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As information technology is moving toward the era of big data, the

traditional Von-Neumann architecture shows limitations in performance. The

field of computing has already struggled with the latency and bandwidth

required to access memory (“the memory wall”) and energy dissipation (“the

power wall”). These challenging issues, such as “the memory bottleneck,”

call for significant research investments to develop a new architecture

for the next generation of computing systems. Brain-inspired computing

is a new computing architecture providing a method of high energy

e�ciency and high real-time performance for artificial intelligence computing.

Brain-inspired neural network system is based on neuron and synapse.

The memristive device has been proposed as an artificial synapse for

creating neuromorphic computer applications. In this study, post-silicon

nano-electronic device and its application in brain-inspired chips are surveyed.

First, we introduce the development of neural networks and review the

current typical brain-inspired chips, including brain-inspired chips dominated

by analog circuit and brain-inspired chips of the full-digital circuit, leading

to the design of brain-inspired chips based on post-silicon nano-electronic

device. Then, through the analysis of N kinds of post-silicon nano-electronic

devices, the research progress of constructing brain-inspired chips using

post-silicon nano-electronic device is expounded. Lastly, the future of

building brain-inspired chips based on post-silicon nano-electronic device has

been prospected.

KEYWORDS

brain-inspired chips, post-silicon nano-electronic device, phase change memory,

resistive memory, synapse, neuron

Introduction

With the rapid development of big data, the Internet of Things, 5G communication

technology, and deep learning algorithms, the amount of data has increased

exponentially. The huge amount of data poses a lot of challenges to the storage,

processing, and transfer of data. Despite the continuous improvement of computer

performance, due to the sharp increase in the amount of computation, there is still
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a difference of nearly 5 orders of magnitude in the Von-

Neumann architecture based on the separation of traditional

storage and computation compared with the human brain

(Schuller et al., 2015). The traditional Von-Neumann system

adopts the separate structure of data storage and data processing.

For the data communication process between the computing

unit and storage unit, the data processing will produce a lot of

loss and latency, which forms a “Von-Neumann bottleneck.”

This problem is increasingly highlighted by the fact that CPU

speed and memory capacity are growing much faster than

the data traffic on both parties (Sun K. X. et al., 2021).

This performance mismatch between the storage unit and the

computing unit leads to a large delay in the reading of data

and in the storage process of the data, that is, the “storage

wall” problem. In the case of massive data, it is increasingly

overwhelmed. Therefore, it is necessary to explore a new

memory architecture based on the human brain structure

that achieves low-power consumption, low latency, and space-

time information processing capabilities to complete the direct

communication of information. Figure 1 shows the traditional

Von-Neumann architecture and the new brain-inspired chip

architecture (Burr et al., 2015; Silver et al., 2016).

Brain-inspired chips, as the name suggests, are chips that

simulate the way the brain works, which is based on the human

brain neuron structure and the way of human brain perception

and cognition. The chip is designed with the human brain

neuron structure to improve the computing power and achieve

complete anthropomorphism. Brain-inspired chips adopt a new

architecture that simulates the synaptic transmission structure

of the human brain. Many processors are similar to neurons

and the communication system is similar to nerve fibers. The

computing of each neuron is carried out locally. On the whole,

the neurons work in a distributed manner, that is, the overall

tasks are divided and each neuron is only responsible for one

part of the computing.

Brain-inspired chips are based on the combination of

microelectronics technology and new neuromorphic devices.

Compared with traditional chips, it has greater advantages

in power consumption and learning ability. Traditionally,

computer chips are designed according to the Von-Neumann

architecture. Storage and computing are separated in space.

Every time the computer operates, it needs to reciprocate in

the two areas of CPU and memory, which leads to frequent

data exchanging in inefficient processing of massive amounts of

information. In addition, when the chip is working, most of the

electrical energy will be converted into heat energy, resulting in

increased power consumption.

Brain-inspired chips will achieve two breakthroughs

compared with traditional computing chips: one is to

break through the limitations of the traditional “executor”

computing paradigm and it is expected to form a new

paradigm of “self-service cognition”; the other is to break

through the limitations of traditional computer architecture to

realize parallel data transmission and distributed processing,

which will process massive data in real-time with extremely

low-power consumption.

The exploration of brain-inspired chips needs to solve

the following three main problems: (1) how to deal with the

production capacity of flash memory from all over the world far

lower than the growth of big data; (2) how to detect useful data in

the face of vast big data; (3) how to rely on artificial intelligence

to process big data in two directions— digital accelerators and

analog neural networks.

This study first introduces the theory of neural networks

and the development of brain-inspired chips. Second, the study

focuses on the research progress and application of post-

silicon nano-electronic devices. Among them, the application

of brain-inspired chips is emphasized. Finally, the research

and application prospects of post-silicon nano-electronic device

brain-inspired chips have been prospected.

Neural network theory

The basic unit structure of the biological neural network

is neuron and synapse. As the connection structure between

neurons, the synapse is also the medium of data transmission,

as shown in Figure 2A. The three basic functions of neurons

are to receive data, integrate data, and transmit data. The

typical structure of biological neurons consists of the cell

body, dendrite, and axon. In a neuronal system, neurons

that send signals are called pre-synaptic neurons. Neurons

that receive signals are called post-synaptic neurons. The

synaptic structure connects pre-synaptic neurons with

post-synaptic neurons which transmit data. The weight of

synapses reflects the connection strength between units.

One of the cores of the biological neural network is the

change of synapses for information transmission efficiency,

that is, the plasticity of synaptic connections (Thomas,

2013).

Figure 2B shows the processing of input signals by neurons

in a neural network. Neurons not only accept input signals

but also need to perform data analysis on the input signals.

After being stimulated by other neurons, biological neurons do

not simply accumulate all the stimuli and output them to the

next neuron. Instead, there is a threshold, and only when the

neuron receives a stimulus greater than the threshold will it

output a distinct stimulus. Neurons in artificial neural networks

also have this function. The artificial neuron accumulates all

the input signals processed by the artificial synapse. Artificial

neurons only output signals when the cumulative signal exceeds

a set threshold.

The neural network mainly includes three layers: the input

layer, the output layer, and the hidden layer, in which the hidden

layers can be expanded. According to the neuron model, neural

networks can be divided into two categories: Artificial Neural
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FIGURE 1

(A) traditional Von-Neumann architecture (B) Brain-inspired architecture (Burr et al., 2015; Silver et al., 2016).

Networks (ANN) (Hopfield, 1982) and SpikingNeural Networks

(SNN) (Maass, 1997).

ANN is an information processing system similar to the

human brain nervous system which is established inspired by

the structure of the biological neural network. The working

principle of the ANN is shown in Figure 3A. When the input

signal is received, its intensity is first determined, which is

commonly referred to as the weighting process. Then, the

combined effect of all input signals needs to be determined,

that is, the net input, completing the summation process.

Finally, the input is transformed through non-linear function

calculation to obtain the corresponding output signal. Among

them, the functions of non-linear transformationmainly include

the sigmoid function, tanh function, and relu function. The

unit structure of ANN is similar to that of the biological neural

network, which can complete the learning and cognitive training

functions of a biological neural network to a certain extent,

usually with the Backpropagation (BP) algorithm (Rumelhart

et al., 1986). ANN can learn without supervision, that is, it has

the ability of self-learning. The advanced function of realizing

the associative storage of the human brain can be accomplished

by using its feedback network.

SNN is a neural network computing system based on

the spiking neuron model. It is a computing model that

is closer to the biological neural network. The working

principle of SNN is shown in Figure 3B. The pulse signal

is discrete, replacing the continuity of the analog signal

in ANN. It is similar to ANN. Because the network also

takes the parameters of time information into account, SNN

is closer to the biological neuron model. At the same

time, the neuron model is also more complicated due to

the structure of the pulse signal. From the perspective

of the neuron structure in SNN, the input signal will

cause the state of the neuron to change, that is, the

membrane potential. Only when the membrane potential

reaches the threshold potential will the output pulse signal

be generated. Among them, Spike timing-dependent plasticity

(STDP) algorithm is one of themain learning algorithms of SNN

(Fukushima, 1980; Froemke and Dan, 2002).

Brain-inspired chips

At present, brain-inspired chips are mainly divided into

brain-inspired chips dominated by analog circuits, brain-

inspired chips based on digital circuits, and brain-inspired chips

based on post-silicon nano-electronic device. The traditional

CMOS technology has been developed to a relatively high

degree, and many successful results have been achieved so

far. The brain-inspired chip based on a post-silicon nano-

electronic device is in the initial stage of exploration and

development. At present, the research on brain-inspired chips

based on post-silicon nano-electronic device is widely concerned

to complete the parallel one-time mapping between input and

output. Figure 4 shows the international research status of brain-

inspired chips.

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2022.948386
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Lv et al. 10.3389/fnbot.2022.948386

FIGURE 2

(A) Diagram of two neurons’ connection structure and synapses

(B) Schematic diagram of the processing of input signals by

neurons in a neural network.

Brain-inspired chips dominated by the
analog circuit

As early as the end of the twentieth century and the

beginning of the twenty-first century, a series of research works

on silicon cochlea and silicon neurons laid the foundation for

the design of brain-inspired chips dominated by analog circuits.

Among them, the most representative is the Neurogrid chip

designed by Stanford University in the United States, which

has been established to realize the real-time simulation of the

biological brain (Benjamin et al., 2014). It uses the SNN neuron

model to realize the kinetic calculation of ion channels and fit

complex ion channel models. Its system structure is shown in

Figure 4A. Each neuron with a size of 256∗256 is combined

into a neural nucleus, and then 16 neural nuclei are formed

into a hierarchical network through a tree topology. Finally,

the simulation of a million-level neural network meta-networks

is completed.

The BrianScales chip of Heisenberg University in Germany

also uses the SNN neuronmodel to realize the kinetic calculation

of ion channels. Its system structure is shown in Figure 4B. A

single wafer simulates nearly 200,000 neurons and 49 million

synapses. With the cooperation of routing communication

circuits, the speed of the entire system is 10,000 times the

speed of a biological neural network. However, the power

consumption is as high as 1 kW (Davison et al., 2020).

FIGURE 3

(A) Working principle of ANN (B) Working principle of SNN

(Zhang, 2020).

The second generation of BrainScaleS adds online learning

capabilities and provides an important reference for completing

the real-time learning process.

Brain-inspired chips with full-digital
circuit

Because the analog circuit is greatly interfered with by

factors such as manufacturing process and environment, the

chip does not have advantages in reliability, configurability,

scalability, etc. and it is difficult to reproduce the results strictly

through simulation, which is not conducive to the research of

upper-level algorithms. Therefore, brain-inspired chips based on

analog circuits are mainly studied in academia. For the industry,

more stable and reliable full-digital circuit brain-inspired chips

are preferred (Rast et al., 2010; Benjamin et al., 2014; Merolla

et al., 2014; Davies et al., 2018; Davison et al., 2020).

In 2006, the University of Manchester started to develop the

SpiNNaker chip, as shown in Figure 4C. The current version is

to build an electronic model of the biological brain through 1

million microprocessors from ARM, which can reach 1% of the

human brain, achieving the world’s first low-power, large-scale

digital model of the human brain (Rast et al., 2010), providing

a high-performance platform for real-time simulation of large-

scale neural networks. The TrueNorth chip released by IBM in
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FIGURE 4

(A) The architecture of Neurogrid (B) The architecture of BranScaleS (C) The architecture of SpiNNaker (D) The architecture of TrueNorth (E) The

architecture of Loihi (F) The architecture of Darwin (G) The architecture of Tianjic.

TABLE 1 Prevalent brain-inspired chips.

Name Type Learning Simulation time Capacity Connection

Neurogrid Analog-dominated No Real-time 256*256 CMOS USB via FX2

BrainScales Analog-dominated No Slower than real-time 180K neurons Ethernet

SpiNNaker Full-digital No Real-time 1% of brain capacity Ethernet

TrueNorth Full-digital No Faster than real-time 4,096 core per chip AXI bus to SoC

Loihi Full-digital Yes Faster than real-time 4,096 core per chip Ethernet, USB

Darwin Full-digital No 70 MHz Clock 2,048 neurons per chip UART to USB

Tianjic Full-digital Ni Real-time 40 k neurons per chip Not specified

2014 adopts a full-digital circuit, simulating the connection of 1

million neurons and 256million synapses to complete the neural

network function, as shown in Figure 4D, with a very low-power

consumption of 73 mW (Merolla et al., 2014). The function

of the chip is to perform inference on pre-trained networks,

which can be applied to object detection in images. The Loihi

chip released by Intel in 2017 contains 128,000 neurons and

128 million synaptic structures, which realizes the complexity

of neural network topology and enables on-chip learning with

different learning modes (Davies et al., 2018) as shown in

Figure 4E. Loihi 2 was released in 2021, which is an upgraded

version of Loihi using a new process. It integrates 1 million

neurons, but compared with the first generation, the area is

reduced by half, and the processing speed is 10 times that of the

first generation.

In 2019, Zhejiang University released a new brain-inspired

chip, Darwin II, as shown in Figure 4F (Shen et al., 2015).

This chip uses a 55 nm process, and the number of neurons

in the entire chip reaches 150,000. Through the cascade of

chip systems, a brain-inspired computing system with tens of

millions of neurons can be constructed. Tsinghua University

released a new artificial intelligence chip Tianjic III (Tianjic)

in 2019, as shown in Figure 4G (Pei et al., 2019). The chip

adopts multi-core architecture, reconfigurable building blocks,

simplified data flow, and hybrid coding. It can not only adapt

to machine learning algorithms based on computer science but

also easily realize brain-inspired circuits andmultiple encodings.

Table 1 introduces prevalent brain-inspired chips.

Brain-inspired chips based on
post-silicon nano-electronic device

With the continuous development of Moore’s Law, the

feature size of transistors is getting closer and closer to
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their theoretical physical limit. It is difficult to improve

the development of the current CMOS process integration

technology further. When a brain-inspired chip is integrated

on a large scale, the larger the area of the circuit is,

the higher the power consumption generated. At the same

time, transistors have defects in simulating the dynamic

characteristics of neurons and synapses, and their ability

to simulate brain-inspired computing needs to be further

improved. Therefore, researchers turned their attention to post-

silicon nano-electronic devices to realize the design of brain-

inspired chips.

The key of brain-inspired chips -
post-silicon nano-electronic device

It is urgent to find a memory, whose working behavior

characteristics are similar to those of the brain. Brain-inspired

chips consist of a large amount of memory. For a long time,

researchers have been looking for and constructing suitable

post-silicon nano-electronic devices with memory functions.

For example, memristive devices can change the working

state of the device through different working mechanisms,

which is similar to the role of ion channels contained in

the membranes of neurons and synapses in the brain. Some

memristive devices can keep working like this all the time.

Even if the power is turned off, they will not be lost, just like

human memory.

Semiconductor memory can be divided into two categories

according to the characteristics of stored information: volatile

memory (VM) and non-volatile memory (NVM). Generally

speaking, volatile memory means that when the system is

powered off—all data stored in the device will be automatically

lost. It mainly includes two types: Dynamic Random-Access

Memory (DRAM) and Static Random-Access Memory (SRAM).

Non-volatile memory means that when the system is

powered off, the data stored in the device will always be retained

and will not be lost. It mainly includes new memory and flash

memory (Nor Flash memory and Nand Flash memory). Figure 5

shows the main distribution of semiconductor memories on the

market today.

In terms of data reading and writing speed, the speed

of volatile memory is usually very fast. However, in general,

the writing latency of non-volatile memory is high. When the

number of writes reaches a certain number, the storage of data

will fail because the memory will reach its storage limit. Of

course, for an ideal memory, it should have both non-volatile

characteristics of data and access speed comparable to SRAM,

and no read and write restrictions within a certain range.

Post-silicon nano-electronic device designs and

mainstream silicon CMOS processes have different new

materials and storage mechanisms. These materials mainly

include chalcogenides compounds, transition metal oxides,

carbon materials, ferroelectrics, and ferromagnetic metals.

Different from the traditional electronic process switching

mechanism, they are realized using phase transition, molecular

restructuring, quantum mechanical phenomena, and ion

reaction. Most non-volatile memories are based on two-

terminal switching devices, which are commonly used

in high-density memory architectures such as crossbars.

In recent years, new storage technologies represented by

phase-change random-access memory (PCRAM), resistance

random-access memory (RRAM), magnetic random-

access memory (MRAM), and ferroelectric random-access

memory (FeRAM) have emerged in the field of vision

of researchers.

Compared to CMOS technology, which is widely used in

chips, post-silicon nano-electronic device-based brain-inspired

chips have greater potential in terms of computational density,

power efficiency, computational accuracy, and learning ability.

In addition, the size of the post-silicon nano-electronic device

can be reduced to <2 nm with ultra-high-density integration

(Pi et al., 2019). Therefore, post-silicon nano-electronic device

technology will be applied to the large-scale manufacturing of

brain-inspired chips in the future.

The performance requirements of post-silicon nano-

electronic device-based brain-inspired chips largely depend on

their specific applications. Figure 6A shows the performance

requirements for various application scenarios including

storage, inference, learning, and typical non-volatile memory.

The number of simulated states (Figure 6B) determines the

accuracy of weight matching between synapses, and the

formation of larger neural networks requires at least 8 resistance

states that can be accurately distinguished (Jacob et al., 2017).

By optimizing device material selection and circuit design, the

current post-silicon nano-electronic device chips can achieve up

to 256 resistance states. The dynamic range of switching state

transitions is defined as the on/off ratio (Figure 6C) (Wang et al.,

2016), which determines the ability to assign the weights in the

algorithm to the device conductivity, which in most cases differs

from the conductivity of the device in relation to the threshold

switch with two resistors. Compared to the high switching

ratio, the switching ratio of the multi-resistor post-silicon nano-

electronic device is <10. The linearity (Figure 6D) refers to the

linearity of the relationship between the conductivity of the

device and the number of exciting electric pulses. During the

formation of the post-silicon nano-electronic device, the device

weights show increasing and decreasing asymmetry (Figure 6E).

In the training process, the conductivity update of post-silicon

nano-electronic device is usually in the partial scope of the

conductivity window, instead of the full range (Figure 6F).

After tuning the post-silicon nano-electronic device to different

conductance levels, the conductance of the device may change

over time, and the two levels may overlap after a period of time
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(Figure 6G). Failed devices refer to post-silicon nano-electronic

device that cannot be tuned to the target conductance Level.

(Figure 6H). Based on this, it can be seen that post-silicon

nano-electronic device can store weights. According to different

application requirements, a suitable new type of post-silicon

nano-electronic device can be selected as a memristive device

for neural network design (Wang et al., 2022). The memristive

device can simulate the function of biological synapses because

the sandwich structure of the device unit is similar to nerve

synapses (Sun B. et al., 2021c).

Phase-change memory (PCRAM)

PCRAM is a post-silicon nano-electronic device based on

GST materials such as Ge2Sb2Te5. According to different

device characteristics, the composition of GST material can

be further adjusted, as shown in Figure 7C. The resistance

change characteristic of PCRAM is shown in Figure 7D. For

example, Ge-rich GST (N-type doping) can be used in high-

temperature automotive applications for better data retention

(Cheng et al., 2012). The switching resistance ratio of phase-

change memory is much larger than that of STT-MRAM (in the

range of 100 to 1,000 times). Therefore, in principle, Multilevel

Cell (MLC) operation is feasible (4 bit/cell has been proposed;

Nirschl et al., 2007). A major challenge in PCRAM cell design is

the need for a relatively large write current when melting the

phase-change material. At present, the structure design trend

of phase-change memory is from mushroom type to confined

type. The limited type reduces the write current by limiting

heat dissipation. Extremely scaled phase-change memory cells

using carbon tube electrodes have shown that write currents can

reach 1 µA at the 2 nm node (Liang et al., 2011). The resistance

drift caused by amorphous relaxation limits the data retention

ability of PCRAM, especially for MLC. Therefore, complex

circuit compensation schemes are needed. PCRAM has good

process compatibility with silicon CMOS technology, regarded

as the most mature process technology in the post-silicon nano-

electronic device industry (Yu and Chen, 2016).

Spin-transfer-torque magnetic
random-access memory (STT-RAM)

Spin-transfer-torque magnetic random-access memory

(STT-RAM) is a kind of memory that stores data by changing

the resistance through the magnetoresistance effect of magnetic

materials. The basic unit of STT-RAM is a sandwich structure

composed of an insulating barrier layer sandwiched between

two magneto-resistive materials, which is called a magnetic

tunnel junction (MTJ). At the bottom is the fixed layer with

fixed polarity, and at the top is the free layer with changeable

polarity. The magnetic moment of the free layer is written

under the action of the current of the upper and lower wires

at the same time. When the magnetic moments of the fixed

magnetic layer and the free magnetic layer are parallel in the

same direction, the resistance of the magnetic tunnel junction

is small. At this time, the device shows a low-resistance state.

When the magnetic moments of the fixed magnetic layer and

the free magnetic layer are parallel in the opposite direction,

electrons are not easy to pass through the magnetic tunnel

junction, and the MTJ structure shows a high resistance state,

as shown in Figure 7E. The resistance-voltage characteristic of

STT-RAM is shown in Figure 7F. STT-RAM stores data “0” and

“1” through two different resistive states.

Resistive random-access memory (RRAM)

RRAM is a kind of post-silicon nano-electronic device that

can realize the reversible conversion between high-resistance

and low-resistance states under the action of an external electric

field based on the resistance of non-conductive material, thus

completing the storage of binary data, as shown in Figure 7A.

The current96voltage characteristic of RRAM is shown in

Figure 7B. According to the different conductive media, it can

be divided into two categories: OxRAM (Oxide-RAM), which

conducts with oxygen holes, and CBRAM (Conductive Bridge

RAM), which conducts with metal ions. The write operation

of RRAM includes unipolar and bipolar modes, depending

on the oxide as well as the electrode material system. The

unipolar mode generally requires larger write currents and has

poorer endurance; therefore, the bipolar mode is preferred. A

key challenge in the design of the RRAM cell structure is the

variability of switching parameters. The significant variation in

resistance distribution (perhaps one or two orders of magnitude)

presents a challenge to the design of sensitive readout circuits,

requiring write-verify techniques to program to the target

state, which may at the same time cause delays in MLC

operation. RRAM typically has superior process compatibility

with mainstream silicon CMOS technologies.

Ferroelectric random-access memory
(FeRAM)

Ferroelectric memory is a post-silicon nano-electronic

device with a special process, which is formed by using synthetic

lead zirconium titanium (PZT) materials to form memory

crystals, as shown in Figure 7G. The polarization-voltage

hysteretic characteristic of FeRAM is shown in Figure 7H.When

an electric field is applied to a ferrotransistor, the central atom

follows the electric field and stops at the low-energy state I.

Conversely, when a reverse electric field is applied to the same

ferrotransistor, the central atom moves in the crystal along
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FIGURE 5

The categories of semiconductor memory.

TABLE 2 The performance comparison of post-silicon

nano-electronic device (Lai and Lowrey, 2001; Song et al., 2008; Sheu

et al., 2009; Kim et al., 2011; Tamura et al., 2011; Bez and Cappelletti,

2012; Bez et al., 2013; Zangeneh and Joshi, 2014; Roy et al., 2020;

Saxena, 2020).

Devices MRAM FeRAM PCRAM RRAM

Non-volatile Yes Yes Yes Yes

Cell size (F2) 8 15–34 4 4

Read latency 30 ns 45 ns 50 ns 8.5 ns

Write/Erase latency 30 ns/30 ns 10 ns/10 ns 10 ns/20 ns 5 ns/5 ns

Endurance >1012 1014 >1012 108

Write power High Low High Low

High voltage required (V) 3 2–3 1.5–3 1.5–3

CMOS compatibility Medium Medium Good Good

Multi-level No No Yes Yes

3D Xpoint Yes Yes Yes Yes

Cost Medium High Low Low

the direction of the electric field and stops in another low-

energy state II. A large number of central atoms move and

the couples in the crystal unit cell form ferroelectric domains,

and the ferroelectric domains form polarized charges under the

action of an electric field. The polarization charge formed by

the reversal of the ferroelectric domain under the electric field

is higher, and the polarization charge formed by the ferroelectric

domain without reversal under the electric field is lower. FeRAM

combines the advantages of RAM and ROM. Compared with

traditional non-volatile memory, FeRAM has the characteristics

of high speed, low-power consumption, and long life.

Comparison of major post-silicon
nano-electronic device

The above four major emerging trends are summarized

as key strengths and challenges of post-silicon nano-electronic

device. PCRAM, RRAM, and MRAM are called resistive

memory, while FeRAM is a new memory equivalent to charge

memory. Table 2 shows the performance comparison of post-

silicon nano-electronic device (Lai and Lowrey, 2001; Song et al.,

2008; Sheu et al., 2009; Kim et al., 2011; Tamura et al., 2011; Bez

and Cappelletti, 2012; Bez et al., 2013; Zangeneh and Joshi, 2014;

Roy et al., 2020; Saxena, 2020). From the table, we can conclude

that phase-change memory shows great advantages in terms of

high read and write speed, high-density integration, low-energy

consumption, low cost, and compatibility with CMOS processes.

It can replace the current co-storage structure of DRAM and

Flash memory, and its potential in high-speed and high-density

storage cannot be underestimated.

Research on construction of
brain-inspired chips based on
post-silicon nano-electronic device

Synapse

Combined with the design and application of brain-inspired

chips, different types of non-volatile memory devices have been

proposed. In the application of neural networks, according to the

relationship between the adjustment of weight and the reading
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FIGURE 6

Application-dependent device metric requirements (Zhang W. Q. et al., 2020). (A) Ranking of qualitative device requirements for three potential

applications and NVM. (B96-H), schematic diagram of computing device requirements: (B) simulation state, (C) on/o� ratio, (D) linearity, (E)

symmetry, (F) durability, (G) retention rate and (H) yield.

FIGURE 7

Post-silicon nano-electronic device. (A) Conductive filament resistive memory (B) corresponding polar current-voltage characteristics (C)

Phase-change memory (D) phase-change memory characteristics (E) Spin-transfer torque magnetic random-access memory (F)

resistance-voltage characteristics of Spin-transfer torque magnetic random-access memory (G) ferroelectric random-access memory

(H) polarization-voltage hysteresis characteristics (Ielmini and Wong, 2018).
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FIGURE 8

Two-terminal devices: (A) RRAM, (B) PCM, and (C) MRAM. Three-terminal devices: (D) flash memory and (E) FeFET. Post-silicon nano-electronic

device-based cell structure: (F) 1R synapse, (G) 1T1R synapse, (H) 2T1R synapse, (I) 2T2R synapse, (J) 2T2R+3T1C synapse, (K) 1T+1TriR

synapse and (L) 2T+1TriR synapse. (M) neuro-synapse core, (N) neuro-synapse core in brain-inspired chips (O, P) neural network

working process (Zhang W. Q. et al., 2020).

of weight, these devices can be divided into two categories: two-

terminal devices and three-terminal devices. The two-terminal

devices mainly include PCRAM, RRAM, and MRAM. Three-

terminal devices mainly include flash memory and ferroelectric

memory as shown in Figure 8.

PCRAM

Work on a PCM-based device was first proposed in 2012

(Kuzum et al., 2012). By applying a series of incremental

excitation pulses to the device, the resistance of the device can

change under about 100 resistance states, and under appropriate

pulses, the learning rule of spiking-time-dependent plasticity

(STDP) can be realized under waveform. Subsequently, different

research groups proposed various excitation pulse programming

schemes to reduce the complexity and power consumption of

PCM-based neuromorphic circuits (Suri et al., 2011; Jackson

et al., 2013; Li et al., 2013; Stefano et al., 2016). However,

a major challenge of PCM devices is the asymmetry of the

resistance switching process, which is mainly because the

process of melting the material at a high temperature to form an

amorphous state is more difficult to control than the process of
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FIGURE 9

(A) Experimental LTP characteristics of Ge2Sb2Te5 (GST) PCM devices. (B) 2-PCM synapse principle (Bichler et al., 2012).

FIGURE 10

Basic structure diagram of IBM phase-change neuron (Tuma et al., 2016).
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recrystallization of its amorphous state. Phase-change memory

can achieve multilevel resistance states by the programming

pulse. Only two resistance states can be achieved during reset

using the same pulse. To this end, Bichler et al. proposed a 2-

PCM synapse design to deal with this problem in their work

(Bichler et al., 2012), in which one PCM was used as a synaptic

potentiation (Long-term potentiation, LTP), and the other was

used as a synaptic depression (Long-term depression, LTD). In

this design, both PCM devices are partially crystallized. During

LTP and LTD, the conductance of the device is increasing.

The current through the LTP device plays a positive role and

the current through the LTD device plays a negative role. The

current through the LTD is subtracted at the output, ultimately

resulting in synaptic inhibition, as shown in Figure 9.

RRAM

In the early RRAM device design, the artificial synapse

device based on HfOx material adopted the one-way reset

learning mode (Yu et al., 2013). To make this process smoother,

multiple conductive filaments can be formed under the electric

field through the design of multilayer oxides implemented in

the device. In the RRAM device with an interface mechanism,

the resistance changes during the set and reset process are

relatively gentle (Park et al., 2012, 2013; Gao et al., 2015b; Wang

et al., 2015). In addition, multi-resistance states can also be

achieved by regulating the capture and release of interfacial

oxygen vacancies (Yang et al., 2017). The resistive switching

device exhibited multistate resistance behavior, which enables 2-

bit storage capacity in a single device providing a method for

logic in-memory and neuromorphic computing (Sun B. et al.,

2021b). A memristive device and a hybrid system composed

of CMOS neurons and RRAM synapses were experimentally

demonstrated to realize essential synaptic functions such as

STDP (Jo et al., 2010).

Depending on the application, different excitation pulse

programming schemes are applied for online or offline training

with RRAM, so the requirements for device characteristics may

vary. For example, in the offline training process, the resistance

state can be iteratively programmed into the specified target

layer by the write-verifymethod. Since the programming process

is one-time, accuracy is more critical than speed in the writing

process. Alibart et al. simulated this programming process by

firing a series of pulses (Alibart et al., 2011), where pulses

with smaller amplitudes approach the state in smaller steps but

take longer than pulses with larger amplitudes. Therefore, the

use of a pulse train of variable amplitude can approach the

desired state in small steps within a reasonable time frame. In

the absence of a change in switching state, the pulse amplitude

becomes progressively smaller, resulting in smaller steps as the

device gets closer to the desired state. However, due to the

fluctuation of the device itself, the process of determining the

initial pulse value often starts with a small non-disturbing pulse

and gradually increases, and the conductance of the device is

confirmed by applying the read pulse after the write pulse until

the required accuracy is achieved. When using this method,

because the initial state is very close to the desired state,

the maximum amplitude of the voltage pulse written in the

new sequence is smaller than that of the previous sequence,

which can ensure that the device is closer to the desired state.

For a single Pt/TiO2−x/Pt device, this method can adjust the

conductance to any expected value in the dynamic range of

the device with an error of only 1% (Alibart et al., 2011). For

the Ag/a-Si/Pt single device, the tuning accuracy for the low-

resistance state is also close to 1%. A similar iterative algorithm

has also been demonstrated in HfOx devices (Gao et al., 2015a).

For online training, since the synaptic weights need to be

dynamically trained, the programming speed becomes a more

important factor, therefore, smooth conductance adjustment

without write verification becomes the preferred solution (Yu,

2018). Some examples of state-of-the-art based on RRAM are

given in the literature, all of which show bidirectional graded

conductance tuning under the same programming voltage pulse

(Mulaosmanovic et al., 2017; Yu, 2018). Although these devices

can all reach tens or hundreds of resistive states, there are

still non-linearities and asymmetries in the tuning. They used

W/MgO/SiO2/Mo memristive device as the synapse of speech

recognition and completed the hardware implementation of

SNN using the improved supervised tempotron algorithm on

the TIDIGITS dataset (Al-Shedivat et al., 2015; Wu et al., 2022).

FeFET

FeFET synapse devices use a three-terminal structure, which

is characterized by decoupling the write and read paths for

the resistive state of the device. In FeFET, the programming

voltage applied to the gate determines the resistance change of

the device. The current is given by the drain-source current

read. As mentioned earlier, as a three-terminal device, FeFET

is designed for weighted summation as pseudo cross arrays.

In terms of physical structure, FeFET is to apply short voltage

pulses through the gate through the multi-domain effect in

ferroelectric materials, so as to gradually adjust the capacitance

of the gate, and finally complete the adjustment of threshold

voltage and channel conductance (Oh et al., 2017). Recently,

(Jerry et al., 2017) simulated FeFET synaptic devices using

a gate-last manufacturing process flow of n-channel FeFETs,

whose gates were formed by stacking 10 nm Hf0.5Zr0.5O2

(HZO) materials by atomic deposition and annealed at 600◦C

to generate multiple ferroelectric domains in HZO nanocrystals.

Compared to RRAM devices, FeFETs have advantages in on-off

ratio and available program pulse range with less variation in the

weight update curve.
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Neuron

Neuromorphic computing systems need to simulate

not only synapses, but also neuronal dynamics, including

membrane potential maintenance, transient dynamics, and

neurotransmission processes (Burr et al., 2016). In human

neurons, the maintenance of membrane potential depends on

the ion pump and ion channel in the middle of the membrane

lipid bilayer. The excitation or inhibition of post-synaptic

potentials of neuronal dendrites can change their state. In

neurons composed of phase-change memory, the membrane

potential is represented by an amorphous state of high

resistance, and the firing frequency of phase-change neurons is

controlled by the amplitude width and time interval of a series

of voltage pulses. Connecting the plasticity of synapses, such

neurons can complete complex calculations such as detecting

time correlation in parallel data streams.

When a post-silicon nano-electronic device is used to build

a neuron, the goal of the device is not the continuity of

its conductance state, but rather a cumulative behavior that

fires after receiving a certain number of pulses. Since each

conductance state of a post-silicon nano-electronic device affects

its behavior between accumulation and emission pulses, changes

in these conductance states will be the focus of research.

The use of PCM devices to construct neurons was first

reported in the work of Ovshinksy and Wright (Wright et al.,

2011). In their work, Tuma et al. changed the membrane

potential of neural components through phase encoding, and

then experimentally proved that neurons based on PCM devices

can integrate post-synaptic input signals (Tuma et al., 2016).

A system in which both neuron and synaptic devices were

implemented using PCM devices was reported by Pantazi et al.

(2016). Studies by Averbeck et al. have shown that stochastic

behaviors in neuronal dynamics, such as ionic conductance

noise and thermal noise-induced chaotic motion of charge

carriers, morphological variation between neurons, and other

background noise can also affect neuronal signaling. Encoding

and transmission play a key role (Averbeck et al., 2006).

Therefore, simulating these random behaviors in artificial

neurons can achieve many interesting functions (Maass, 2014).

The random behavior in the device is due to the inhomogeneity

of the thickness of the amorphous region and the internal atomic

configuration during melt quenching of different batches of

materials, and these random behaviors can lead to multiple

integrations of the signal generated by a phase transition

in the PCM neuron. The interval is generated between the

transmitted signals to facilitate some statistical calculations

based on these transmitted signals. At the same time, however,

the melt quenching process of PCM device materials, especially

the elemental migration therein, limits the device’s durability.

Likewise, in RRAM devices, large changes in conductance can

also result in reduced device durability. Therefore, extending the

lifetime of the device requires ensuring that neurons accumulate

and fire the number of spiking signals or fabricating the device

with high-durability materials.

Figure 10 (Tuma et al., 2016) shows the basic structure

diagram of the IBM phase-change neuron. The synapses

consist of phase-change units that are responsible for weighting

incoming excitation signals. Multiple excitation signals are input

into the synaptic array, and after the signals pass through

the synapse, they are input into the phase-change unit that

functions as a neuronal membrane (neuronal membrane, which

can also be understood as a neuron). When the threshold is

reached, the IF event is triggered, and the excitation signal

is emitted. The excitation signal is firstly conducted to the

outside for further data processing, and at the same time, it

is back-propagated for comparison with the previous input

excitation signal. For positive delays, synaptic conductance is

increased, and for negative delays, synaptic conductance is

decreased. These functions of synapses can be achieved with SET

and RESET operations. Through the above analysis, it can be

found that this system has met the main requirements of the

bionic neural network.

Al-Shedivat et al. have proposed to use TiOx-based RRAM

to construct random artificial neurons (Al-Shedivat et al., 2015).

In an RRAM, integrating the input signal of neurons increases

the voltage across the capacitive device, that is, increases the

membrane potential of neurons, causing the device as a whole

to switch to the low-resistance state and the generated increased

current is converted into digital by an external circuit signal or

analog pulse. Meanwhile, random switching of resistive states

in RRAM results in random firing of neurons (Nessler et al.,

2013). Jang et al. also implemented a similar principle on a

Cu/Ti/Al2O3-based conductive bridge random-access memory

(conductive-bridging RAM; CBRAM) (Jang et al., 2017).

Resistive memory has also been used in the simulation

of axonal behavior. The neuron resistor (Neuristor) was first

proposed as an analog device for the Hodgkin-Huxley axon

(Hodgkin and Huxley, 1952; Crane, 1962), but it could not be

mass-produced in the early stages of the concept. Pickett et al.

fabricated a neuron resistor composed of two nanoscale Mott

memristors based on the Joule heat-driven insulation-conductor

phase transition principle (Pickett et al., 2013). This neuron

utilizes the dynamic resistance switching behavior of the Mott

memristor and the functional similarity between Na+ and K+

channels in the Hodgkin-Huxley model to make the resistor

have all-or-nothing pulse signal gain, periodicity, etc. important

neuron features.

Many research works provide more references for the

practical application of memristor. A.Chandrasekar et al.

studied impulsive synchronization of stochastic memristor-

based recurrent neural networks with time delay and concluded

that the memristive connection weights have a certain

relationship with the stability of the system (Chandrasekar

and Rakkiyappan, 2016). Researchers have also done a lot of

research on the complete definition of the brain elicitation
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system and learning mode. The definition of completeness

for brain-inspired systems was put forward by Zhang et al.

(Zhang Y. et al., 2020), which is composed of Turing-complete

software abstract model and a versatile abstract brain-inspired

architecture, providing convenience for ensuring the portability

of programming language, the completeness of hardware and

the feasibility of compilation. By introducing a brain-inspired

meta-learning paradigm and a differentiable spike model

combining neuronal dynamics and synaptic plasticity, Wu et al.

proposed a brain-inspired global-local cooperative learning

model. It achieves higher performance than a single learning

method (Wu et al., 2020). Associative memory is an important

mechanism to describe the process of biological learning

and forgetting. It is of great significance to construct neural

morphological computing systems and simulate brain-inspired

functions. The design and implementation of associative

memory circuits have become a research hotspot in the

field of artificial neural networks. Pavlov’s conditioned reflex

experiment is one of the classical cases of associative memory.

The implementation of its hardware circuit still has some

problems, such as complex circuit design, imperfect function,

and unclear process description. Based on this, researchers

combined the classical conditional reflection theory and nano-

science and technology to study its circuit. Sun et al. put

forward a memristive neural network circuit that can realize

Pavlov associative memory with time delay achieving learning,

forgetting, fast learning, slow forgetting, and time-delay learning

(Sun et al., 2020). A memristor-based learning circuit that can

realize Pavlov associative memory with dual-mode switching,

auditory mode, and visual mode, was designed and verified by

Sun et al. (2021a). Sun et al. proposed a memristor-based neural

network circuit of emotion congruent memory, which considers

various memory and emotion functions, achieving the functions

of learning, forgetting, changing speed, and emotion generation

(Sun et al., 2021b). Gao et al. experimentally demonstrated the

in situ learning ability of the sound localization function in a

1K analog memristor array with the proposed multi-threshold-

update scheme (Gao et al., 2022), representing a significant

advance toward memristor-based auditory localization system

with low-energy consumption and high performance.

In 2016, Sengupta et al. proposed a deep spiking neural

system based on magnetic tunnel junction (MTJ), which lead

to a fully trained deep neural network (DNN) transformed into

an SNN on forwarding inference (Sengupta et al., 2016). The

input signal of DNN is encoded as a Poisson spike sequence

of SNN according to the rate and is regulated by the synaptic

weights, resulting in a post-synaptic current flowing through

heavy metals under the MTJ device, which causes the switching

of the device state in the MTJ device, the probability of

which is the distribution is approximated by the DNN sigmoid

function, again with a 50% probability of zero input by adding

a constant bias current. Stochastic micromagnetic simulations

of large-scale deep learning neural network architectures show

that SNN forward inference can achieve a test accuracy of up

to 97.6% on the MNIST handwritten digit database. Sharad

et al. also suggested using lateral spin valves and domain wall

magnets (DWMs) as neural components to achieve multiply-

accumulate functions (Roy et al., 2013). Initially conceived,

this work connects two input magnets with opposite polarities,

a stationary magnet, and an output magnet through a metal

channel. The transmission of spin torque makes the output

magnet switch to a flexible axis parallel to the polarity of the

input magnet, which is detected by MTJ.

In a later envision, the device instead uses two magnets with

fixed and opposite polarities, which are connected through a

DWM device with an integrated MTJ. One magnet is grounded

and the other is used to receive the difference between the

excitatory and inhibitory currents plus the bias current to center

the response of DWM. Such current differences determine

the direction of the current flowing through the DWM and

the resulting magnetic polarity, which is then induced by the

MTJ. Sharad et al. also proposed circuit integration schemes

of unipolar and bipolar neurons, as well as device-circuit joint

simulation of some common image processing applications.

Moon et al. realized pattern recognition neuromorphic systems

by combiningMo/PCMO synaptic devices with NbO2 insulator-

metal transition neuronal devices, in which the Mo/PCMO

devices exhibited excellent performance due to their high

activation energy during oxidation reliability (Moon et al., 2015).

Conclusion

The development of artificial intelligence is highly

dependent on massive amounts of data. Meeting the data

processing requirements of high-performance machine learning

is the most important factor for brain-inspired chips.

This study summarizes the development of brain-inspired

and post-silicon nano-electronic device and its applications

in brain-inspired chips. The current representative post-

silicon nano-electronic device artificial synaptic devices include

PCM, RRAM, and FeRAM. In addition, the post-silicon

nano-electronic device can also be used to construct neural

components. As CMOS technology is approaching its physical

limits, post-silicon nano-electronic device-based brain-inspired

chips offer a promising path forward.

The brain-inspired system has a broad application prospect

in the field of artificial intelligence and cognitive computing

because of its low-power consumption and fast parallel

computing speed (Sun B. et al., 2021a). The research on brain-

inspired chips has made phased progress, but there is still no

intelligent system that can approach the human level. In the

next period, the research on brain-inspired chips will focus on

enhancing the universality of neural computing circuit modules,

as well as reducing the difficulty of design andmanufacturing. In

addition, there is an urgent need to solve the power consumption
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problem of brain-inspired computing chips, such as exploring

ultra-low-power materials and computing structures, to lay a

foundation for further improving the performance of brain-

inspired chips.

Future device research should focus on implementing

simulated post-silicon nano-electronic device with improved

performance and exploring more bio-trustworthy properties.

1. Post-silicon nano-electronic device represented by phase-

change memory is continuously optimized. In the future,

they will continue to improve device performance, develop

large-scale integration technology, and realize heterogeneous

integration and three-dimensional high-density integration of

various neuromorphic devices.

2. Small-scale brain-inspired chip circuits continue to

improve in terms of synaptic structure and neuron function.

In the future, the collaborative design will be opened to

develop large-scale scalable, and versatile post-silicon nano-

electronic device-based brain-inspired chips to realize massive

data processing.

3. SNN still lacks effective learning algorithms, lacks

dedicated hardware platforms, and has few commercial

products, which only have theoretical advantages. The research

space is relatively large, and the realization of learning

algorithms and hardware has broad research prospects.

Brain-inspired chips have propelled the development of

brain-inspired supercomputers, giving them extreme computing

speeds and massive data processing capabilities. In the future,

they can also “cognition” and “thinking,” which will change the

traditional working mode of computers.

Author contributions

YL, HC, and ZS brought up the core concept and

architecture of this manuscript. YL, HC, QW, XL, CX, and

ZS wrote the article. All authors contributed to the article and

approved the submitted version.

Funding

This work was supported by the National Natural Science

Foundation of China (92164302, 61874129, 91964204,

61904186, 61904189, 61874178), 0Strategic Priority Research

Program of the Chinese Academy of Sciences (XDB44010200),

Science and Technology Council of Shanghai (17DZ2291300,

19JC1416801, 2050112300), by the Youth Innovation Promotion

Association CAS under Grant 2022233 and in part by the

Shanghai Research and Innovation Functional Program under

Grant 17DZ2260900.

Acknowledgments

This work is done in the State Key Laboratory of Functional

Materials for Informatics, Laboratory of Nanotechnology,

Shanghai Institute ofMicrosystem and Information Technology,

and Chinese Academy of Sciences. The authors express their

thanks for the help provided by the lab.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Alibart, F., Gao, L., Hoskins, B. D., and Strukov, D. B. (2011). High-precision
tuning of state for memristive devices by adaptable variation-tolerant algorithm.
Nanotechnology 23:075201. doi: 10.1088/0957-4484/23/7/075201

Al-Shedivat, M., Naous, R., Neftci, E., Cauwenberghs, G., and Salama,
K. N. (2015). “Inherently stochastic spiking neurons for probabilistic neural
computation,” in 2015 7th International IEEE/Embs Conference on Neural
Engineering (NER), 356–359 (Montpellier).

Averbeck, B. B., Latham, P. E., and Pouget, A. (2006). Neural correlations,
population coding and computation. Nat. Rev. Neurosci. 7, 358–366.
doi: 10.1038/nrn1888

Benjamin, B. V., Gao, P., Mcquinn, E., Chou D Hary, S., Chandrasekaran, A. R.,
Bussat, J., et al. (2014). “Neurogrid: a mixed-analog-digital multichip system for
large-scale neural simulations,” in Proceedings of the IEEE 102, 699–716.

Bez, R., and Cappelletti, P. (2012). “Emerging memory technology perspective,”
in Proceedings of Technical Program of 2012 VLSI Technology, System and
Application, Hsinchu, Taiwan. doi: 10.1109/VLSI-TSA.2012.6210106

Bez, R., Cappelletti, P., Servalli, G., and Pirovano, A. (2013). “Phase
change memories have taken the field,” in Memory Workshop (Monterey, CA).
doi: 10.1109/IMW.2013.6582084

Bichler, O., Suri, M., Querlioz, D., Vuillaume, D., DeSalvo, B., and
Gamrat, C. (2012). Visual pattern extraction using energy-efficient “2-PCM
synapse” neuromorphic architecture. IEEE Trans. Electron Dev. 59, 2206–2214.
doi: 10.1109/TED.2012.2197951

Burr, G. W., Narayanan, P., Shelby, R. M., Sidler, S., and Leblebici,
Y. (2015). “Large-scale neural networks implemented with non-volatile
memory as the synaptic weight element: comparative performance analysis

Frontiers inNeurorobotics 15 frontiersin.org

https://doi.org/10.3389/fnbot.2022.948386
https://doi.org/10.1088/0957-4484/23/7/075201
https://doi.org/10.1038/nrn1888
https://doi.org/10.1109/VLSI-TSA.2012.6210106
https://doi.org/10.1109/IMW.2013.6582084
https://doi.org/10.1109/TED.2012.2197951
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Lv et al. 10.3389/fnbot.2022.948386

(accuracy, speed, and power),” in IEEE International Electron Devices Meeting
(Washington, DC).

Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., et al. (2016).
Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124.
doi: 10.1080/23746149.2016.1259585

Chandrasekar, A., and Rakkiyappan, R. (2016). Impulsive controller
design for exponential synchronization of delayed stochastic memristor-
based recurrent neural networks. Neurocomputing 173, 1348–1355.
doi: 10.1016/j.neucom.2015.08.088

Cheng, H. Y., Wu, J. Y., Cheek, R., Raoux, S., Brightsky, M., Garbin, D., et al.
(2012). “A thermally robust phase change memory by engineering the Ge/N
concentration in (Ge, N)xSbyTe z phase change material,” in 2012 International
Electron Devices Meeting (San Francisco, CA).

Crane, H. D. (1962). Neuristor - a novel device and system concept. Proc. Inst.
Radio Eng. 50, 2048–2060. doi: 10.1109/JRPROC.1962.288234

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y. Q., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Davison, A. P., Müller, E., Schmitt, S., Vogginger, B., Lester, D., Pfeil, T.,
et al. (2020). HBP Neuromorphic Computing Platform Guidebook. Available
online at: https://www.humanbrainproject.eu/en/silicon-brains/how-we-work/
hardware/ (accessed June 7, 2022).

Froemke, R. C., and Dan, Y. (2002). Spike-timing-dependent synaptic
modification induced by natural spike trains. Nature 416, 433–438.
doi: 10.1038/416433a

Fukushima, K. (1980). Neocognitron: a self-organizing neural networkmodel for
amechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36,
193–202. doi: 10.1007/BF00344251

Gao, B., Zhou, Y., Zhang, Q., Zhang, S., Yao, P., Xi, Y., et al. (2022). Memristor-
based analogue computing for brain-inspired sound localization with in situ
training. Nat. Commun. 13, 1–8. doi: 10.1038/s41467-022-29712-8

Gao, L., Chen, P. Y., and Yu, S. (2015a). Programming protocol optimization for
analog weight tuning in resistive memories. IEEE Electr. Dev. Lett. 36, 1157–1159.
doi: 10.1109/LED.2015.2481819

Gao, L., Wang, I.-T., Chen, P.-Y., Sarma, V., and Seo, J.-S. (2015b). Fully
parallel write/read in resistive synaptic array for accelerating on-chip learning.
Nanotechnology 26, 455204–455204. doi: 10.1088/0957-4484/26/45/455204

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of
membrane current and its application to conduction and excitation in nerve. J.
Physiol. 117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558.
doi: 10.1073/pnas.79.8.2554

Ielmini, D., and Wong, H. S. P. (2018). In-memory computing with resistive
switching devices. Nat. Electr. 1, 333–343. doi: 10.1038/s41928-018-0092-2

Jackson, B. L., Rajendran, B., Corrado, G. S., Breitwisch, M., Burr, G. W., Cheek,
R., et al. (2013). Nanoscale electronic synapses using phase change devices. ACM J.
Emerg. Technol. Comput. Syst. 9, 1–20. doi: 10.1145/2463585.2463588

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., et al. (2017).
“Quantization and training of neural networks for efficient integer-arithmetic-
only inference,” in Proceedings of the IEEE Conference On Computer Vision and
Pattern Recognition (Salt Lake City, UT). doi: 10.48550/arXiv.1712.05877

Jang, W. J., Lee, M. K., Yoo, J., Kim, E., Yang, D. Y., Park, J., et al. (2017). Low-
resistive high-work-function gate electrode for transparent a-IGZO TFTs. IEEE
Trans. Electron Devices 64, 164–169. doi: 10.1109/TED.2016.2631567

Jerry, M., Chen, P. Y., Zhang, J., Sharma, P. and Datta, S. (2017). “Ferroelectric
FET analog synapse for acceleration of deep neural network training,” in 2017 IEEE
International Electron Devices Meeting (IEDM) (San Francisco, CA).

Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W. (2010).
Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10,
1297–1301. doi: 10.1021/nl904092h

Kim, B., Song, Y. J., Ahn, S., Kang, Y., Jeong, H., Ahn, D., et al.
(2011). “Current status and future prospect of Phase Change Memory,” in
IEEE, Current status and future prospect of Phase Change Memory (Xiamen).
doi: 10.1109/ASICON.2011.6157176

Kuzum, D., Jeyasingh, R. G., Lee, B., and Wong, H. S. (2012). Nanoelectronic
programmable synapses based on phase change materials for brain-inspired
computing. Nano Lett. 12, 2179–2186. doi: 10.1021/nl201040y

Lai, S., and Lowrey, T. (2001). “OUM - A 180 nm nonvolatile memory cell
element technology for stand alone and embedded applications,” in International

Electron Devices Meeting. Technical Digest (Cat. No.01CH37224) (Washington,
DC: IEEE).

Li, Y., Zhong, Y., Xu, L., Zhang, J., Xu, X., Sun, H., et al. (2013). Ultrafast synaptic
events in a chalcogenide memristor. Sci. Rep. 3, 1–7. doi: 10.1038/srep01619

Liang, J., Jeyasingh, R., Chen, H. Y., andWong, H. (2011). “A 1.4µA reset current
phase change memory cell with integrated carbon nanotube electrodes for cross-
point memory application,” in Digest of Technical Papers - Symposium on VLSI
Technology (Kyoto), 100–101.

Maass, W. (1997). Networks of spiking neurons: the third
generation of neural network models. Neural Netw. 10, 1659–1671.
doi: 10.1016/S0893-6080 (97)00011-7

Maass, W. (2014). Noise as a resource for computation and learning in networks
of spiking neurons. Proc. IEEE 102, 860–880. doi: 10.1109/JPROC.2014.2310593

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada,
J., Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit
with a scalable communication network and interface. Science 345, 668–673.
doi: 10.1126/science.1254642

Moon, K., Cha, E., Park, J., Gi, S., and Hwang, H. (2015). “High density
neuromorphic system with Mo/Pr0.7Ca0.3MnO3 synapse and NbO2 IMT
oscillator neuron,” in 2015 IEEE International Electron Devices Meeting (IEDM)
(Washington, DC). doi: 10.1109/IEDM.2015.7409721

Mulaosmanovic, H., Ocker, J., Muller, S., Noack, M., and Slesazeck, S. (2017).
“Novel ferroelectric FET based synapse for neuromorphic systems,” in 2017
Symposium on VLSI Technology (Kyoto). doi: 10.23919/VLSIT.2017.7998165

Nessler, B., Pfeiffer, M., Buesing, L., andMaass,W. (2013). Bayesian computation
emerges in generic cortical microcircuits through spike-timing-dependent
plasticity. PLoS Comput. Biol. 9:e1003037. doi: 10.1371/journal.pcbi.1003037

Nirschl, T., Philipp, J. B., Happ, T. D., Burr, G. W., Rajendran, B., Lee, M. H.,
et al. (2007). “Write strategies for 2 and 4-bit Multi-Level Phase-Change Memory,”
in 2007 IEEE International Electron Devices Meeting (Washington, DC: IEEE).

Oh, S., Kim, T., Kwak, M., Song, J., Woo, J., Jeon, S., et al. (2017). HfZrOx-based
ferroelectric synapse device with 32 levels of conductance states for neuromorphic
applications. IEEE Electr. Dev. Lett. 38, 732–735. doi: 10.1109/LED.2017.
2698083

Pantazi, A., Wozniak, S., Tuma, T., and Eleftheriou, E. (2016). All-memristive
neuromorphic computing with level-tuned neurons. Nanotechnology 27:355205.
doi: 10.1088/0957-4484/27/35/355205

Park, S., Kim, H., Choo, M., Noh, J., and Hwang, H. (2012). RRAM-based
synapse for neuromorphic system with pattern recognition function. Electron
Devices Meeting doi: 10.1109/IEDM.2012.6479016

Park, S., Sheri, A., Kim, J., Noh, J., andHwang, H. (2013). “Neuromorphic speech
systems using advanced ReRAM-based synapse,” in Electron Devices Meeting (San
Francisco, CA).

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards
artificial general intelligence with hybrid Tianjic chip architecture. Nature 572,
106–111. doi: 10.1038/s41586-019-1424-8

Pi, S., Li, C., Jiang, H., Xia, W., Xin, H., Yang, J. J., et al. (2019).
Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat.
Nanotechnol. 14, 35–39. doi: 10.1038/s41565-018-0302-0

Pickett, M. D., Medeiros-Ribeiro, G., and Williams, R. S. (2013). A
scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117.
doi: 10.1038/nmat3510

Rast, A., Galluppi, F., Xin, J., and Furber, S. (2010). “The Leaky Integrate-
and-Fire neuron: a platform for synaptic model exploration on the SpiNNaker
chip,” in International Joint Conference on Neural Networks (Barcelona).
doi: 10.1109/IJCNN.2010.5596364

Roy, K., Chakraborty, I., Ali, M., Ankit, A., and Agrawal, A. (2020). “In-memory
computing in emerging memory technologies for machine learning: an overview,”
in 2020 57th ACM/IEEE Design Automation Conference (DAC) (San Francisco,
CA).

Roy, K., Sharad, M., Fan, D. L., and Yogendra, K. (2013). “Beyond charge-based
computation: boolean and non-boolean computing with spin torque devices,” in
2013 IEEE International Symposium on Low Power Electronics and Design (Islped)
(Beijing), 139–142.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
representations by back propagating errors. Nature 323, 533–536.
doi: 10.1038/323533a0

Saxena, V. (2020). Mixed-signal neuromorphic computing circuits using hybrid
cmos-rram integration. IEEE Trans. Circuits Syst. II Express Briefs 68, 581–586.
doi: 10.1109/TCSII.2020.3048034

Frontiers inNeurorobotics 16 frontiersin.org

https://doi.org/10.3389/fnbot.2022.948386
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1016/j.neucom.2015.08.088
https://doi.org/10.1109/JRPROC.1962.288234
https://doi.org/10.1109/MM.2018.112130359
https://www.humanbrainproject.eu/en/silicon-brains/how-we-work/hardware/
https://www.humanbrainproject.eu/en/silicon-brains/how-we-work/hardware/
https://doi.org/10.1038/416433a
https://doi.org/10.1007/BF00344251
https://doi.org/10.1038/s41467-022-29712-8
https://doi.org/10.1109/LED.2015.2481819
https://doi.org/10.1088/0957-4484/26/45/455204
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1038/s41928-018-0092-2
https://doi.org/10.1145/2463585.2463588
https://doi.org/10.48550/arXiv.1712.05877
https://doi.org/10.1109/TED.2016.2631567
https://doi.org/10.1021/nl904092h
https://doi.org/10.1109/ASICON.2011.6157176
https://doi.org/10.1021/nl201040y
https://doi.org/10.1038/srep01619
https://doi.org/10.1016/S0893-6080~(97)00011-7
https://doi.org/10.1109/JPROC.2014.2310593
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/IEDM.2015.7409721
https://doi.org/10.23919/VLSIT.2017.7998165
https://doi.org/10.1371/journal.pcbi.1003037
https://doi.org/10.1109/LED.2017.2698083
https://doi.org/10.1088/0957-4484/27/35/355205
https://doi.org/10.1109/IEDM.2012.6479016
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1038/s41565-018-0302-0
https://doi.org/10.1038/nmat3510
https://doi.org/10.1109/IJCNN.2010.5596364
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/TCSII.2020.3048034
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Lv et al. 10.3389/fnbot.2022.948386

Schuller, I. K., Stevens, R., Pino, R., and Pechan, M. (2015). Neuromorphic
Computing – FromMaterials Research to Systems Architecture Roundtable. USDOE
Office of Science (SC) (United States).

Sengupta, A., Parsa, M., Han, B., and Roy, K. (2016). Probabilistic deep spiking
neural systems enabled by magnetic tunnel junction. IEEE Trans. Electron Devices
63, 2963–2970. doi: 10.1109/TED.2016.2568762

Shen, J., Ma, D., Gu, Z., Zhang, M., and Pan, G. (2015). Darwin: a neuromorphic
hardware co-processor based on Spiking Neural Networks. Sciece China Inform.
Sci. 59, 1–5. doi: 10.1007/s11432-015-5511-7

Sheu, S. S., Chiang, P. C., Lin, W. P., Lee, H. Y., and Tsai, M. J. (2009). “A 5ns fast
write multi-level non-volatile 1 K bits RRAMmemory with advance write scheme,”
in 2009 Symposium on VLSI Circuits (Kyoto).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
et al. (2016). Mastering the game of Go with deep neural networks and tree search.
Nature 529, 484–489. doi: 10.1038/nature16961

Song, Z. T., Liu, B., and Feng, S. L. (2008). Development of nano phase
change storage technology. J. Funct. Mater. Dev. 14:14. Available online
at: https://www.researchgate.net/publication/288703901_Development_of_nano_
phase_change_storage_technology

Stefano, A., Nicola, C., Mario, L., Valerio, M., Agostino, P., Paolo, F., et al.
(2016). Unsupervised learning by spike timing dependent plasticity in Phase
Change Memory (PCM) synapses. Front. Neurosci. 10:56. doi: 10.3389/fnins.2016.
00056

Sun, B., Guo, T., Zhou, G., Ranjan, S., and Wu, Y. A. (2021a). Synaptic devices
based neuromorphic computing applications in artificial intelligence.Mater. Today
Phys. 18:100393. doi: 10.1016/j.mtphys.2021.100393

Sun, B., Ranjan, S., Zhou, G., Guo, T., andWu, Y. A. (2021b). Multistate resistive
switching behaviors for neuromorphic computing in memristor. Materials Today
Adv. 9:100125. doi: 10.1016/j.mtadv.2020.100125

Sun, B., Zhou, G., Sun, L., Zhao, H., Chen, Y., Yang, F., et al. (2021c). ABO
3 multiferroic perovskite materials for memristive memory and neuromorphic
computing. Nanoscale Horizons 6:939. doi: 10.1039/D1NH00292A

Sun, J., Han, G., Zeng, Z., and Wang, Y. (2020). Memristor-based
neural network circuit of full-function pavlov associative memory with
time delay and variable learning rate. IEEE Trans. Cybern. 50, 2935–2945.
doi: 10.1109/TCYB.2019.2951520

Sun, J., Han, J., Liu, P., and Wang, Y. (2021a). Memristor-based
neural network circuit of pavlov associative memory with dual mode
switching. AEU Int. J. Electr. Commun. 129:153552. doi: 10.1016/j.aeue.2020.
153552

Sun, J., Han, J., Wang, Y., and Liu, P. (2021b). “Memristor-based neural
network circuit of emotion congruent memory with mental fatigue and emotion
inhibition,” in IEEE Transactions on Biomedical Circuits and Systems, 15,
606–616.

Sun, K. X., Chen, J. S., and Yan, X. B. (2021). The future of memristors:
materials engineering and neural networks. Adv. Funct. Mater. 31:2006773.
doi: 10.1002/adfm.202006773

Suri, M., Bichler, O., Querlioz, D., Cueto, O., and Desalvo, B. (2011). “Phase
change memory as synapse for ultra-dense neuromorphic systems: application to
complex visual pattern extraction,” in 2011 IEEE International Electron Devices
Meeting (IEDM) (Washington, DC).

Tamura, S., Yamanaka, N., Saito, T., Takano, I., and Yokoyama, M. (2011).
“Electrically switchable graphene photo-sensor using phase-change gate filter for
non-volatile data storage application with high-speed data writing and access,” in
2011 International Electron Devices Meeting (Washington, DC).

Thomas, A. (2013). Memristor-based neural networks. J. Phys. D Appl. Phys.
46:093001. doi: 10.1088/0022-3727/46/9/093001

Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A., and Eleftheriou, E.
(2016). Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699.
doi: 10.1038/nnano.2016.70

Wang, I. T., Lin, Y. C., Wang, Y. F., Hsu, C. W., and Hou, T. H. (2015). “3D
synaptic architecture with ultralow sub-10 fJ energy per spike for neuromorphic
computation,” in IEEE International Electron Devices Meeting (San Francisco, CA).

Wang, J., Mao, S., Zhu, S., Hou, W., Yang, F., and Sun, B. (2022).
Biomemristors-based synaptic devices for artificial intelligence applications. Org.
Electr. 106:106540. doi: 10.1016/j.orgel.2022.106540

Wang, Z., Yin, M., Zhang, T., Cai, Y., Wang, Y., Yang, Y., et al. (2016).
Engineering incremental resistive switching in TaOx based memristors for brain-
inspired computing. Nanoscale 8, 14015–14022. doi: 10.1039/C6NR00476H

Wright, C. D., Liu, Y. W., Kohary, K. I., Aziz, M. M., and Hicken, R. J. (2011).
Arithmetic and biologically-inspired computing using phase-change materials.
Adv. Mater. 23, 3408–3413. doi: 10.1002/adma.201101060

Wu, X. L., Dang, B. J., Wang, H., Wu, X. L., and Yang, Y. C. (2022). Spike-
enabled audio learning inmultilevel synapticmemristor array-based spiking neural
network. Adv. Intelligent Syst. 4:2100151. doi: 10.1002/aisy.202100151

Wu, Y., Zhao, R., Zhu, J., Chen, F., Xu, M., Li, G., et al. (2020). Brain-inspired
global-local learning incorporated with neuromorphic computing. Nat. Commun.
13, 1–14. doi: 10.1038/s41467-021-27653-2

Yang, Z., Yi, L., Wang, X., and Friedman, E. G. (2017). “Synaptic characteristics
of Ag/AgInSbTe/Ta-basedmemristor for pattern recognition applications,” in IEEE
Transactions on Electron Devices , 64, 1–6. doi: 10.1109/TED.2017.2671433

Yu, S. (2018). “Neuro-inspired computing with emerging nonvolatile memorys,”
in Proceedings of the IEEE. 106, 260–285. doi: 10.1109/JPROC.2018.2790840

Yu, S., and Chen, P. Y. (2016). Emerging memory technologies:
recent trends and prospects. IEEE Solid State Circuits Mag. 8, 43–56.
doi: 10.1109/MSSC.2016.2546199

Yu, S., Gao, B., Fang, Z., Yu, H., Kang, J., and Wong, H. S. P. (2013).
A low energy oxide-based electronic synaptic device for neuromorphic visual
systems with tolerance to device variation. Adv. Mater. 25, 1774–1779.
doi: 10.1002/adma.201203680

Zangeneh, M., and Joshi, A. (2014). Design and optimization of nonvolatile
multibit 1T1R resistive RAM. IEEE Trans. Very Large Scale Integr. Syst. 22,
1815–1828. doi: 10.1109/TVLSI.2013.2277715

Zhang, W. Q., Gao, B., Tang, J. S., Yao, P., Yu, S. M., Chang, M.
F., et al. (2020). Neuro-inspired computing chips. Nat. Electr. 3, 371–382.
doi: 10.1038/s41928-020-0435-7

Zhang, X. (2020). Research on the Neuromorphic Computing and System
Applications WithMemristors. Chinese Academy of Sciences.

Zhang, Y., Qu, P., Ji, Y., Zhang, W., Gao, G., Wang, G., et al. (2020).
A system hierarchy for brain-inspired computing. Nature 586, 378–384.
doi: 10.1038/s41586-020-2782-y

Frontiers inNeurorobotics 17 frontiersin.org

https://doi.org/10.3389/fnbot.2022.948386
https://doi.org/10.1109/TED.2016.2568762
https://doi.org/10.1007/s11432-015-5511-7
https://doi.org/10.1038/nature16961
https://www.researchgate.net/publication/288703901_Development_of_nano_phase_change_storage_technology
https://www.researchgate.net/publication/288703901_Development_of_nano_phase_change_storage_technology
https://doi.org/10.3389/fnins.2016.00056
https://doi.org/10.1016/j.mtphys.2021.100393
https://doi.org/10.1016/j.mtadv.2020.100125
https://doi.org/10.1039/D1NH00292A
https://doi.org/10.1109/TCYB.2019.2951520
https://doi.org/10.1016/j.aeue.2020.153552
https://doi.org/10.1002/adfm.202006773
https://doi.org/10.1088/0022-3727/46/9/093001
https://doi.org/10.1038/nnano.2016.70
https://doi.org/10.1016/j.orgel.2022.106540
https://doi.org/10.1039/C6NR00476H
https://doi.org/10.1002/adma.201101060
https://doi.org/10.1002/aisy.202100151
https://doi.org/10.1038/s41467-021-27653-2
https://doi.org/10.1109/TED.2017.2671433
https://doi.org/10.1109/JPROC.2018.2790840
https://doi.org/10.1109/MSSC.2016.2546199
https://doi.org/10.1002/adma.201203680
https://doi.org/10.1109/TVLSI.2013.2277715
https://doi.org/10.1038/s41928-020-0435-7
https://doi.org/10.1038/s41586-020-2782-y
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Post-silicon nano-electronic device and its application in brain-inspired chips
	Introduction
	Neural network theory
	Brain-inspired chips
	Brain-inspired chips dominated by the analog circuit
	Brain-inspired chips with full-digital circuit
	Brain-inspired chips based on post-silicon nano-electronic device

	The key of brain-inspired chips - post-silicon nano-electronic device
	Phase-change memory (PCRAM)
	Spin-transfer-torque magnetic random-access memory (STT-RAM)
	Resistive random-access memory (RRAM)
	Ferroelectric random-access memory (FeRAM)
	Comparison of major post-silicon nano-electronic device

	Research on construction of brain-inspired chips based on post-silicon nano-electronic device
	Synapse
	PCRAM
	RRAM
	FeFET

	Neuron

	Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


