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Abstract
Whether hepatocytes can convert into biliary epithelial cells (BECs) during biliary injury is

much debated. To test this concept, we traced the fate of genetically labeled [dipeptidyl pep-

tidase IV (DPPIV)-positive] hepatocytes in hepatocyte transplantation model following

acute hepato-biliary injury induced by 4,4’-methylene-dianiline (DAPM) and D-galactos-

amine (DAPM+D-gal) and in DPPIV-chimeric liver model subjected to acute (DAPM+D-gal)

or chronic biliary injury caused by DAPM and bile duct ligation (DAPM+BDL). In both mod-

els before biliary injury, BECs are uniformly DPPIV-deficient and proliferation of DPPIV-defi-

cient hepatocytes is restricted by retrorsine. We found that mature hepatocytes underwent

a stepwise conversion into BECs after biliary injury. In the hepatocyte transplantation

model, DPPIV-positive hepatocytes entrapped periportally proliferated, and formed two-lay-

ered plates along portal veins. Within the two-layered plates, the hepatocytes gradually lost

their hepatocytic identity, proceeded through an intermediate state, acquired a biliary phe-

notype, and subsequently formed bile ducts along the hilum-to-periphery axis. In DPPIV-

chimeric liver model, periportal hepatocytes expressing hepatocyte nuclear factor-1β (HNF-

1β) were exclusively DPPIV-positive and were in continuity to DPPIV-positives bile ducts.

Inhibition of hepatocyte proliferation by additional doses of retrorsine in DPPIV-chimeric liv-

ers prevented the appearance of DPPIV-positive BECs after biliary injury. Moreover,

enriched DPPIV-positive BEC/hepatic oval cell transplantation produced DPPIV-positive

BECs or bile ducts in unexpectedly low frequency and in mid-lobular regions. These results

together suggest that mature hepatocytes but not contaminating BECs/hepatic oval cells

are the sources of periportal DPPIV-positive BECs. We conclude that mature hepatocytes

contribute to biliary regeneration in the environment of acute and chronic biliary injury

through a ductal plate configuration without the need of exogenously genetic or epigenetic

manipulation.
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Introduction
The liver has an enormous capacity to regenerate after injury [1–3]. In most situations, liver
regeneration is mediated by self duplication of mature hepatocytes and biliary epithelial cells
(BECs). Transdifferentiation of hepatocytes and BECs to each other has been proposed as an
alternative rescue mechanism in liver diseases when either cell type fails to regenerate by itself
[4,5]. It is generally accepted that BECs from canals of Hering proliferate to generate oval cells
which can differentiate into hepatocytes when proliferation of hepatocytes is inhibited or over-
whelmed [6–9]. However, cell conversion of mature hepatocytes in the opposite direction into
BECs during biliary injury is much debated [4,5,10–18].

Several major assays have been used to document the transdifferentiation potential of hepa-
tocytes: in vitro clonogenic growth, cell transplantation, forced activation of Notch signaling,
and in vivo lineage tracing [10–19]. In vitro studies have shown that mature hepatocytes can
convert into BECs in the organoid culture systems [10,14]. Experiments using hepatocyte
transplantation into the spleen have shown that transplanted hepatocytes in the spleen could
transdifferentiate into biliary cells that aggregate to form ductular structures [12,15]. Forced
activation of Notch signaling can reprogram hepatocytes into BECs in mice [17,19]. Although
these studies provide persuasive data, recent in vivo hepatocyte fate tracing studies using
genetic lineage tagging or rodents with chimeric livers in chronic biliary liver diseases reach dif-
ferent conclusions [11,13,16–18]. While some studies have shown that hepatocytes undergo
widespread hepatocyte-to-BEC reprogramming following bile duct ligation (BDL) or
3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet induced injury [13,17,18], the others
have found no evidence that chronic biliary injury caused by BDL or DDC diet induces conver-
sion of hepatocytes into BECs [11,16].

Cell proliferation is thought to facilitate cell type conversions [20]. Transplanted hepato-
cytes can proliferate for several rounds to regenerate a damaged liver [21]. Therefore, hepato-
cyte transplantation experiments would be an ideal model to test the cell-type conversion
potential of hepatocytes [16]. However, transplanted hepatocytes have been shown to convert
into BECs in the spleen but never in the acute injured liver [12,13,15,22]. In contrast, fetal
hepatoblasts and hepatic oval cells have been shown to differentiate as hepatocytes and bile
duct cells after transplantation into the damaged liver but not in the spleen [11,12,15,23–25].
We have recently used in vivo lineage tracing technique in rats and resolved the debate on the
lineage relationship between mature hepatocytes and small hepatocyte-like progenitor cells
(SHPCs) in retrorsine-exposed rats after partial hepatectomy [26]. We have demonstrated that
mature hepatocytes do not give rise to SHPCs. Taken together, these and our studies prompted
us to hypothesize that being a terminal differentiated cell type, mature hepatocytes can not
convert into BECs in the damaged livers. To test this hypothesis, we traced the fate of geneti-
cally labeled (DPPIV-positive) hepatocytes in hepatocyte transplantation model following
acute hepato-biliary injury induced by 4,4’-methylene-dianiline (DAPM) and D-galactosamine
(DAPM+D-gal) and in DPPIV-chimeric liver model subjected to acute hepato-biliary injury
(DAPM+D-gal) or chronic biliary injury caused by DAPM and bile duct ligation (DAPM
+BDL). In the livers of DPPIV-deficient rats and DPPIV-chimeric livers before biliary injury,
BECs are uniformly DPPIV-deficient and proliferation of DPPIV-deficient hepatocytes is
restricted by retrorsine. Transplanted hepatocytes and about half of the hepatocytes in the
DPPIV chimeric liver are DPPIV-positive and capable of proliferation. If mature hepatocytes
were able to transdifferentiate into BECs after biliary injury, we expected to observe DPPIV-
positive BECs in the regenerating livers.
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Materials and Methods

Animals
DPPIV-deficient F344 rats were kindly provided by Professor Sanjeev Gupta from the Albert
Einstein College of Medicine. Male DPPIV-deficient rats were used as recipient animals. Nor-
mal male DPPIV-positive F344 rats (aged 8–10 weeks, 200–250 g) were purchased from
National Laboratory Animal Center, Taiwan and used as donor animals. These animals were
in-house bred and maintained on standard laboratory chow and daily 12 hour light/dark
cycles. All of the animals received humane care in compliance with the guidelines of the
National Science Council of Taiwan (NSC, 1997). All animal experiments were approved by
the Institutional Laboratory Animal Care and Use Committee of the National Taiwan Univer-
sity, College of Medicine and College of Public Health and Institutional Animal Care and Use
Committee (IACUC), Taipei Tzuchi Hospital, The Buddhist Tzu Chi Medical Foundation
(Approval Letter No.: IACUC-20110387, IACUC-20120461, 101-IACUC-001, 101-IACUC-
018, and 101-IACUC-033).

Retrorsine administration, induction of acute hepato-biliary injury, and
hepatocyte isolation and transplantation
The retrorsine (Sigma, St. Louis, MO), 4,4’-methylene-dianiline (DAPM) (Sigma, St. Louis,
MO), and D-galactosamine (D-gal) (Sigma, St. Louis, MO) working solutions were prepared as
described previously and used immediately after preparation [21,22,26,27]. In situ liver perfu-
sion, collagenase digestion, and differential centrifugation were used to purify the hepatocytes
from normal male DPPIV-positive F344 rats as previously described [22]. The viability and
purity of each preparation were assessed by trypan blue exclusion in a hemacytometer. Prepa-
rations typically contained>90% viable hepatocytes.

Male DPPIV-deficient rats received two treatments of retrorsine (30 mg/kg, i.p.) two weeks
apart, at six and eight weeks of age. D-galactosamine (0.7 g/kg, i.p.) or DAPM (50 mg/kg, i.p.)/
D-galactosamine (0.7 g/kg, i.p., 24 hours after DAPM) were used to induce acute hepatic injury
(R+D-gal) or acute hepato-biliary injury (R+DAPM+D-gal) two weeks after the second retro-
rsine treatment. A long-term cannulation of the main portal vein was implanted one week
before induction of acute hepato-biliary injury [28]. The rats consciously received intraportal
DPPIV-positive hepatocyte transplantation (1x107/ml) through the portal cannula 1 day or 4
days after D-galactosamine treatment. The rats were left to recover and were sacrificed at 1, 2,
and 4 weeks after cell transplantation (Fig 1).

Generation of rats with DPPIV chimeric livers
The rats with DPPIV chimeric livers were generated according to our previous studies [22].
Retrorsine-exposed DPPIV-deficient rats received single injection of D-galactosamine (0.7 g/
kg, i.p.) and DPPIV-positive hepatocyte transplantation (1x107/ml) intraportally 24 hours after
D-galactosamine treatment. The rats were left to recover for the next one month. In the
DPPIV-chimeric livers, hepatocytes derived from the donor DPPIV-positive cells appear posi-
tive for DPPIV, whereas host hepatocytes and bile ductules are uniformly negative (S1 Fig).
DPPIV-positive hepatocytes comprised about half of the chimeric liver mass at 1 month.

Isolation and characterization of hepatic oval cells
Hepatic oval cells were isolated from D-galactosamine treated wild-type male F344 rats at day
5 after D-galactosamine treatment [25]. Livers at this time point show the highest number of
hepatic oval cells [29,30]. In situ liver perfusion, collagenase digestion, and differential

Conversion of Hepatocytes into BECs in Biliary Injuries

PLOS ONE | DOI:10.1371/journal.pone.0134327 August 26, 2015 3 / 17



centrifugation are used to purify the hepatic oval cells as described by Yovchev et al. [25]. The
viability and purity of each preparation are assessed by trypan blue exclusion in a hemacytome-
ter. Preparations typically contained>95% viable cells. The isolated hepatic oval cells are iden-
tified by the labeling of cells with CK-19 antibody and histochemical staining for Gamma-
glutamyl-transpeptidase (GGT) to estimate their fractions [25].

Fig 1. Transplanted DPPIV-positive hepatocytes convert into biliary epithelial cells (BECs) in livers with acute hepato-biliary injury. Shown are
scheme illustrating hepatocyte transplantation in retrorsine+DAPM+D-galactosamine treated rats and serial liver sections stained histochemically for DPPIV
and Gamma-glutamyl-transpeptidase (GGT, a marker of BECs). (A) At one week, DPPIV-positive hepatocytes (arrows) are in small clusters or short string of
3–5 cells mostly located in the periportal areas. None of the DPPIV-positive cells are GGT-positive. (B) At two weeks, DPPIV-positive cells (arrows) arranged
linearly along the portal veins are observed in 30–40% of portal triads per lobe. Some of the linearly arranged DPPIV-positive cells are stained faintly for
GGT. (C) At four weeks, DPPIV-positive ducts (arrows) with faint GGT staining in portal triads are found. Middle and right columns are a high magnification
view of the area enclosed by the rectangle in left column. (Original magnification: left column,100x; middle and right columns, 400x) Scale bars: 100 μm.

doi:10.1371/journal.pone.0134327.g001
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Induction of acute hepato-biliary injury and chronic biliary injury in rats
with DPPIV chimeric livers
The rats with DPPIV chimeric livers were randomized to receive one of the following: (1)
DAPM (50 mg/kg, i.p.)/D-galactosamine (0.7 g/kg, i.p., 24 hours after DAPM) treatment (Chi-
meric liver+DAPM+D-gal), (2) DAPM (50 mg/kg, i.p.)/bile duct ligation (BDL, 24 hours after
DAPM) treatment (Chimeric liver+DAPM+BDL), (3) two intraperitoneal injection of retro-
rsine (30 mg/kg) two week apart, followed by DAPM (50 mg/kg, i.p.)/D-galactosamine (0.7 g/
kg, i.p., 24 hours after DAPM) treatment (Chimeric liver+R+DAPM+D-gal), or (4) two intra-
peritoneal injection of retrorsine (30 mg/kg) followed by DAPM (50 mg/kg, i.p.)/BDL treat-
ment (Chimeric liver+R+DAPM+BDL). The rats were allowed to recover and were sacrificed
at the indicated time points.

Histochemistry and Immunohistochemistry
All histochemical and immunohistochemical stainings were performed according to previously
described protocols. Primary antibodies are listed in Table 1. Sections of 6 μm thickness were
used for histological analysis. DPPIV expression was determined by enzyme histochemical
staining in liver cryosections as previously described [31]. Gamma-glutamyl-transpeptidase
(GGT) was detected by the method of Rutenberg et al. [32]. Double immunofluorescence stain-
ings were detected using the method described by Paku et al. [33]. Additional methods are pro-
vided in the Supporting Information. Appropriate secondary antibodies used in various
experiments included Alexa Fluor 488 donkey anti-mouse IgG (Molecular Probes, Oregon,
USA) and Alexa Fluor 594 donkey anti-goat IgG (Molecular Probes, Oregon, USA). Nuclei
were labeled with 4’,6-diamidino-2-phenylindole (DAPI) (Molecular Probes, Oregon, USA).

Results

Characteristics of acute hepato-biliary injury caused by retrorsine
+DAPM+ D-galactosamine (R+DAPM+D-gal) treatment
The combination of retrorsine, DAPM, and D-galactosamine was used to induce acute hepato-
biliary injury in DPPIV-deficient rats. In our previous study, retrorsine+D-galactosamine
treatment (R+D-gal) causes acute hepatic injury and induced oval cell response [22,30]. The

Table 1. Primary antibodies.

Antibodies Company/Producer Cat. number Dilution

C/EBP-α Santa Cruz SC-61 1:200

CFTR Santa Cruz SC-10747 1:50

CK-19 Novacastra, Newcastle NCL-CK19 1:100

CK-7 Santa Cruz SC-23876 1:150

CPSI Santa Cruz SC-10516 1:100

DPPIV R&D systems AF954 1:100

HNF-1β Santa Cruz SC-22840 1:200

HNF-4α Santa Cruz SC-6556 1:50

Laminin Dako Cytomation Z0097 1:1000

Lgr5 Novus Biologicals USA NLS1236 1:200

OV6 R&D systems MAB2020 1:1000

Sox9 Sigma HPA001758 1:350

Vimentin Santa Cruz SC-6260 1:200

doi:10.1371/journal.pone.0134327.t001
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oval cell response emerged at day 1, peaked at days 4–5, and declined after one week [30].
DAPM is a selective biliary toxin [27]. R+DAPM+D-gal treatment caused destruction of biliary
trees revealing as ductular swelling and necrosis of biliary epithelium, hepatocellular necrosis,
fatty change, inflammatory cell infiltration, and expansion of non-parenchymal epithelial cells
at 1 day. At 4 days, the bile ducts appeared to repair from injury, containing new biliary epithe-
lium. The recovery from R+DAPM+D-gal-induced acute hepatobiliary injury was still under-
way at 4 week. In terms of the oval cell response, the number of oval cells was dramatically
suppressed as compared to the peak oval cell response at day 4–5 in R+D-gal treatment, and
started to expand at day 7. At week 4, portal triads contained remarkable oval cell ductules
extending into the liver lobules (n = 3 rats at each time point) (S2 Fig). Based on these findings,
we chose to perform hepatocyte transplantation at day 1 after R+DAPM+D-gal when the rats
were in maximal hepatobiliary injury or day 4 when the bile ducts appeared to repair from
injury. However, hepatocyte transplantation performed at day 1 after R+DAPM+D-gal caused
all mortality of recipient rats in the first two days after transplantation. Intraportal hepatocyte
transplantation can cause portal hypertension and result in ischemia/reperfusion injury [28],
which might aggravate the hepato-biliary injury in already failing livers at day 1. Only rats
receiving hepatocyte transplantation at day 4 after R+DAPM+D-gal were analyzed at 1, 2, and
4 weeks after cell transplantation. Four to five rats were studied for each time point.

Transplanted DPPIV-positive hepatocytes give rise to biliary epithelial
cells in livers with acute hepato-biliary injury
Liver tissues removed at 1, 2, and 4 weeks after hepatocyte transplantation were stained for
DPPIV and GGT (a marker of BECs) [29] in serial sections to follow the fate of transplanted
hepatocytes. At one week, DPPIV-positive hepatocytes were in small clusters or short string of
3–5 cells mostly located in the periportal areas. None of the DPPIV-positive cells were GGT-
positive (Fig 1A). At two weeks, DPPIV-positive hepatocyte clusters were enlarged in size.
Notably, DPPIV-positive cells arranged linearly along the portal veins were observed in 30–
40% of portal triads per lobe. Some of the linearly arranged DPPIV-positive cells were stained
faintly for GGT (Fig 1B). At four weeks, DPPIV-positive cells composed 20.2±8.8% of the liver
areas. Unexpectedly, in addition to linearly arranged DPPIV-positive cells along the portal
veins, DPPIV-positive ducts with faint GGT staining in portal triads were found (Fig 1C). 1.3
±0.6% of DPPIV-positive cells was stained positive for GGT.

To determine the characteristics of the DPPIV-positive cells arranged in lines or in ducts
and their lineage relationship with transplanted DPPIV-positive hepatocytes, we used double
immunofluorescence stainings for DPPIV with laminin, hepatocyte marker (CCAAT enhancer
binding protein alpha, C/EBP-α) [34], BEC markers (CK-19, CK-7, HNF-1β, Sox9), Lgr5,
vimentin, for CK-19/carbamoyl-phosphate-synthetase 1 (CPS1) (hepatocyte-specific enzyme)
[35], and HNF-1β/hepatocyte nuclear factor-4α (HNF-4α) (hepatocyte-specific marker) in 40
serial sections at each time point. At one week, the short strings of DPPIV-positive cells in the
periportal areas can be followed in 4–5 sequential sections, were surrounded by laminin, and
expressed only hepatocyte markers (Fig 2A). At two weeks, the linearly arranged DPPIV-posi-
tive cells along the portal veins can be followed at least in 20 successive sections and were a bi-
layered structure, indicating that they form a two-layered plate of cells along the longitudinal
axis of portal veins. The plate of DPPIV-positive cells was surrounded by laminin and com-
prised cells with characteristics of hepatocytes, BECs, and both (Fig 2B and S3 Fig). A lineage
relationship is suggested between these DPPIV-positive cells in the plate, with CPS1(+)/CK-19
(-) in some section levels and CPS1(–) (Fig 2B6 and 2B11), C/EBP-α(-), HNF-4α(-)/CK-19(+),
CK-7(+), HNF-1β(+), SRY (sex determining region Y)-box 9 (Sox9)(+) in sequential levels of
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sections (Fig 2B4, 2B7–2B10 and 2B12, and S3 and S4 Figs). The two-layered plates could be
followed back to portal regions. In some sections, DPPIV-positive plate expressing BEC mark-
ers was in contiguity to DPPIV-positive hepatocyte clusters (Fig 2B8–2B10). At four weeks,
most cells of DPPIV-positive plates expressed BEC markers, CK-19(+), CK-7(+), and HNF-1β
(+) (Fig 2C7–2C9 and S3 Fig). Lumens were detected focally between the two-layered plates.
Serial sections revealed the formation of lumens being along the longitudinal axis of portal
veins (Fig 2C1–2C6). The DPPIV-positive neo-lumens were stained positive for cystic fibrosis
transmembrane regulator (CFTR) (Fig 3), a biliary functional marker that is expressed on the

Fig 2. Transplanted DPPIV-positive hepatocytes convert into BECs through a ductal plate configuration in acute hepato-biliary injury. Shown are
serial liver sections stained histochemically for DPPIV, GGT, and with double immunofluorescence for DPPIV with laminin, hepatocyte marker (C/EBP-α),
BECmarkers (CK-19, CK-7, HNF-1β), for CK-19/CPS1 (hepatocyte-specific enzyme), and HNF-1β/HNF-4α (hepatocyte-specific marker). (A1–A6) At one
week, periportally entrapped DPPIV-positive cells can be traced in 4–5 sequential sections, are surrounded by laminin, and express only hepatocyte markers
(arrows). (B1–B12) At two weeks, the linearly arranged DPPIV-positive cells along the portal veins can be tracked at least in 20 successive sections and are
a bilayered structure, indicating that they form a two-layered plate of cells. The plate of DPPIV-positive cells is surrounded by laminin and comprises cells
with characteristics of hepatocytes (big arrows), BECs (arrows), and both. A lineage relationship is suggested between these DPPIV-positive cells in the
plate, with CPS1(+)/CK-19(-) in some section levels (B4–B6) and CPS1(-), CEBP-α(-)/CK-19(+), CK-7(+), HNF-1β(+) in sequential levels of sections (B7–
B12). In some sections, DPPIV-positive plate expressing BECmarkers is in contiguity to DPPIV-positive hepatocyte clusters (B10, B11). (C1–C9) At four
weeks, most cells of DPPIV-positive plates (arrows) express BECmarkers, CK-19(+), CK-7(+), and HNF-1β(+). Lumens are detected focally between the
two-layered plates. Serial sections reveal the formation of lumens being along the longitudinal axis of portal veins. (D) Schematic representation of the
stepwise conversion of transplanted hepatocytes into BECs. (Original magnification: 200x) Scale bars: 100 μm.

doi:10.1371/journal.pone.0134327.g002
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apical membrane of bile duct cells [36]. None of the numerous ductular reactions was stained
DPPIV(+)/leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5)(+) or DPPIV
(+)/vimentin(+) in all analyzed samples at 1, 2, and 4 weeks (S5 and S6 Figs). These results sug-
gest that transplanted hepatocytes can converse into BECs through a two-layered plate configu-
ration and formation of a neo-lumen in livers with acute hepato-biliary injury (Fig 2D).

DPPIV-positive hepatocytes convert into BECs in the DPPIV chimeric
livers with acute (DAPM+D-gal) and chronic (DAPM+BDL) biliary injuries
Transplanted hepatocytes have been thought to be more amenable to lineage conversion than
resident hepatocytes [16]. To corroborate the transdifferentiation potential of mature hepato-
cytes, we performed the identical acute protocol (DAPM+D-gal) and the chronic biliary injury
(DAPM+BDL) in rats with DPPIV-chimeric livers, which harbored endogenous DPPIV-defi-
cient hepatocytes and donor DPPIV-positive hepatocytes [22,26]. At the time of performing
acute and chronic biliary injuries, liver histology of DPPIV-chimeric livers was essentially nor-
mal. Both DPPIV-deficient and DPPIV-positive hepatocytes were histologically identical,

Fig 3. Transplanted DPPIV-positive hepatocytes-derived BECs express a biliary functional apical marker, cystic fibrosis transmembrane regulator
(CFTR). Shown are serial liver sections (4 weeks after transplantation) stained with double immunofluorescence for (A) CK-19(green)/DPPIV(red), (B)
DPPIV(green)/CFTR(red), and (C) CK-19(green)/CFTR(red). (Original magnification: 400x) Scale bars: 100 μm.

doi:10.1371/journal.pone.0134327.g003
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however, the former was proliferation–inhibited and the latter was quiescent [22,26]. As with
hepatocyte transplantation model, we observed DPPIV-positive cells expressing biliary-specific
markers in the portal areas in both acute hepato-biliary and chronic biliary injury models
(n = 4–5 rats at each time point). At four weeks after injuries when biliary restoration was still
underway, serial sections co-stained with DPPIV/CK-19 and DPPIV/HNF-1β revealed that
DPPIV(+)/CK-19(+) cells expressed strong HNF-1β staining. DPPIV(+)/CK-19(-) hepatocytes
immediately adjacent to the DPPIV(+)/CK-19(+) BECs were stained positive for HNF-1β. In
contrast, DPPIV(-)/CK-19(-) hepatocytes in the immediate periportal location were never
observed to express HNF-1β (Fig 4). The results suggest that the periportal hepatocytes
undergo a stepwise conversion into BECs in acute hepato-biliary and chronic biliary injuries.
DPPIV-deficient hepatocytes were inhibited to proliferate by retrorsine and thus unable to
undergo transdifferentiation [21,22].

Unambiguous in vivo transdifferentiation of mature hepatocytes
Although the transplanted hepatocytes we used were highly pure population, it could not be
ruled out that contaminating BECs/hepatic oval cells were the sources of DPPIV-positive BECs
in the liver after hepatocyte transplantation and injured DPPIV chimeric liver. To test this pos-
sibility, we first performed transplantation experiments using enriched BECs/hepatic oval cells
populations containing 40–50% of GGT(+)/CK-19(+) cells, that were isolated from wild-type
F-344 rats five days after D-galactosamine treatment. We expected to find easily DPPIV-posi-
tive BECs. Unexpectedly, however, DPPIV-positive BECs were found only in low frequency,
with a variation from none to five per liver lobe, at both two and four weeks after cell transplan-
tation (n = 4–5 rats at each time point) (Fig 5A and 5B). At two weeks, DPPIV-positive small

Fig 4. DPPIV-positive hepatocytes convert into BECs in the DPPIV-chimeric livers with acute and chronic biliary injuries. Shown are schemes
illustrating chimeric lineage tracing system subjected to acute or chronic biliary injuries and serial liver sections stained with double immunofluorescence for
CK-19(green)/DPPIV(red) and DPPIV(green)/HNF-1β(red). At four weeks after biliary injuries, DPPIV-positive BECs [CK-19(+)/DPPIV(+) and DPPIV
(+)/HNF-1β(+)] are observed in the portal triads (A1–A2, A1’- A2 ‘, B1–B2, B1’-B2’, arrows). Periportal hepatocytes that express HNF-1β are uniformly
DPPIV-positive [CK-19(-)/DPPIV(+) and DPPIV(+)/HNF-1β(+) (long arrows)] and are in continuity to CK-19(+)/DPPIV(+), and DPPIV(+)/HNF-1β(+) BECs, a
staining pattern consistent with hepatocyte conversion into BECs. (Original magnification: A1–A2, B1–B2, 200x; A1’-A2’, B1’-B2’, 400x) Scale bars: 100 μm.

doi:10.1371/journal.pone.0134327.g004
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Fig 5. Mature hepatocytes but not contaminating BECs/hepatic oval cells are the sources of periportal
DPPIV-positive BECs. (A,B) Shown are scheme illustrating hepatic oval cell transplantation in retrorsine
+DAPM+D-galactosamine treated rats and serial liver sections stained histochemically for DPPIV and GGT,
and with double immunofluorescence for DPPIV (red) with CK-19 (green), DPPIV (green) with laminin (red) and
BECmarkers (red) (CK-7, HNF-1β). Transplantation with enriched DPPIV-positive BECs/hepatic oval cells
produce DPPIV-positive BECs in themid-lobular areas in low frequency. (A) At two weeks, DPPIV-positive
small cells (arrows) form short two-layered strings in the mid-lobular areas, are GGT(+), CK-19(+), and CK-7(+),
and can be tracked in 5–6 sequential sections. (B) At four weeks, DPPIV-positive small cells formmultilobulated
bile ducts (arrows) in themid-lobular areas and express strongGGT, HNF-1β, CK-7, CK-19. (C,D) Shown are
schemes illustrating chimeric lineage tracing system subjected to retrorsine followed by acute or chronic biliary
injuries and serial liver sections stained with double immunofluorescence for CK-19(green)/DPPIV(red) and
DPPIV(green)/HNF-1β(red) in DPPIV chimeric livers subjected to retrorsine+DAPM+D-gal and retrorsine
+DAPM+BDL at 4 weeks. The numerous regenerating BECs are uniformly DPPIV-deficient. Most DPPIV-
positive hepatocyte clusters are located distantly from portal areas. None of the DPPIV-positive hepatocytes
express CK-19 and HNF-1β. (Original magnification: A, B, 200x; C, D, 100x) Scale bars: 100 μm.

doi:10.1371/journal.pone.0134327.g005
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cells formed short two-layered strings in the mid-acinar area, were all GGT(+), CK-19(+), and
CK-7(+), and can be followed in 5–6 sequential sections (Fig 5A). At four week, DPPIV-posi-
tive small cells formed a single or multilobulated bile ducts and expressed strong GGT, HNF-
1β, CK-19 and CK-7 (Fig 5B). This histological appearance was distinct from the hepatocyte-
derived BECs that formed ductal plates in the periportal areas and expressed weaker GGT
staining.

We next treated rats with DPPIV-chimeric livers with additional two doses of retrorsine to
inhibit the proliferation capacity of DPPIV-positive hepatocytes (now DPPIV-positive hepato-
cytes and DPPIV-deficient hepatocytes were intoxicated with 2 doses and 4 doses of retrorsine,
respectively), and then subjected the rats to the two experimental protocols: DAPM+D-gal and
DAPM+BDL (n = 4–5 rats at each time point). We expected that the regenerating BECs in
these rats with DPPIV-chimeric livers would be uniformly DPPIV-deficient. This was the case.
None of the numerous regenerating BECs was stained positive for DPPIV in all analyzed sam-
ples from the rats with DPPIV-chimeric livers. Notably, most DPPIV-positive hepatocyte clus-
ters were located distantly from portal areas. Few DPPIV-positive hepatocyte clusters located
in the periportal areas, and none of them expressed CK-19 and HNF-1β (Fig 5C and 5D).

These results together support our findings that mature hepatocytes, but not contaminating
BECs/hepatic oval cells, are the sources of periportal DPPIV-positive BECs.

Discussion
In this study, we clearly demonstrate that mature hepatocytes can undergo a stepwise conver-
sion into BECs in the liver during repair from acute hepato-biliary injury and chronic biliary
injury. Our findings in DPPIV chimeric livers subjected to chronic biliary injury are consistent
with previous studies [13,17,18]. Moreover, our data herein extend the knowledge by showing
that mature hepatocytes can give rise to BECs in acute hepato-biliary injury. The hepatocyte
transdifferentiation process has some characteristics. First, only mature hepatocytes entrapped
in the periportal region participated in the conversion. Second, they proliferated to form two-
layered plates and acquired the BEC markers. Third, only a fraction of the two-layered plate
cells formed neo-lumens (Fig 2D). Our data confirm the concept that mature hepatocytes have
significant phenotypic plasticity [4,5].

In the hepatocyte transplantation experiment in acute hepato-biliary injury model, we
observed that the conversion of transplanted DPPIV-positive hepatocytes into BECs is marked
by cell proliferation and formation of two-layered plates in the periportal areas. This finding is
reminiscent of the ductal plate development observed during embryology [37]. However, bili-
ary differentiation during liver development proceeds through the formation of asymmetrical
ductal structures lined on the portal side by cells expressing laminin. Laminin progressively
encircles the developing ductal structure, thereby allowing formation of symmetrical bile ducts
[37]. We found that transplanted DPPIV-positive hepatocytes entrapped in the periportal
regions had been encircled by laminin since the beginning. This may explain why we did not
observe asymmetrical ductal structures in the transdifferentiation course. Also, a recent study
showed that chronic biliary injury induced ductular metaplasia in both mouse and human
mature hepatocytes [38]. Taken together, these findings provide experimental evidence to the
concept that ductular reactions in various hepatobiliary diseases have a ductal plate configura-
tion and play a role during postnatally physiological and pathological liver growth [13,39].

However, it is unknown whether the hepatocyte conversion process in chronic biliary injury
requires cellular proliferation. Previous studies and our present study have shown that only
hepatocytes residing in the periportal areas are able to convert into BECs [13,18,38]. It was
reported that periportal hepatocytes of normal livers are hybrid cells expressing dual phenotypes
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[40]. Recent work showed that hepatocyte-derived ducts revert back to hepatocytes after injury
subsides [38]. In addition, it has been shown that the change in composition of extracellular
matrix in chronic hepato-biliary injury inhibits hepatocyte proliferation [41]. These studies
together suggest that the hepatocyte conversion process in chronic biliary injury may be a switch
of phenotypes to avoid insults to hepatocytes with no need of cell proliferation.

We observed that in transplantation experiment or DPPIV-chimeric liver model the con-
version of DPPIV-positive hepatocytes into BECs occurred in the periportal regions under
acute and chronic biliary injury. This finding is in line with the studies in mice that only those
hepatocytes residing around the periportal areas are able to convert into BECs [17,18,38], even
though Notch, a signaling pathway mediating biliary programming during liver development,
is activated in nearly all hepatocytes [17–19]. These and our studies together suggest that the
microenvironment in the periportal areas with biliary injury is critical to the hepatocytes con-
version into BECs. It has been shown in the DDC-induced injury model that cells in the peri-
portal areas express an enrichment of genes related to inflammatory response, response to
stress, or cell cycle checkpoints [38,42]. The exact molecular mechanisms that govern the hepa-
tocyte transdifferentiation process in the periportal areas remain to be elucidated.

The findings that only a portion of the DPPIV-positive two-layered plate cells participated
in the formation of bile ducts and the two-layered plates connected with DPPIV-positive hepa-
tocyte clusters on the parenchymal side reinforce the phenotypic plasticity of hepatocytes.
Indeed, hepatocyte dedifferentiation has been shown to be reversible with changes in the com-
position of the extracellular matrix [42]. Similarly, chronically injured hepatocyte-derived pro-
genitor cells retained a memory of their origin and differentiated back to hepatocytes upon
cessation of injury [38].

Despite established transdifferentiation of hepatocytes to BEC in rats with biliary injury in
previous studies and ours, the studies in mice using DDC model have generated considerable
controversy. In addition, the contribution of hepatocytes to BECs varies largely among studies.
The proliferation of host bile ductules is robust in DDC-induced biliary injury in mice and in
DAPM-induced biliary injury in rats. Therefore, hepatocytes transdifferentiation may be an
injury evasion strategy [38]. We speculate that difference in type, duration, and severity of bili-
ary injury among experimental models may account for the disparity.

It is difficult to estimate the net contribution of mature hepatocytes to biliary regeneration
in this study. We can count only DPPIV-positive BECs. However, biliary injury induced by sin-
gle-dose DAPM was not universal or homogeneous. DPPIV- positive hepatocytes in the trans-
plantation experiment were not exactly entrapped in the injured portal areas. Moreover,
DPPIV-positive hepatocytes did not completely occupy the DPPIV chimeric liver mass and
uniformly abut on the injured portal region. We may underestimate the numbers of hepato-
cyte-derived BECs. Our study is more a proof of concept.

DPPIV-positive BECs were not observed in DPPIV chimeric liver treated with additional
retrorsine and then subjected to the identical acute and chronic biliary injuries. Both DPPIV-
positive and DPPIV-deficient hepatocytes are inhibited to proliferate by retrorsine and are
unable to undergo transdifferentiation [26]. Notably, DPPIV-positive hepatocyte clusters in
DPPIV chimeric liver were mostly located distantly from portal areas. Our interpretation for
this finding is that new DPPIV-deficient hepatocytes might derive from activated host DPPIV-
deficient hepatic oval cells and proliferate to push DPPIV-positive hepatocytes toward central
veins. This finding would seem to support the old “streaming liver” hypothesis [16].

A basic concern must be addressed is whether contaminating BECs/hepatic oval cells that
composed less than 1% in the transplanted hepatocyte population could be the source of
DPPIV-positive BECs in the acute injured livers receiving hepatocyte transplantation. Several
evidences argue against this possibility. First, transplantation with enriched DPPIV-positive
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BECs/hepatic oval cells (40–50% of twenty million cells transplanted, 100 times higher than
the contaminating number in transplanted hepatocyte population) produced DPPIV-positive
BECs or bile ducts in unexpectedly low frequency (0–5 strings or ducts per liver lobe). Second,
these DPPIV-positive BECs or bile ducts were located in the mid-lobular zones. Third, they
expressed strong GGT and exclusively BEC-specific markers throughout the study time. These
characteristics were remarkably distinct from those of DPPIV-positive hepatocyte- derived
BECs. The low efficiency with enriched DPPIV-positive BEC/hepatic oval cell transplantation
is consistent with previous studies [23–25]. A possible reason for this is that BECs/hepatic oval
cells are small in size [11,23–25]. They move easily to reach beyond mid-acinus of the liver lob-
ules and are less efficiently trapped in the liver.

We did not observe DPPIV-positive hepatocytes acquiring mesenchymal morphology dur-
ing their conversion into BECs based on histopathological analysis. This could be a limitation
of this study, since recent work showed that conversion of hepatocytes into BECs was marked
by induction of mesenchymal markers in vitro [38]. However, tissue histopathology can pro-
vide a wealth of irreplaceable data about structural integrity, spatial and temporal relationships,
and rare events/cells [9,40]. In addition, cellular morphology and physiology are prone to
change in vitro. Cell conversion would ideally be tested in vivo [20].

GGT expression was weak in DPPIV-positive plates and BECs derived from transplanted
DPPIV-positive hepatocytes throughout the study time. This GGT expression pattern further
supports their hepatocyte origin instead of hepatic oval cells/BECs origin. GGT expression is
driven by several promoters during liver development. Hepatoblasts and hepatic precursor
cells lose the promoters that drive GGT expression when they differentiate into hepatocytes
[43]. Recent elegant work showed that hepatocyte-derived and biliary-derived bile ducts
expressed distinct level of bile duct markers [38].

A recent study by Isse et al. showed that hybrid transitional hepatocytes existed in the peripor-
tal area of normal human liver [40]. We cannot exclude the possibility that some hybrid transi-
tional hepatocytes in the transplanted hepatocyte population might form the cell plates and give
rise to BECs in this study. However, the number of hybrid hepatocytes in normal liver has not
been quantified in human or rodents and should be rare. Transplanted hepatocytes can acquire
the position-specific enzyme expression depending on their lobular location [40,44,45]. The
transplanted hepatocytes entrapped in the periportal area should have statistically more chance
to be mature hepatocytes than hybrid hepatocytes and acquire the BEC-specific markers.

Based on this study, we conclude that mature hepatocytes contribute to the biliary regenera-
tion in the environment of acute and chronic biliary injury through a ductal plate configuration
without the need of exogenously genetic or epigenetic manipulation. Our finding should be
valuable in developing hepatocyte transplantation therapy for hepato-biliary diseases.

Supplementary Materials and Methods

Histochemistry and Immunohistochemistry
All histochemical and immunohistochemical stainings were performed according to previously
described protocols. Primary antibodies are listed in Table 1. Sections of 6 μm thickness were
used for histological analysis. DPPIV expression was determined by enzyme histochemical
staining in liver cryosections as previously described [31]. Gamma-glutamyl-transpeptidase
(GGT) was detected by the method of Rutenberg et al. [32]. Double immunofluorescence stain-
ing for DPPIV (R&D, Minneapolis, USA) and CK-19 (Novocastra, Newcastle, UK), DPPIV
and laminin (DAKO, CA, USA), CK-19 and Carbamoyl-phosphate-synthetase 1 (CPS1)
(Santa Cruz Biotechnology, CA, USA), DPPIV and CK-7 (Santa Cruz Biotechnology, CA,
USA), DPPIV and C/EBP-α (Santa Cruz Biotechnology, CA, USA), DPPIV and hepatocyte
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nuclear factor-1β (HNF-1β) (Santa Cruz Biotechnology, CA, USA), DPPIV and Sox9 (Sigma,
St. Louis, MO), DPPIV and Lgr5 (Novus Biologicals, USA), DPPIV and vimentin (Santa Cruz
Biotechnology, CA, USA), HNF-1β and hepatocyte nuclear factor-4α (HNF-4) (Santa Cruz
Biotechnology, CA, USA), CK-19 and Carbamoyl-phosphate-synthetase 1 (CPS1) (Santa Cruz
Biotechnology, CA, USA), DPPIV and cystic fibrosis transmembrane regulator (CFTR)
(Abcam, Cambridge, MA, USA), and CK-19 and CFTR were detected using the method
described by Paku et al. [33]. Appropriate secondary antibodies used in various experiments
included Alexa Fluor 488 donkey anti-mouse IgG (Molecular Probes, Oregon, USA) and Alexa
Fluor 594 donkey anti-goat IgG (Molecular Probes, Oregon, USA). Nuclei were labeled with
4’,6-diamidino-2-phenylindole (DAPI) (Molecular Probes, Oregon, USA).

Supporting Information
S1 Fig. DPPIV histochemistry of normal wild-type liver, DPPIV-deficient liver, and
DPPIV-chimeric liver. (A) Hepatocytes and bile duct epithelial cells are stained red (positive)
for DPPIV in the normal Fisher rat liver, the former in a bile canalicular pattern and the latter
in a diffuse cytoplasmic expression pattern. (B) Hepatocytes and bile duct epithelial cells are
negative for DPPIV staining in the DPPIV-deficient rat liver. (C) Bile canaliculi of donor hepa-
tocytes are stained red for DPPIV, and bile ductules are uniformly negative for DPPIV staining
in the DPPIV chimeric liver of DPPIV-deficient rats. (Original magnification: A1, B1, C1,
100x; A2, 400x; B2, C2, 200x; Scale bars: 100 μm.).
(TIF)

S2 Fig. Characteristics of acute hepato-biliary injury caused by retrorsine+D-galactosamine
(R+D-gal) treatment and retrorsine+DAPM+ D-galactosamine (R+DAPM+D-gal) treat-
ment. Liver sections are analyzed using double immunofluorescence staining for CK-19
(green)/C/EBP-α (red) and OV6 (green)/Sox9 (red) in retrorsine+D-galactosamine treated rats
(R+ D-gal, A), and retrorsine+DAPM+D-galactosamine treated rats (R+DAPM+D-gal, B).
(Original magnification: 200x; Scale bars: 100 μm.).
(TIF)

S3 Fig. Transplanted DPPIV-positive hepatocytes convert into BECs through a ductal plate
configuration in acute hepato-biliary injury. Shown are original single color and merged
images of Fig 2B7 DPPIV(green)/CK-7(red), 2B9 HNF-1β(green)/HNF-4α(red), 2B10 DPPIV
(green)/HNF-1β(red), 2B12 CK-19(green)/DPPIV(red), and 2C8 CK-19(green)/DPPIV(red).
(Original magnification: 200x; Scale bars: 100 μm.).
(TIF)

S4 Fig. Transplanted DPPIV-positive cells express Sox9 at 2 weeks after hepatocyte trans-
plantation in R+DAPM+D-gal treated liver. Shown are representative figures of double
immunofluorescence staining for DPPIV (green)/Sox9 (red) in serial sections in R+DAPM+D-
gal treated liver at 2 weeks after hepatocyte transplantation. Transplanted DPPIV-positive cells
express Sox9 (arrow) at 2 weeks after hepatocyte transplantation in R+DAPM+D-gal treated
liver. (Original magnification: A, 200x; B, C, 400x; Scale bars: 100 μm.).
(TIF)

S5 Fig. Transplanted DPPIV-positive cells do not express Lgr5 during their conversion
into BECs in R+DAPM+D-gal-treated livers. Shown are representative figures of (A) Lgr5(+)
(arrow) staining in normal colon (positive control), (B) dual immunofluorescence staining for
CK-19(+)/Lgr5(+) in bile duct ligation liver (BDL) at 3 weeks (positive control), and (C) dual
immunofluorescence stainings for CK-19(+)/DPPIV(+) and DPPIV(+)/Lgr5(-) in R+DAPM
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+D-gal treated liver sections at 2 weeks after hepatocyte transplantation. Transplanted DPPIV-
positive cells did not express Lgr5 during their conversion into BECs in R+DAPM+D-gal-
treated livers. (Original magnification: A, B, 200x; C, 400x; Scale bars: 100 μm.).
(TIF)

S6 Fig. Transplanted DPPIV-positive cells do not express vimentin during their conversion
into BECs in R+DAPM+D-gal-treated livers. Shown are representative figures of vimentin
staining in bile duct ligation liver (BDL) at 4 weeks (positive control) and of dual immunofluo-
rescence stainings for DPPIV (green)/vimentin (red) in R+DAPM+D-gal treated liver sections
at 1 and 2 weeks after hepatocyte transplantation. (Original magnification: A,100x; A’, 200x; B,
C, 400x; Scale bars: 100 μm.).
(TIF)
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