

immune cells are altered during AF.

TABLE 1 The main studies on the change of immune cells in AF.

Study No. of patients Sample source Cell types Detection methods

Chen et al. 2008 17 control, 18 AF control:RAA AF:LAA, RAA CD45+ cells IHC

Yamashita et al. 2010 5 control, 11 AF LA CD45+ cells, CD68+ cells IHC, IF

Liu et al. 2021 51 control, 50 pAF, 56 peAF blood CD3+ T cells FLC

Begieneman et al. 2015 9 control, 33 AF LAA (including fat tissue) PMN, macrophages, lymphocytes IHC

Smorodinova et al. 2017 27 control, 19 AF LA, RA CD3+cells, CD68KP1+ cells IHC

Aguiar et al. 2019 9 control, 9 AF blood CD45+ cells and its subgroups FLC

Hohmann et al. 2020 2 control, 2 pAF, 3 peAF, 3permAF LAA CD3+T cells, CD20+B cells IF

Wu et al. 2020 14 control, 20pAF, 30peAF/permAF LA (including fat tissue) CD45+ cells, CD3+T cells IHC

Liu et al. 2020 40 control, 25NAF, 25HAF blood, atrium platelet count, platelet activation FLC, HC

Abbreviations: AF, atrial fibrillation; FLC, flow cytometry; HAF, hypertensive atrial fibrillation; IF, immunofluorescence; IHC, immunohistochemistry; LA, left atria; LAA, left atrial

appendage; NAF, normotensive atrial fibrillation; pAF, paroxysmal AF; peAF, persistent AF; permAF, permanent AF; PMN, neutrophilic granulocyte; RA, right atria; RAA, right atrial

appendage.
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Functionally, inflammation is a primary, nonspecific

response to the activation of innate and/or adaptive

immunity. Several studies on the inflammation status of AF

have been summarized in previous literature (Patel et al., 2010;

Hu et al., 2015; Sagris et al., 2021). In this review, we highlight

some direct evidence of the pathological alterations of immune

molecules in AF (Table 2). In innate immunity, clinical studies

showed that patients with AF had higher levels of circulating

blood C-X-C motif ligand 1 (CXCL-1) and CXCL-12, which are

critical regulators of monocyte/macrophage mobilization (Li

et al., 2016; Zhang et al., 2020a). Galectin-3 is a β-galactoside
binding lectin secreted by macrophages and its elevated levels can

predict the progression from pAF to peAF (Wang Q et al., 2021).

Macrophage migration inhibitory factor (MIF), a chemokine-like

inflammatory cytokine, was also highly expressed in patients

with AF, and AF progression corresponds to augmented MIF

concentrations (Wan and Li, 2018). Additionally, as compared to

the individuals without AF, atrial neutrophil extracellular traps

and elevated serummyeloperoxidase (MPO) levels were frequent

in patients with AF, which suggested infiltration and activation of

neutrophils (Rudolph et al., 2010; Holzwirth et al., 2020). In

adaptive immunity, it has previously been shown that patients

with AF have higher levels of autoantibodies, including anti-β1-
adrenergic receptor (anti-β1-AR) and anti-M2-muscarinic

receptor (anti-M2-R) (Yalcin et al., 2015). Anti-M2-R can

predict the degree of left atrial fibrosis in pAF patients and

β1-AR autoantibody may promote the development of AF by

regulating atrial fibrosis (Gurses et al., 2015; Shang et al., 2020).

Moreover, the levels of circulating immunoglobulin-free light

chains, kappa and lambda, were higher in individuals with AF

(Matsumori et al., 2020). These alternations are inconsistent with

the findings for rare B cells in the atria. This phenomenon can be

explained by the fact that circulating antibodies but not local

B cells are associated with AF development. A matched case-

control study assessed the association of Th17-related cytokines

[including interleukin-17A (IL-17A), IL-17F, IL-21, and IL-22]

with AF and observed elevated plasma levels of Th17-related

cytokines were independently related to high risk of AF (Wu

et al., 2016). These molecules participate in the atrial electrical

and structural remodeling and facilitate the development of AF

substrates. Overall, the immune microenvironment, including

immune cells and molecules, change both locally and

systemically during AF.

Mechanism of immune remodeling

The precise mechanisms of immune remodeling during

AF are still elusive. On the one hand, it is possible that some

risk factors and inflammation-related conditions, including

hypertension, coronary atherosclerosis, obesity, sepsis and

obstructive sleep apnea, can increase the release of damage-

associated molecular patterns and/or pathogen-associated

molecular patterns, leading to the activation of immune

responses (Sirisinha, 2011). Cardiac surgical stimulation is

also a potential trigger for immune cell activation, which

explains the increased circulating immune cells and

postoperative AF incidence after coronary artery bypass

grafting (Hammer et al., 2021). Additionally, atrial rapid

and irregular electrical activity causes intracellular calcium

overload, oxidative stress and cell apoptosis, which in turn

lead to more resident immune cell activation and cytokine

release (Van Wagoner, 2008; Hu et al., 2015). This allows the

formation of positive feedback loops between immune

activation and AF. On the other hand, the function of

negative regulators is impaired during AF, as shown by a

TABLE 2 The main studies on the change of special immune molecules in AF.

Study No. of patients Sample
source

Immune molecules Detection methods

Rudolph et al. 2010 17 control, 10 pAF LAA MPO IF, ELISA

Yalcin et al. 2015 75 control, 75 pAF serum anti-β1-R, anti-M2-R ELISA

Gurses et al. 2015 31 control, 31 pAF serum anti-M2-R ELISA

Li et al. 2016 20 control, 270 AF serum SDF-1α (CXCL12) ELISA

Wu et al. 2016 336 control, 336 AF serum Th17 related cytokines ELISA

Wan and Li. 2018 103 control, 66 pAF,68 peAF,
52 perm AF

serum MIF ELISA

Holzwirth et al.
2020

37 control, 121 AF serum MPO ELISA

Zhang et al. 2020a 31 control, 31 AF blood CXCL1, CXCR2+ monocytes ELISA, FLC

Matsumori et al.
2020

28 control, 28 AF blood immunoglobulin free light chains kappa
and lambda

competitive-inhibition multiplex Luminex®
assay

Abbreviations: AF, atrial fibrillation; anti-β1-R, anti-β1-adrenergic receptor; anti-M2-R, anti-M2-muscarinic receptor; CXCL, C-X-C motif ligand; CXCR, C-X-C motif receptor; ELISA,

enzyme-linked immuno sorbent assay; FLC, flow cytometry; IF, immunofluorescence; LAA, left atrial appendage; MIF, macrophage migration inhibitory factor; MPO, myeloperoxidase;

pAF, paroxysmal AF; peAF, persistent AF; permAF, permanent AF; SDF-1α, stromal cell-derived factor-1α.
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lower number of Treg cells and limited function of anti-

inflammatory mediators, including IL-4 and IL-10

(Sulzgruber et al., 2017). This point has been well proven

by the finding that the depletion of spleen-derived IL-10 can

augment AF vulnerability (Kondo et al., 2016). In addition,

the programmed death-1(PD-1) and its ligand PD-L1 have

recently been highlighted as critical regulators that maintain

this immune balance by negatively regulating T cell activation,

proliferation and cytokine production. The downregulation of

the PD-1/PD-L1 signaling pathway in AF partially

participates in AF pathogenesis (Liu et al., 2015).

Moreover, the imbalance in autonomic nerve system (ANS)

is associated with the development and maintenance of AF

(Kusayama et al., 2021), which may be an important cause of

immune remodeling.

The role of immune remodeling in
atrial fibrillation

Immune remodeling and electrical
remodeling

Recent investigations have revealed that the immune

system has an impact on atrial electrophysiology (Figure 2).

With the activation of immune cells, a large amount of pro-

FIGURE 2
Interactions of immune remodeling and electrical remodeling. This figure focuses on the interactions between activated macrophage and
cardiomyocyte. Activated macrophages can release cytokines and exosomes to affect the expression of ion channels and connexins in
cardiomyocytes. Meanwhile, pacing cardiomyocytes can promote the macrophage activation. Abbreviations: APD, action potential duration;
CACNA1C, L-type calcium channel α1C subunit; CM, cardiomyocyte; Cx 40, connexin 40; DAD, delayed after-depolarization; ERP, effective
refractory period; Exo, exosomes; Gal-3, galectin 3; ICa-T, T type calcium channel current; Ito, transient outward potassium current; IL-6, interleukin-
6; Mφ, macrophage; MIF, macrophage migration inhibitory factor; RyR2, ryanodine receptor 2; SR, sarcoplasmic reticulum; SERCA2a, sarcoplasmic
reticulum Ca-ATPase; TCCA1G, T-type calcium channel α1G subunit.
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inflammatory factors, including tumor necrosis factor-α
(TNF-α), MIF, IL-1β, IL-6 and galectin-3 are released

subsequently during AF, which can induce atrial electrical

remodeling. Ca2+-associated abnormalities play a vital role in

delayed afterdepolarizations and triggered activities (Schober

et al., 2012). TNF-α can disrupt the intracellular calcium

homeostasis in atrial myocytes by repressing the expression

of T-type calcium channel α1G subunit (TCCA1G) and

sarcoplasmic reticulum Ca-ATPases (SERCA2a) (Kao et al.,

2010; Rao et al., 2016). TNF-α administration to the

pulmonary vein cardiomyocytes affects multiple ionic

currents (reduced ICa-L and increased Ito), induces delayed

afterdepolarizations, thereby enhancing arrhythmogenic

activity (Lee et al., 2007). MIF treatment of HL-1 atrial

myocytes increases calcium transients and sarcoplasmic

reticulum calcium levels by inducing the expression of

ryanodine receptor 2 (RyR2) (Cheng et al., 2020). In

addition, activated immune cells such as macrophages

prime the assembly of the NLRP3 inflammasome via

TLR4 or nuclear factor-κB signaling, and trigger the release

of IL-1β and IL-18. Macrophage-derived IL-1β can hinder

quaking protein binding to the α1C subunit of L-type calcium

channel (CACNA1C) and decrease calcium channel

expression (Sun et al., 2016). Although macrophage

NLRP3 activation is insufficient to cause AF, it has been

shown that M1 macrophage-derived exosomes mediate

cardiomyocyte NLRP3 activation by transferring miR-29a,

while cardiomyocyte NLRP3 activation can upregulate the

expression of RyR2 and promote abnormal sarcoplasmic

reticulum Ca2+ release (Yao et al., 2018; Wang Y et al.,

2021). Moreover, galectin-3 is also an important

contributor for atrial electrical remodeling. Galectin-3-

treated HL-1 myocytes have a shorter action potential

duration, smaller ICa-L current, increased sarcoplasmic

reticulum calcium content and ultrarapid delayed rectifier

potassium current than control cells have. Specific

neutralization of its membrane surface receptor

CD98 significantly weakens galectin-3-induced Ca2+

handling imbalance (Cheng et al., 2022). Consistent with

these results, Galectin-3 inhibitor GMCT treatment could

mitigate pacing-induced electrical remodeling and

abnormal Ca2+ handling in a sheep model (Takemoto et al.,

2016).

The altered expression and distribution of connexins (Cx) on

atrial myocytes disable gap junctional intercellular

communication and reduce conduction velocity in the atrium,

leading to increased vulnerability to AF (Nagibin et al., 2016).

Mouse recombinant MIF can concentration-dependently

downregulate Cx43 expression in atrial myocytes by activating

ERK1/2 kinase (Li et al., 2017). A recent study verified that

elevated IL-6 levels rapidly lowered the expression of cardiac

Cx43 and Cx40 (Lazzerini et al., 2019). In addition, TNF-α has

the ability to change the expression and distribution of Cx43 and

Cx40 (Liew et al., 2013). In an Ang II-infused hypertensive

mouse model, Cx43 delocalization was obvious, while

adoptive transfer of Treg cells induced normal

Cx43 localization at the intercalated disk regions (Kvakan

et al., 2009), which indicated that a reduced proportion of

Treg cells in patients with AF might promote electrical

remodeling by controlling Cx43 (Sulzgruber et al., 2017).

Overall, immune cell-mediated electrophysiology and

inflammatory response promote atrial electrical remodeling in

an indirect or direct manner. Moreover, tachypacing of HL-1

atrial myocytes or Ang II-treated atrial myocyte-derived

exosomes can promote M1 macrophage polarization (Sun

et al., 2016; Cao et al., 2021). There is a reciprocal interaction

between immune remodeling and electrical remodeling. There is

no doubt that deep and systematic research on immune-

electrophysiology will provide new perspectives for AF

treatments.

Immune remodeling and structural
remodeling

Numerous studies have indicated that the infiltration of

immune cells participates in atrial fibrosis and this effect

depends mainly on the secretion of the cytokines (Figure 3).

Macrophages, as major sources of transforming growth factor-β1
(TGF-β1) during the fibrotic process, can induce fibroblast-to-

myofibroblast differentiation (Fadok et al., 1998). TNF-α is also

involved in the pathogenesis of atrial fibrosis through activation

of the TGF-β signaling pathway and increased secretion of matrix

metalloproteinases (MMPs) (Liew et al., 2013). Galectin-3

produced by macrophages interacts with TGF-β and induces

atrial fibrosis by stimulating the downstream TGF-β1/Smad

pathway (Xiao et al., 2020). In addition, various chemokine

receptors, including C-X-C chemokine receptor 2 (CXCR2),

CXCR4, and CXCR6, are expressed on monocytes/

macrophages and involved in atrial fibrosis by mobilizing

macrophages (Zhang et al., 2020a; Liu et al., 2021). It has

been demonstrated that Ang II can induce chemokine

expression in atrial fibroblasts, thereby inducing the

chemotaxis of macrophages (Chen et al., 2015). There seems

to be a positive feedback loop between macrophages and fibrosis,

which is pivotal in the development of AF substrate.

Mast cells are involved in atrial structural remodeling. In a

mouse model of diabetes, hyperglycemia led to mast cell

infiltration in the atria, atrial fibrosis and increased AF

susceptibility. Transgenic mast-cell deficiency reversed

these pathological changes (Uemura et al., 2016). In a

pressure-overload mouse model, activated mast cells

promoted fibroblast activation and fibrosis by releasing

platelet-derived growth factor α (PDGFα). Neutralizing the

PDGFα receptor with a specific antibody alleviated atrial

fibrosis and AF susceptibility (Liao et al., 2010). Activated
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mast cells can also degranulate to produce some preformed

mediators, including histamine, tryptase and chymase, which

can mediate the progression of atrial fibrosis (Patella et al.,

1995). Mast cells also serve as sources of TNF and IL-1β,
promote fibrotic remodeling by inducing inflammation and

MMP9 production (Mukai et al., 2018). However, due to some

anti-fibrotic mediators in mast cells, the role of mast cells in

fibrosis is controversial.

Neutrophils release cytokines such as IL-6, TNF-α and

MPO to accelerate atrial fibrosis. In Ang II-treated mice,

neutrophil infiltration was accompanied by profoundly

enhanced atrial fibrosis and elevated susceptibility to AF.

MPO knockout blunted atrial fibrosis and protected Ang

II-treated mice from AF by modulating MMP activity and

hypochlorous acid formation (Rudolph et al., 2010). In

addition, another study showed that the integrin CD11b/

CD18 mediate neutrophil infiltration and localization

within the atrial tissue (Friedrichs et al., 2014), which

provides a potential novel avenue of treatment in AF.

Platelets are activated in patients with AF. Once activated,

platelets can release a large number of pro-fibrotic cytokines

and grow factors (including TGF-β1 and PDGF) into blood

and local tissue (Mussano et al., 2016; Karolczak and Watala,

2021). In Ang II-infused mice model, both clopidogrel

treatment and platelet-specific deletion of TGF-β1 reduced

Ang II-induced atrial fibrosis and AF induction (Liu et al.,

2020).

Multiple studies have also shown that T cell infiltration

plays a functional role in cardiac fibrosis. This role is highly

dependent on cardiac milieus and T cell subsets. In a

myocardial infarction model, Th1 cells appeared to exert an

anti-fibrotic effect by secreting interferon-γ. Conversely,

FIGURE 3
Interactions of immune remodeling and structural remodeling. This figure summarizes the interactions between immune cells and CF during
AF. Macrophage, mast cell, neutrophil and T cell can release pro-fibrotic factors to activate CF, leading to ECM deposition and atrial structural
remodeling. Meanwhile, activated CF can promote themacrophage recruitment by releasing chemokines. Abbreviations: CCL, C-Cmotif ligand; CF,
cardiac fibroblast; CXCL, C-X-C motif ligand; ECM, extracellular matrix; IFN-γ, interferon-γ; IL-4, interleukin-4; MPO, myeloperoxidase; PDGF,
platelet-derived growth factor; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α.
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Th2 cells counteracted to the Th1 response by secreting

several pro-fibrotic cytokines (IL-4 and IL-13) (Bradshaw

and DeLeon-Pennell, 2020). Lu et al. (2020) demonstrated

that increased Th17 cells and decreased Treg cells aggravated

myocardial fibrosis by activating the IL-17/ERK1/2-AP-

1 pathway. This trend was also observed in immune

remodeling in AF (He et al., 2018). However, the biological

role of these subtypes has not been established in AF.

Immune remodeling and neural
remodeling

The cardiac ANS plays a significant role in the occurrence

and maintenance of AF. Recent studies have suggested that the

immune system and ANS are intimately linked. Next, we will

conclude the interactions between the immune system and ANS,

and propose a number of blind spots in the existing experimental

research on AF.

During immune remodeling, activated macrophages, mast

cells and T cells can regulate neural remodeling by releasing

inflammatory factors including NGF, IL-1β and IL-17A

(Chaldakov et al., 2014; Lyu et al., 2020). An experimental

study showed that catecholamine-induced inflammatory

environment could promote the release of NGF from

macrophages and regulate cardiac sympathetic remodeling

(Lyu et al., 2020).The activation of NLRP3 inflammasome in

macrophages can’t only ignite inflammatory reaction but also

facilitate the sympathetic innervation (Yin et al., 2017; Lee et al.,

2021). The key role of macrophages in the regulation of neural

remodeling has also been tested in vivo by clodronate

liposomes-mediated macrophage depletion. It was revealed

quite early that intravenous clodronate liposomes could

decrease cardiac sympathetic axon density and NGF

expression following myocardial infarction (Wernli et al.,

2009). Local macrophage depletion in stellate ganglia could

also restrain cardiac sympathetic sprouting and ventricular

arrhythmias in heart failure (Zhang D et al., 2021). A recent

study showed that clodronate liposome injection into the atria

in canines significantly decreased AF vulnerability after acute

stroke, but nerve density and NGF expression were not assessed

(Wang et al., 2019). In addition, exogenetic IL-1β or IL-17A

microinjection into the left stellate ganglion (LSG) promoted

neuronal remodeling of the LSG and deteriorated ventricular

electrophysiology by regulating the neural inflammation, which

were improved by a specific neutralizing antibody (Wang et al.,

2017; Deng et al., 2019). The LSG also plays an important role in

the initiation and maintenance of AF. However, atrial

electrophysiology parameters were not measured at the same

time. Although there is few direct evidence on immune-

mediated neural remodeling in AF, these findings indicate

that it may be a novel vantage point for understanding AF

mechanism.

The autonomic activity also plays a vital role in immune

remodeling. Sympathetic nervous system activation can regulate

immune system function through β-ARs, which exist in almost

all immune cell types. β1-AR is primarily expressed in innate

immune cells, where its activation can increase LPS-induced

production of inflammatory mediators (Speidl et al., 2004). β2-
AR is the most highly and widely expressed β-AR isoform in

immune cells, and its effect is highly dependent on the initiation

of downstream signaling (Yoshida et al., 2015; Grisanti et al.,

2016). β3-AR has also been shown to be significant in mediating

immune cell mobilization and egress from the bone marrow

(Méndez-Ferrer et al., 2010). Additionally, some non-immune

cells expressing β-AR also involve in ANS-mediated immune

remodeling. Renal collecting duct epithelial cells express β2-AR
and play a key role in the heart-brain-kidney network. When

sympathetic nervous system activation stimulates the KLF5-

S100A8-S100A9 pathway in collecting duct epithelial cells,

renal macrophages produce TNF-α, which in turn stimulates

renal endothelial cells to secrete colony stimulating factor 2 into

the circulation, thereby activating cardiac resident macrophages

(Fujiu et al., 2017). These results suggest that sympathetic neural

activation can not only directly regulate cardiac immune cell

activation but also indirectly modulates myelopoiesis and

immune cell mobilization to the heart by affecting other

organs, such as the bone marrow and kidney. SNS activation

in AF is well known, along with migration and infiltration of

immune cells and the inflammatory cascade. It was demonstrated

that renal sympathetic denervation in canines could suppress AF

and reduce the increasing trend of TNF-α and IL-6 induced by

rapid atrial pacing (Wang et al., 2013). Acute middle cerebral

artery occlusion in canines led to an increase in LSG activity,

atrial β1-AR expression, atrial macrophage infiltration and AF

vulnerability, while ablation of the LSG reversed these changes

(Wang et al., 2019; Yang et al., 2020). Although the definitive

mechanism is not very clear, it is possible that the effect is related

to sympathetic nerve-regulated immune remodeling.

The parasympathetic nervous system regulates immune

system function through nicotinic and muscarinic

acetylcholine receptors (nAChRs and mAChRs) in most

immune cells. The α7 subunit of nAChR (α7nAChR) is the

most studied and involved in cholinergic anti-inflammatory

pathway. Research of canines with rapid atrial pacing

uncovered that low-level vagus nerve stimulation (LL-VNS)

significantly suppressed atrial electrical remodeling and AF

inducibility, accompanied by low levels of TNF-α and IL-6 in

the left atria (Zhang S. J et al., 2021). Spinal cord stimulation

facilitated the effect of VNS and reduced the induction of AF (Dai

et al., 2017). Researchers also further demonstrated that median

nerve stimulation could heighten cardiac vagal tone and atrial

ACh levels, and reverse the enhanced inflammation response and

AF inducibility by short-term rapid atrial pacing (Zhao et al.,

2018). These results are associated with inflammatory

macrophage inhibition mediated by the cholinergic anti-
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inflammatory pathway. Despite suboptimal evidence, it could be

speculated that the autonomic activity can regulate immune

remodeling in AF.

The ANS activity is identified as a major component of

the emotion response. Previous studies suggested that

negative emotion including sadness, depression, anger and

stress could increase the likelihood of symptomatic AF

(Lampert et al., 2014). Depression is independently

associated with AF recurrence after catheter ablation

(Zhuo et al., 2020). The exact mechanisms are still

mysterious. Recently, accumulating evidence have

indicated the existence of immune remodeling during

depression (Wittenberg et al., 2020). In major depressive

disorder patients, anxious distress was highly associated with

innate immune activation including higher levels of IL-6,

TNF-α, monocyte chemoattractant protein-1 and increased

number of activated monocytes in circulation (Gaspersz

et al., 2017; Nowak et al., 2019). This shows that immune

remodeling can be one of mediators of emotion-induced AF.

In another study, major depressive disorder-derived

monocytes displayed higher proportion of M1 polarization

phenotype under standard culture conditions, but, higher

M2 polarization when co-stimulated with autologous sera

(Cosma et al., 2021). This fully reflects the plasticity of

immune cells and potential value of immune regulation.

However, the understanding for emotion-immune-AF

correlation still be not thorough and deeper research is

warrant.

Therapeutic potential of targeting
immune remodeling

The mechanisms underlying AF have been studied in the last

several decades. Although a wide range of modalities contributes

to the management of AF, the treatment efficacy in patients with

AF remains suboptimal. Immune remodeling induces

inflammation and is highly associated with atrial electrical,

structural, and neural remodeling. Despite a scarcity of studies

on interventions for immune remodeling, therapies targeting

immune remodeling are promising.

In this section, we will draw from data, following five

dimensions to briefly summarize the therapeutic potential of

immunomodulation: 1) regular exercise; 2) anti-inflammatory

therapy; 3) inflammatory cytokines-targeted therapy; 4) immune

cells-targeted therapy, and 5) upstream regulation of immune

remodeling.

Exercise has undeniable impacts on the immune (Duggal

et al., 2019) and cardiovascular systems (Meissner et al.,

2011). Regular physical exercise at low-moderate intensity is

recommended as a feasible non-pharmacological therapy for

AF patients (Chung et al., 2020). However, the underlying

mechanistic detail remains unclear but can be attributed to

the modulation of immune, fibrosis, and vagal tones (Guasch

et al., 2013; Aschar-Sobbi et al., 2015). It has been suggested

that regular voluntary physical activity alters the

proliferation of hematopoietic stem and progenitor cells

via modulation of their niche and reduces the

inflammatory leukocyte output (Frodermann et al., 2019).

Monocytes and neutrophils are extremely important

elements for atrial inflammation and other risk factors for

AF. However, a study suggested that exercise might have a

dichotomous effect on the immune system in populations

carrying a high burden of AF risk factors. High-intensity and

long-term physical training resulted in increased leukocyte

output and pro-inflammatory cytokine (TNF-α, IL-2, IL-6
and IL-8) release (Santos et al., 2007; Kawanishi et al., 2015;

de Barcellos et al., 2021), along with a greater susceptibility to

AF (Guasch et al., 2013; Aschar-Sobbi et al., 2015). Recently,

Valenzuela and his colleagues performed a meta-analysis

with 6 (n = 935,742) and 4 (n = 2,422) studies to analyze

the association of AF with physical activity or sports practice,

respectively. Their results suggested that physical activity

was overall inversely associated with incident AF whereas

high-intensity physical training in athletes was associated

with a higher risk for AF (Valenzuela et al., 2022). Of note,

there is not yet a strong evidence expounding the association

of sports with AF.

Inflammatory responses are the most evident feature of

immune remodeling. The widely available, low-cost, and

anti-inflammatory drug, colchicine, was once thought to

be have preventive potential for postoperative AF. In a

sub-study of the COPPS trial, colchicine 1 mg twice daily

on the third postoperative day, followed by 0.5 mg twice daily

for a month, lowered the incidence of postoperative AF at

30 days compared to placebo (Imazio et al., 2011). Deftereos

et al. also showed that colchicine administration, at a dose of

0.5 mg twice daily, for 3 months after pulmonary vein

isolation in patients with paroxysmal AF, resulted in a

significantly lower rate of AF recurrence over a median of

15 months of follow-up (Deftereos et al., 2014). However, a

recent randomized controlled trial (1 mg of colchicine 24 h

before the surgery, as well as on days 2, 3, 4, and 5 in the

postoperative period) did not detect any statistically

significant differences between the control and colchicine

groups within 7 days after surgery (Shvartz et al., 2022). Two

other studies also found similar results (Bessissow et al.,

2018; Tabbalat et al., 2020). Although the above-mentioned

opposite outcomes may be attributed to the small sample size

and early study termination, the effectiveness of colchicine in

preventing AF needs to re-examination. The release of

cytokines/-chemokines is an important modulation of the

immune system. Targeted treatment of specific cytokines or

receptors has attracted considerable academic interest. In

rats with sterile pericarditis, treatment with anti-IL-17A

monoclonal antibodies markedly alleviated inflammation
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and fibrosis and suppressed the development of AF (Fu et al.,

2015). Zhang et al. (2020b) also showed that targeting the

CXCL-1/CXCR2 signaling could prevent and reverse the

development of AF in spontaneously hypertensive rats.

Trials in this research direction have already been

conducted in clinical settings. A large, randomized clinical

trial involving 10,061 patients with previous myocardial

infarction demonstrated that canakinumab targeting of IL-

1β significantly lowered the risk of recurrent cardiovascular

events as compared to placebo (Ridker et al., 2017). Another

trial in patients with peAF showed that canakinumab

administration after electrical cardioversion could lower

the incidence of AF recurrence at six months; however, no

significant differences were observed due to the limited

sample size (Krisai et al., 2020). Thus, the effectiveness of

these drugs warrants further evaluation in larger multicenter

randomized clinical trials.

Immune cells constitute the main factors for immune

remodeling in AF. Targeted cell therapy may provide an

effective strategy. Sun et al. (2016) suggested that the

depletion of macrophages can relieve LPS-induced atrial

electrical remodeling and AF vulnerability in mice. Wang

et al. (2019) also confirmed the effects of depleting

macrophages on AF induction. However, prior studies

have showed that macrophages played an indispensable

role in cardiac homeostasis. Thus, this approach remains

controversial (Hulsmans et al., 2017). In addition, a recent

study employed engineered CD8+ T cells as a therapeutic

agent for treating cardiac fibrosis. Adoptively transferred

antigen-special CD8+ T cells could target the fibroblast

activation protein expressed on cardiac fibroblasts, thereby

suppressing cardiac fibrosis (Aghajanian et al., 2019). This

approach can be attempted in future investigations on AF

treatment. Finally, immune remodeling may be modulated

by a complex combination of physical and neuro-humoral

factors in AF. LSG ablation has been shown to reduce

macrophage infiltration in the atria and vulnerability to

AF after an acute stroke (Wang et al., 2019). Therefore,

treatment regimens targeting the upstream modulators of

immune remodeling can be very efficient. However, the

majority of the data derived from animal experiments.

Due to differences among species in several aspects,

especially the immune system, there is still a long way to

verifying the efficacy and achieving the translation from

animal experiments to clinical settings.

Conclusion and future prospects

During AF, changes in the composition and number of

immune cells, as well as in the levels of immune molecules,

constitute immune remodeling, which is inextricably linked with

atrial electrical, structural and neural remodeling. Recent

attempts to prevent AF by modulating immune remodeling

have also suggested the important role of immunity in AF.

However, the complexity of immune cell subtypes and the

heterogeneity of existing research also make the translation

from current data to clinical practice both promising and

challenging. Overall, this area of research is only beginning to

evolve, and in-depth studies are still needed.
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