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Abstract 

Background:  Ovarian cancer (OC) is the deadliest tumor in the female reproductive tract. And increased resist-
ance to platinum-based chemotherapy represents the major obstacle in the treatment of OC currently. Robust and 
accurate gene expression models are crucial tools in distinguishing platinum therapy response and evaluating the 
prognosis of OC patients.

Methods:  In this study, 230 samples from The Cancer Genome Atlas (TCGA) OV dataset were subjected to mRNA 
expression profiling, single nucleotide polymorphism (SNP), and copy number variation (CNV) analysis comprehen-
sively to screen out the differentially expressed genes (DEGs). An SVM classifier and a prognostic model were con-
structed using the Random Forest algorithm and LASSO Cox regression model respectively via R. The Gene Expression 
Omnibus (GEO) database was applied as the validation set.

Results:  Forty-eight differentially expressed genes (DEGs) were figured out through integrated analysis of gene 
expression, single nucleotide polymorphism (SNP), and copy number variation (CNV) data. A 10-gene classifier was 
constructed which could discriminate platinum-sensitive samples precisely with an AUC of 0.971 in the training set 
and of 0.926 in the GEO dataset (GSE638855). In addition, 8 optimal genes were further selected to construct the 
prognostic risk model whose predictions were consistent with the actual survival outcomes in the training cohort 
(p = 9.613e-05) and validated in GSE638855 (p = 0.04862). PNLDC1, SLC5A1, and SYNM were then identified as hub 
genes that were associated with both platinum response status and prognosis, which was further validated by the 
Fudan University Shanghai cancer center (FUSCC) cohort.

Conclusion:  These findings reveal a specific risk model that could serve as effective biomarkers to identify patients’ 
platinum response status and predict survival outcomes for OC patients. PNLDC1, SLC5A1, and SYNM are the hub 
genes that may serve as potential biomarkers in OC treatment.
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Introduction
Ovarian cancer (OC), the most lethal gynecological can-
cer, is one of the main causes of cancer-related death 
among females worldwide [1]. The five-year overall sur-
vival rate of epithelial OC patients ranges from 20% at 
stage IV to 89% at stage I, however, 80% of OC cases can 
not be diagnosed timely until the tumor has progressed 
to advanced stages with severe clinical outcomes due to 
its insidious onset without specific clinical manifestations 
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and the lack of mature early diagnosis methods [2]. 
Cytoreductive surgery followed by chemotherapy based 
on platinum or combined with taxanes is the stand-
ard treatment for OC [3]. Although most patients with 
OC show initially highly response to platinum therapy, 
tumors demonstrate increasing resistance during treat-
ment inevitably. Reportedly, about 70% of patients suf-
fer from tumor relapse a few months after treatment 
and develop resistance to therapy eventually, no mat-
ter primary or secondary resistance, representing the 
major challenge in OC treatment [4, 5]. Identification of 
nonresponders is an important step toward greater life 
expectancy for OC patients [6]. Meanwhile, the specific 
biomarkers predicting platinum therapy response remain 
obscure, therefore, it is of vital importance to figure out 
the potential indicators, which could aid clinical deci-
sions and improve prognosis.

Nowadays, the rapid development of next-generation 
sequencing (NGS) has revolutionized and renewed how 
we comprehend cancer treatment and promoted the pro-
gress of precision medicine [7]. Increasing evidence has 
authenticated that molecular biomarkers contribute to 
the prognosis evaluation and prediction of tumors [8]. 
Besides, researchers found that rather than conventional 
single-gene biomarkers, gene signatures containing sev-
eral genes can provide stronger evidence to prognosis 
and survival [9]. For example, based on the public data-
base, a six-gene model (TGFBI, SFRP1, COL16A1, THY1, 
PPIB, BGN) was built and serves as an independent 
prognostic biomarker for overall survival [10]. Bi et  al. 
identified eight glycolysis-related prognostic genes that 
effectively predicted survival in ovarian cancer [11]; A 
tumor mutation burden (TMB) associated immune risk 
score signature was built by Cui et al. for TMB and prog-
nosis evaluation [12]; Salinas et al. applied SNP data from 
TCGA to find SNPs associated with chemo-response in 
ovarian cancer [13]; And another study developed and 
validated an immune-related gene signature that was sig-
nificantly associated with survival [14]. Despite encour-
aging developments, no biomarkers for the prediction of 
response to therapy and prognosis are applied into clini-
cal practice yet.

In this study, through bioinformatics data analysis, 
we integrated the gene expression profiles of the tran-
scriptome, single nucleotide polymorphism (SNP), and 
copy number variation (CNV) to identify differentially 
expressed genes (DEGs) firstly. Then a support vec-
tor machine classifier was constructed to distinguish 
patients’ responses to platinum therapy. Next, combined 
with L1-LASSO and Cox-Proportional Hazards regres-
sion, we constructed a prognostic risk model based on 8 
optimum genes to predict prognosis which could mirror 
the prognosis related to platinum response status as well. 

Finally, after the intersection of the classifier and prog-
nostic model, PNLDC1, SLC5A1, and SYNM were iden-
tified as the hub genes related to both platinum response 
and prognosis, which was further verified by IHC analy-
sis. The flowchart of this study was displayed in Fig. 1. In 
summary, the comprehensive analysis of gene expression 
level, SNP and CNV in our study could provide more 
accurate and robust molecular markers for diagnosis, 
prediction and bring new insights into clinical treatment 
strategies for OC patients.

Materials and methods
OC datasets extraction
The OC datasets used in this study were derived from 
TCGA and GEO databases. mRNA-seq expression pro-
file data (platform: Illumina HiSeq 2000 RNA Sequenc-
ing) and SNP, CNV information (platform: Affymetrix 
Genome-Wide Human SNP Array 6.0) were downloaded 
from TCGA. Collectively, 419 OC tumor tissue sam-
ples with expression profiles and 481 samples with SNP 
information were included. After barcode matching, 
230 OC samples possessing clinical platinum response 
status were obtained, comprised of 69 resistant and 161 
sensitive samples respectively, which serve as our train-
ing dataset. As for validation dataset, the gene expression 
profiles of GSE63885(n = 101, platform: GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 
2.0 Array) from the GEO database (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) was acquired, containing a total of 75 
samples having platinum response status, consisting of 
34 resistant and 41sensitive samples, respectively. Both 
the expression profiles and clinical characteristics can be 
obtained publicly, so there was no need to acquire ethics 
committee approval. The abovementioned data were dis-
played in Table 1.

Data preprocessing
For the original gene expression profile FPKM data down-
loaded from TCGA, preprocessCore Version 1.40.0 [15] 
(http://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​
prepr​ocess​Core.​html) in R was used to perform standard-
ization based on the quantiles algorithm. For the SNP 6.0 
chip data, PICNIC software [16] (ftp://​ftp.​sanger.​ac.​uk/​
pub/​cancer) was applied to convert and process the data 
of CEL format to obtain CN segment data. (The segment 
data indicated the copy value in the detection region. Usu-
ally, the segment value of the diploid was 0, implying there 
was no copy number variation, and the other non-zero 
signal indicated the region was missing or amplificated). 
The human gene annotation file (Release 27 (GRCh38.
p10)) from the GENCODE database (http://​www.​genco​
degen​es.​org/​relea​ses/​curre​nt.​html) was extracted and 
gene annotation was employed. And at the same time, the 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://bioconductor.org/packages/release/bioc/html/preprocessCore.html
http://bioconductor.org/packages/release/bioc/html/preprocessCore.html
ftp://ftp.sanger.ac.uk/pub/cancer
ftp://ftp.sanger.ac.uk/pub/cancer
http://www.gencodegenes.org/releases/current.html
http://www.gencodegenes.org/releases/current.html


Page 3 of 15Chen et al. Journal of Ovarian Research           (2022) 15:39 	

oligo package Version 1.42.0 [17] (http://​www.​bioco​nduct​
or.​org/​packa​ges/​relea​se/​bioc/​html) was used to convert to 
the original data of the GSE63885 data set, fill the missing 
data (median method), conduct background correction 
(MAS method) and data standardization (quantiles).

DEGs identification
After normalization, in the light of platinum response 
status, we divide the patients into two groups: chemo-
therapy-sensitive (n = 161) and chemotherapy-resistant 

(n = 69). Differently expressed genes and genes with 
different CN signals were selected based on the ‘limma’ 
package [18]. Significant DEGs were defined as those 
with adjusted P < 0 .05 and |log FC| ≥1. The overlap-
ping genes, that is, genes with significant differences in 
both expression level and CN signal value between the 
resistant and sensitive groups were further screened 
out. Next, only genes containing CN variant sites 
were retained (variant types include SNP, INS, DEL, 
etc.). We used DAVID version6.8 [19] (https://​david.​

Fig. 1  Flowchart of this study

Table 1  Clinicopathological characteristics of patients with OC in this study

Notes: “-”:not know; a T-test; b Fisher test

Variables Training set(N = 230) Validation set(N = 75)

Resistance (N = 69) Sensitive (N = 161) p value Resistance (N = 34) Sensitive (N = 41) p value

Age (years, mean ± sd) 61.77 ± 11.47 58.55 ± 11.32 0.0524a – – –

Neoplasm subdivision (Bilateral/
Left/Right/−)

51/7/7/4 109/27/14/11 0.4066b – – –

Stage (II / III / IV) 1/60/8 10/127/24 0.2167b – – –

Histologic grade (G2/G3/G4/−) 7/60/1/1 25/133/0/3 0.3213b – – –

Lymphatic invasion (Yes/No/−) 17/7/45 35/30/96 0.282b – – –

Recurrence (Yes/No) 61/8 122/5/34 0.06702b – – –

Death (Dead/Alive/−) 58/11 82/79 1.674E-6b 33/1 33/3/5 0.6145b

Overall survival
(months, mean ± sd)

29.71 ± 14.34 48.59 ± 25.33 1.342E-11a 27.01 ± 14.51 51.82 ± 27.97 1.915E-5a

http://www.bioconductor.org/packages/release/bioc/html
http://www.bioconductor.org/packages/release/bioc/html
https://david.ncifcrf.gov/
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ncifc​rf.​gov/) to analyze the DEGs for molecular func-
tion (MF), cellular component (CC), biology proce-
dure (BP) enrichment by studying the Gene Ontology 
(GO) terms. And the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment of DEGs 
was carried out as well. A p-value < 0.05 was set as the 
threshold for significant enrichment. And these genes 
with significantly different CNV expressing were used 
for further analysis.

Construction and validation of the classifier
Selection of best representative gene features using Random 
Forest
We identified the best combination of representative 
genes using a Random Forest machine learning method. 
The Random Forest method is an ensemble algorithm 
comprised of a series of decision trees. Each tree ran-
domly selects several features in the sample zone to make 
a prediction. These predictions will be aggregated, and 
the final prediction will be decided using a voting method 
which refers to the category having the highest votes.

We implemented the Random Forest model using the 
randomForest R package Version 4.6–12 [20] (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​rando​mFore​st/​index.​
html). The model was built on expression levels of genes 
identified in TCGA samples. Details of the algorithm 
were as follows:

	 I.	 We randomly sampled k samples from TCGA sam-
ples with replacement using a bootstrap method to 
construct k regression trees for classification. The 
unselected samples in each round constructed k 
out-of-bag (OOB) sets (k was iteratively set from 1 
to the total number of samples N).

	II.	 For a total number of n features, we randomly 
selected m features at each splitting node of each 
tree and calculated the predicting power of each 
feature. We then exploited the most powerful fea-
ture to assign samples at that node. N was set from 
1 to the total number of variables and m was set to 
the secondary square root of the total number of 
variables.

	III.	 We let each tree grow to the maximum without 
any pruning.

	IV.	 We aggregated all decision trees to construct a 
Random Forest (RF) model. The RF model adopted 
a voting method that defined the category with the 
highest votes as the final classification.

	V.	 We evaluated the RF model using the OOB error 
rate and features of the model with the low-
est OOB error rate were selected as the optimal 
combination.

Development and validation of the SVM classifier
We used the e1071 R package (https://​cran.r-​proje​ct.​
org/​web/​packa​ges/​e1071) to develop an SVM model [21] 
(Support Vector Machine). SVM is a supervised machine 
learning method for classification. Using representative 
features of each sample, the model predicts the possibility 
belonging to a certain category to implement classifica-
tion. We developed the SVM model on the TCGA train-
ing set, using “Sigmoid” as the Kernel and the optimal 
signature genes as features. The parameters were selected 
by 100-fold cross-validation. To test the performance of 
our model, we measured five indicators on a validation 
set GSE63885, including sensitivity, specificity, positive 
prediction value (PPV), negative prediction value (NPV) 
and area under curves (AUC) of the receiver operating 
characteristic curve (ROC) [22]. Calculation methods of 
these indicators are listed below:

Observed

positive negative

Predicted positive A B

negative C D

Sensitivity = A/(A + C); Specificity = D/(B + D); PPV (Positive Predictive Value) = A/
(A + B); NPV (Negative Predictive Value) = D/(D + C)

Construction of the prognostic risk model
Selection of prognostic genes and clinical factors
We performed univariate Cox-PH (proportional hazards) 
regression model to select prognostic genes and clinical 
factors. Based on the expression levels of genes in 2.3 of 
TCGA samples, the model was built by the survival R 
package (Version 2.41–1) [22]. Prognostic genes and clin-
ical factors were identified using P < 0.05 as the threshold 
(log-rank test).

Selection of the optimal genes
Based on expression levels of the prognostic genes iden-
tified prior, we implemented L1-Regularized Cox-PH 
regression analysis on TCGA samples to select the opti-
mal combination of these genes [23]. The model was 
developed using the penalized R package (Version0.9–50, 
http://​bioco​nduct​or.​org/​packa​ges/​penal​ized/) [24]. The 
“lambda” parameter was identified by the 1000 cross-val-
idation likelihood (cvl) method.

Development of a Cox‑PH model using optimal genes
We constructed a prognosis score (PS) using coefficients 
of optimal genes from the Cox-PH regression model. 
Using the median of PS as the threshold, we separate 
training samples into high and low-risk groups. The 
prognostic value of PS was then evaluated by the Kaplan-
Meier survival curve [25] using log-rank test in the train-
ing set and then validated in the GSE63885 dataset.

https://david.ncifcrf.gov/
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/e1071
https://cran.r-project.org/web/packages/e1071
http://bioconductor.org/packages/penalized/
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Hub genes screening and validation
Selection of the hub genes related to platinum therapy 
and prognosis
Further comparison between feature genes comprised 
in SVM classifier and included in the prognostic risk 
prediction model, crucial genes were screened out.

Validation via immunohistochemistry
A total of 80 OC patients from FUSCC who received 
platinum-based chemotherapy after surgery were 
selected randomly, and tissue microarrays composed 
the representative cores from each specimen. Immu-
nohistochemistry proceeded as described before [26]. 
In brief, specimens were incubated first with an anti- 
PNLDC1 antibody (1:2000, Proteintech, China), anti-
SLC5A1 antibody (1:1000, Abcam, UK) or anti-SYNM 
antibody (1:200, Proteintech, China) overnight at 
4 °C and then with a biotinylated secondary antibody 
(1:100, goat anti-rabbit IgG) for 30 min at 37 °C. A well-
established IRS was then used to calculate the protein 
expression level of these three hub genes [27]. Firstly, 
the staining intensity (SI) was scored using a 4-point 
scale from 0 to 3, with 0 if there was no staining. For 
weak, moderate, and strong staining, the scores were 
1, 2 and 3, respectively. Secondly, the percentage of 
positive cells was scored into five categories: no stain-
ing, 1–10, 11–50, 51–80, 81–100 percentage positive 
cells. And the scores were 0, 1, 2, 3 and 4, respectively. 
An IRS was calculated by multiplying the percentage 
of hub genes by the SI score, resulting in a scale from 
0 to 12. The IRS was divided into four groups: 0 (IRS 
0–1), 1 (IRS 2–3), 2 (IRS 4–8) and 3 (IRS 8–12). Then, 
0 and 1 were stratified into low expression group and 2 
and 3 into high expression group and performed sur-
vival analyses. The expression of each hub gene was 
quantified by using an Image-Pro Plus Image Analy-
sis Software and the IOD (Integral optic density) was 
measured as reported previously [28]. To find the opti-
mal cut-off points, the X-tile program was used [29].

Statistical analyses
All statistical analyses in this study were performed by 
R (version 3.4.1). The statistical significance threshold 
was set at 0.05 if not explicitly mentioned. In our study, 
progression-free survival (PFS) is defined as the time 
from operation to relapse or progression, whichever 
occurred first. And patients were divided into platinum-
sensitive and platinum-resistant subgroups according 
to the platinum-free interval (PFI). PFI is defined as the 
time from the end of the first chemotherapy course to 
disease recurrence, and PFI > 6 months was regarded as 

platinum-sensitive, whereas PFI < 6 months was the plat-
inum-resistant group.

Results
Data pre‑processing and DEGs screening
The gene expression profiles obtained from TCGA and 
GEO datasets were firstly normalized and the box dia-
gram before and after standardization was shown in Sup-
plementary Figure 1. Concerning the data of CN signal, 
gene annotation was performed, followed by depicting 
the distribution of chromosomes. And we found that, 
in different samples, but the same sites, the CN signals 
distributed similarly (Fig. 2A). Via Limma package in R, 
1144 DEGs differently expressed (524 downregulated and 
620 upregulated) and 1864 DEGs with diversified CN sig-
nals (727 downregulated and 1137 upregulated) between 
platinum-sensitive and the resistant group were obtained 
from the TCGA database (Fig. 2B and C, Supplementary 
Table 1).

Further analysis uncovered 108 genes as overlapping 
genes in both expression and CN signal levels (Fig.  2D, 
Supplementary Table  2). Integrated with SNP informa-
tion, we found 48 genes had variant sites, including 94 
SNP,1 INS, and 1 DEL (Supplementary Table 3), indicat-
ing they were differentially expressed and had diversified 
CNV signals between platinum-resistant and sensitive 
groups simultaneously. To reveal the biological functions 
of the 48 DEGs, the GO and KEGG enrichment analyses 
conducted by DAVID were employed (Fig. 2E). Regarding 
biological process (BP), the GO analysis results showed 
that the intersecting DEGs were mainly enriched in 
terms related to cell adhesion (Supplementary Table  4). 
As for KEGG pathway analysis, the DEGs were enriched 
in Cell adhesion molecules (Table 2).

Construction and validation of the classifier
To extract the most representative and feature genes in 
these 48 genes, the RandomForest algorithm was per-
formed. And 10 genes were figured out optimally when 
the OOB error is minimum (Fig. 3A). And we found that 
the CNV of the 10 genes were all SNPs, comprising one 
known SNP site in CD209 and 9 unreported SNP sites 
(Table 3).

Based on expression profiles of the above 10 feature 
genes in the TCGA dataset, we constructed an SVM 
classifier to determine the platinum-sensitive and 
resistant samples. It was able to accurately distinguish 
212 out of 230 samples (161 sensitivity vs. 51 resist-
ance), with a precision rate of 92.17% and an average 
AUC of 0.971 (Fig.  3B, solid line). The sensitivity and 
specificity were 1 and 0.839, respectively, and the PPV 
and NPV are 0.899 and 1 as well. To further verify and 
evaluate the predictive effects of this model, GSE63885 
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was used as an independent external validation data-
set. The result of the validation cohort showed that 71 
samples (41sensitivity vs. 30 resistance) out of 75 sam-
ples could be discriminated precisely, and the accuracy 
rate was 94.76% with an AUC of 0.926 (Fig. 3B, dotted 
line). The sensitivity, specificity, PPV, and NPV were 1, 
0.882, 0.899, and 1, respectively. To sum up, this model 
could accurately classify the drug-sensitive samples and 
moderately found the drug-resistant patients, indicat-
ing these 10 genes had strong correlations with drug 
sensitivity. The gene profiles of 10 feature genes in the 
TCGA and GSE638855 datasets were displayed in Sup-
plementary Table 5.

Construction and validation of the prognostic risk model
Univariate cox regression analysis
Combined with the clinical information, the overlap-
ping 48 DEGs were filtered via univariate cox regression 
analysis in the TCGA training cohort to acquire genes 
significantly related to prognosis. Consequently, 34 genes 
were differentially expressed and 29 genes with differ-
ent CN signals were obtained separately (Supplementary 
Table  6). After the intersection, 20 crossed genes were 
left (Fig.  4A). Meanwhile, the clinicopathological fac-
tors related to prognosis identified by univariate analysis 
were merely platinum response status (Table  4). And a 
conspicuous OS difference was noted between sensitive 

Fig. 2  Identification of DEGs. A The CN signal of the TCGA samples. The horizontal axis represents the detection area on each chromosome, 
the vertical axis represents the 230 ovarian cancer samples included in the analysis. 1–22 and X, Y indicates the chromosome number, and blue 
indicates log2 (CN) < 0, while red indicates log2 (CN) level > 0. B Volcano plots of the DEGs in gene expression. C Volcano plots of the DEGs in CN 
signals. D The Venn diagram of the DEGs and 108 genes as overlapping genes in both expression and CN signal levels. E Gene Ontology (GO) 
functional enrichment analysis of the 48 DEGs in the biological process subsection of GO (BP); molecular function subsection of GO (MF); a cellular 
component subsection of GO (CC)

Table 2  DEGs significantly related KEGG pathways

Term Count P Value Genes

hsa04514: Cell adhesion molecules (CAMs) 2 0.021093 CD274, NLGN1

hsa04020: Calcium signaling pathway 2 0.027187 NOS2, CACNA1C

hsa05200: Pathways in cancer 2 0.045151 NOS2, MMP1
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and resistant Kaplan-Meier curve (HR = 0.22, p = 5.55e-
16), reflecting a better survival in the platinum-sensitive 
group (Fig. 4B). It also verified that the genes we screened 
were indeed related to the platinum response status to 
some extent.

Selection of the optimal genes
According to the intersectional 20 genes related to prog-
nosis, the Cox-PH model based on the L1-penalized 
regularized regression algorithm was exploited to fur-
ther select the optimal genes. The maximum value of 
cvl − 771.2244 was obtained when the lambda value is 
20.88803 after 1000 cycles of cvl algorithm calculations 
(Fig.  5A). Under this Circumstance, 8 optimum genes 
were received (Table  5) and the gene prognostic coeffi-
cients are shown in Fig. 5B.

Construction and validation of the prognostic risk model
Based on the Cox-PH prognostic coefficients of the 8 opti-
mized genes, a risk model was constructed by the following 
formula: Prognosis score (PS) = (− 0.42542) × ExpGJA8+ 
(0 .430375)  ×  ExpPNLD C1 +  (−  0 .20707)  ×  Exp 
SLC5A1 + (1.169891) × ExpVSTM2L +(1.195075) × Exp 
CACNA1C +(− 1.64918) × ExpSEZ6L+(0.442726) × Exp
GDF3 + (− 1.78725) × Exp SYNM.

To validate the survival-predicting performance of the 
model, the prognostic score (PS) of each sample was cal-
culated and the median PS was applied as the threshold 
to subdivide the training cohort into a high-risk group 

(HRG) and a low-risk group (LRG). First, in the train-
ing set, the correlation between the model’s predic-
tions and the actual prognosis was evaluated through 
the Kaplan-Meier curve. We discovered that LRG had a 
longer median OS time than HRG. In detail, the median 
OS of HRG (115 samples) was 38.56 ± 21.31 months, 
while the average OS of the LRG (115 samples) was 
47.30 ± 26.11 months (Fig.  5C). And the correlation 
between the groupings predicted by the model and the 
actual survival outcome was significant and consistent 
(p = 9.613e-05). Concurrently, the results of the valida-
tion set GSE63885 saw identical results, showing that 
the average survival time of the HRG (35 samples) was 
33.78 ± 18.33 months, whereas the LRG (35 samples) had 
a longer median OS of 46.11 ± 30.49 months (Fig.  5D). 
Model predictions and actual results had a significant 
correlation (p = 0.04862). The detailed survival informa-
tion of the TCGA and GSE63885 datasets and the PS 
information of the samples were shown in Supplemen-
tary Table 7.

Additionally, to further clarify the correlation between 
the prediction of the prognostic model and the plati-
num response status, subgroup survival analysis divid-
ing into the sensitive and resistant groups was carried 
out (Fig.  5E). On the whole, the prognosis predicted by 
the prognostic model is significantly correlated with the 
prognosis that depends on the platinum response state 
(p = 1.694e-08). Specifically, in the sensitive subgroup, 
the prognosis prediction of the model was remarkably 

Fig. 3  Construction and evaluation of the SVM classifier. A OOB error calculated by the RandomForest algorithm and 10 genes were selected 
optimally when the OOB error is the smallest. B The receiver operating characteristic (ROC) curve (area under the curve (AUC) of the TCGA training 
set (solid line) and GSE63885 validation set (dotted line)
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correlated with the actual survival. It is supposed that 
after being determined by the SVM classifier, patients 
who identified as the sensitive group could accept plati-
num-based chemotherapy continually and the prognostic 
model could foresee the prognosis accurately. Conversely, 
patients who were considered to be resistant could alter 
and optimize therapeutic strategies as early as possible. 
In a nutshell, our model had an important role in differ-
ent ways for the two groups which helped with the clini-
cal decision to some degree.

Identification of hub genes related to platinum response 
and prognosis
To find hub genes, genes used to establish the SVM clas-
sifier and the prognostic model were consolidated, and 3 
intersecting genes named PNLDC1, SLC5A1, and SYNM 

were obtained (Fig. 6A). And we found that, both in train-
ing and validation sets, PNLDC1 was down-regulated in 
the sensitive group while SLC5A1 and SYNM were up-
regulated (Fig. 6B and C; Supplementary Table 8), hence 
we assumed that these 3 genes reflect both platinum 
response status and prognosis, and their CNV informa-
tion is shown in Table 6.

To confirm their relationships with platinum response 
status and prognosis, IHC of 80 patients from the FUSCC 
cohort was applied (Fig. 6D). And in the FUSCC cohort, 
20 patients were resistant to platinum-based therapy and 
the other 60 were in the sensitive group (Supplementary 
Table  9). In line with our former findings, the intensity 
and quantity of PNLDC1’s expression were remarkably 
higher in the resistant group (p = 0.0096), while SLC5A1 
(p = 0.0058) and SYNM (p = 0.0022) were significantly 
amplified in the sensitive patients (Fig.  6E). Since the 

Fig. 4  Survival analysis of the DEGs and clinical factors. A The Venn diagram of DEGs related to prognosis. B The K-M curve of the overall survival of 
the patients with different platinum response statuses

Table 4  Univariate cox regression analysis of clinicopathological characteristics

Variables Univariate analysis

HR 95% CI P value

Age 1.008 0.9929–1.024 0.2972

Platinum response status (Sensitive/Resistant) 0.2168 0.1498–0.3137 5.55E-16

Neoplasm subdivision (Bilateral/Left/Right) 0.8438 0.6318–1.127 0.249

Stage (II / III / IV) 1.052 0.7266–1.524 0.787

Lymphatic invasion (Yes/No) 0.9587 0.5293–1.736 0.889

Histologic grade(G1-G2/G3-G4) 1.272 0.8054–2.009 0.3015

Recurrence (Yes/No) 0.6948 0.3519–1.372 0.2913
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deficient number of events regarding the OS analysis, 
PFS was analyzed instead. X-tile was exploited to find 
the best cut-off points with minimum p values. The K-M 
curve uncovered that those patients with high expres-
sion of PNLDC1 had shorter PFS (Log-rank p = 0.009, 
Fig. 7A). Conversely, survival analysis demonstrated that 

the SLC5A1 and SYNM high group showed adverse out-
comes (Log-rank p < 0.001, Fig. 7B; Log-rank p = 0.0015, 
Fig. 7C). These results further supported that PNLDC1, 
SLC5A1 and SYNM were the hub genes associated with 
the platinum response status and prognosis indicating 
they could be used as potential biomarkers in clinical 
practice.

Discussion
Nowadays, the common treatment regimen for OC con-
sists of tumor debulking, followed by administration of 
platinum-based chemotherapy [30], however, resistance 
to platinum therapy limits therapeutic options, and 
makes platinum-resistant patients the most challeng-
ing to treat. Apart from PFI, regarding as a predictive 
factor to subsequent platinum therapy [31], biomark-
ers reflecting platinum response status are urgently 
needed. Therefore, to begin with, the 230 samples in the 
TCGA database were stratified into the sensitive and 
resistant groups, and through comprehensive analysis 

Fig. 5  Construction and validation of the prognostic risk model. A. Cross-validation likelihood filters the lambda parameter (20.88803) when cvl 
takes the maximum value (− 771.2244). B Based on the L1-penalized regularized regression algorithm, the optimal prognostic gene coefficient 
distribution line for Cox-PH model screening. C Prognostic prediction by the prognostic risk model in the TCGA training dataset. D Prognostic 
prediction by the prognostic risk model in the GSE63885 validation set. E The correlation between the K-M curve of the platinum response status 
and the prognostic model prediction

Table 5  Optimal prognostic-related genes used to construct the 
prognostic risk model

Gene coef Hazard Ratio 95%CI p value

GJA8 −0.42542 0.8324 0.5970–1.1605 0.00068

PNLDC1 0.430375 1.2266 0.9523–1.5799 0.00225

SLC5A1 −0.20707 0.9885 0.8578–1.1391 0.01138

VSTM2L 1.169891 1.1904 1.0645–1.3313 0.01152

CACNA1C 1.195075 2.2235 1.4023–3.5256 0.027923

SEZ6L −1.64918 0.6669 0.4555–0.9763 0.03024

GDF3 0.442726 1.4139 1.0336–1.9340 0.03722

SYNM −1.78725 0.5982 0.4016–0.8912 0.04873
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Fig. 6  Screening and validation of the hub genes. A The intersection of the genes between the SVM classifier and the prognostic risk model. B 
The expression of PNLDC1, SLC5A1, and SYNM in the training TCGA database. C The expression of PNLDC1, SLC5A1, and SYNM in the validation set 
GSE63885. D Representative immunohistochemistry images of PNLDC1, SLC5A1, and SYNM. E The expression of PNLDC1, SLC5A1, and SYNM in the 
FUSCC cohort

Table 6  The CNV information of the 3 hub genes

Gene Variat

Chrom Variant Position Type Variant Classification Amino acids Codons Reference 
Allele

Tumor Allele dbSNP_RS

PNLDC1 6 160,240,313 SNP Silent I/M atC/atG G C novel

SLC5A1 22 32,495,226 SNP Nonsense V gtC/gtT C G novel

SYNM 15 99,672,483 SNP Silent T/R aCg/aGg A G novel

99,669,768 SNP Silent T acC/acT G A novel

99,671,917 SNP Missense R cgG/cgC G C novel

99,672,905 SNP Missense T/N aCc/aAc C G novel

99,653,864 SNP Silent D/E gaT/gaA C T novel

99,672,085 SNP Missense Y/H Tac/Cac G T novel
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from 3 aspects, including gene expression level, CN sig-
nal, and SNP data, we obtained 48 overlapping DEGs. 
Considering a burgeoning number of researches con-
cerning gene signature of tumors show up, which was 
supported by the development of RNA-sequencing and 
microarray, as well as available public databases [14, 
32]. We constructed a classifier via the RandomForest 
algorithm aiming at dividing patients into sensitivity 
and resistance groups. The classifier comprised of 10 
genes (CD209, CD274, HIST1H3I, HIST1H4L, NLGN1, 
NTRK3, PNLDC1, SLC22A3, SLC5A1 and SYNM), and 
its validation in the GEO dataset showed a satisfying 
consistency, which indicating the classifier could differ-
entiate the sensitive group accurately and aid the resist-
ant patients to receive other effective therapy as soon as 
possible.

Liu et  al. used the TCGA dataset to validate a seven 
genes-based model which can predict the survival of 
FIGO stage IIIc serous ovarian carcinoma (HG3cSOC) 
and served as a valuable marker for the response to plat-
inum-based chemotherapy [33], however, they chose 
HG3cSOC to analysis and confined to gene expression 
analysis only; Zhao et al. identified AGGF1 and MFAP4 
as potential predictors of primary platinum-based chem-
oresistance [34], nonetheless, they just focused on the 
gene expression level and lack of experimental-level 
validation, such as immunohistochemistry; Dugo et  al. 
mainly focused on HGSOC patients who received com-
plete cytoreduction (R0) and analyzed focal copy number 
alterations [35]; A qualitative transcriptional signature 
for predicting recurrence risk for high-grade serous ovar-
ian cancer patients was constructed by Liu et  al. [36]; 
Salinas et al. found 19 SNPs were associated with chemo-
response [13]. Although these studies have similarities 
to ours, we conducted a comprehensive analysis from 

diversified levels to figure out the most robust markers 
indicating platinum treatment response and prognosis.

Detailedly, the current treatment of OC could pro-
long the interval between recurrences but does not 
benefit overall survival [37]. In the study, via univari-
ate Cox regression analyses, genes and clinicopatho-
logic parameters related to prognosis were obtained. 
And we found that sensitivity to platinum-based ther-
apy was the only clinical factor that contribute to bet-
ter survival. To make survival predictions, 8 optimum 
genes were applied to establish the prognostic model, 
and we found that upregulation of PNLDC1, VSTM2L, 
CACNA1C, and GDF3 were related to worse clinical 
outcomes, however, high expressions of GJA8, SEZ6L, 
SLC5A1, and SYNM were associated with better prog-
noses. Specifically, PNLDC1, a PARN-like 3′-to-5′ exo-
nuclease located at the membrane of the mitochondria 
in a mouse, is critical to the processing of piRNAs and 
PNLDC1 disrupted in mice would lead to azoospermia 
and male infertility ultimately [38, 39]. Former studies 
pointed that PNLDC1 was related to survival in CRC 
patients [40], and PNLDC1 expressed higher in normal 
colorectal tissues than in cancer tissues [41]. VSTM2L 
could induce adverse survival outcomes in rectal cancer 
[42]. CACNA1C, as a voltage-gated calcium channel, is 
up-regulated in brain tumors, leukemia, breast cancer, 
and other tumors [43] and plays as an oncogene in OC 
tumors [44]. GDF3 is widely accepted as a pluripotency 
marker and expressed in several cancer types such as 
breast carcinoma [45] melanoma [46]. GJA8 is amplified 
in Wilms tumors [47]. SEZ6L plays a role in signal trans-
duction and protein-protein interaction and increases 
in lung cancer [48]. SLC5A1, a member of the GLUT 
family, encodes SGLT1 facilitating glucose transport 
at the basolateral membrane of the cells [49, 50]. Aber-
rant expression of SLC5A1 in different types of human 

Fig. 7  Survival analysis of the hub genes. A PFS analysis of PNLDC1. B PFS analysis of SLC5A1. C PFS analysis of SYNM
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cancers is observed, including ovarian cancer [51], cer-
vical cancer [52], colorectal cancer [53, 54], hepatocel-
lular carcinoma [55],prostate cancer [56]. SYNM is a 
type IV intermediate filament [57], which is supposed 
to modulate biological processes such as cell adhesion, 
cell motility. Reportedly, the silencing of synemin results 
in the suppression of tumor proliferation [58], whereas 
its hypomethylation is associated with aggressiveness in 
breast cancer [59]. Given all these data, the contradic-
tory function of a single gene may ascribe to the “dual 
roles” of genes in different cancers, even in diversified 
stages of one cancer type.

Apart from predicting survival, the potential of prog-
nostic classifiers lies in the ability to recognize patients 
that are more likely to respond to particular therapies 
[60]. Interestingly, in our study, the predictions of the 
prognostic risk model were significantly associated with 
the platinum response status, especially in the sensi-
tive population, indicating the two models we built 
had a prominent correlation and may serve the clinical 
practice.

Finally, we screened out 3 hub genes, namely 
PNLDC1, SLC5A1 and SYNM, and explored their rela-
tionship with platinum therapy response and prognosis. 
The expression level of these genes detected by IHC in 
the FUSCC cohort indicates that PNLDC1 expresses 
higher in the resistant group, whereas overexpression 
of the SLC5A1 and SYNM were detected in the sensi-
tive patients. Despite the insufficient number of events 
in OS analysis, all these 3 genes show significant cor-
relations with PFS. Longer and more detailed follow-
up data is required in further study. To date, the role of 
PNLDC1 and SYNM in OC has not been reported yet, 
and seldom do SLC5A1 as well, indicating they might be 
treated as new potential biomarkers in platinum-based 
chemotherapy and prognosis in OC, even as the thera-
peutic targets to some extent. For example, the devel-
opment of individual SGLT1 inhibitors which target 
SLC5A1 is on the way [61].

Although our study brings new insights into OC treat-
ment and survival, there are limitations to this study. 
Firstly, despite we included two completely independent 
datasets as training and validation cohorts and included 
an IHC cohort to validate our findings, this is a retro-
spective study. Next, the sample sizes in the training 
set, validation set, and IHC cohort were relatively small. 
Larger cohorts are required to prove our findings. Lastly, 
although bioinformatic analysis is a powerful tool for 
exploring potential biomarkers in tumors, further cor-
roboration is needed.

Conclusion
Taken together, based on the public databases, considering 
multiple aspects, we selected the feature DEGs to construct 
the SVM classifier to determine the patients’ responses to 
platinum-based chemotherapy. Meanwhile, a prognostic 
risk model was established to help predict patients’ prog-
noses. And 3 hub genes, PNLDC1, SLC5A1 and SYNM, 
related to the platinum therapy response and prognosis 
were screened out, which could be used as new biomarkers 
in OC treatment.
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