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a b s t r a c t 

Childhood asthma is one of the most common respiratory diseases with rising mortality and morbidity. The 

multi-omics data is providing a new chance to explore collaborative biomarkers and corresponding diagnostic 

models of childhood asthma. To capture the nonlinear association of multi-omics data and improve interpretabil- 

ity of diagnostic model, we proposed a novel deep association model (DAM) and corresponding efficient analysis 

framework. First, the Deep Subspace Reconstruction was used to fuse the omics data and diagnostic information, 

thereby correcting the distribution of the original omics data and reducing the influence of unnecessary data 

noises. Second, the Joint Deep Semi-Negative Matrix Factorization was applied to identify different latent sample 

patterns and extract biomarkers from different omics data levels. Third, our newly proposed Deep Orthogonal 

Canonical Correlation Analysis can rank features in the collaborative module, which are able to construct the 

diagnostic model considering nonlinear correlation between different omics data levels. Using DAM, we deeply 

analyzed the transcriptome and methylation data of childhood asthma. The effectiveness of DAM is verified from 

the perspectives of algorithm performance and biological significance on the independent test dataset, by ablation 

experiment and comparison with many baseline methods from clinical and biological studies. The DAM-induced 

diagnostic model can achieve a prediction AUC of 0.912, which is higher than that of many other alternative 

methods. Meanwhile, relevant pathways and biomarkers of childhood asthma are also recognized to be collec- 

tively altered on the gene expression and methylation levels. As an interpretable machine learning approach, 

DAM simultaneously considers the non-linear associations among samples and those among biological features, 

which should help explore interpretative biomarker candidates and efficient diagnostic models from multi-omics 

data analysis for human complex diseases. 

1

 

e  

h  

c  

v  

f  

t

 

s  

p  

s  

f  

t  

b  

e  

s  

I  

m  

F  

i  

h

2

B

. Introduction 

Childhood asthma is a severe and heterogeneous inflammatory dis-

ase whose pathogenesis remains unclear, although some researches

ave shown that complex inflammatory pathways are associated with

hildhood asthma [1] . Recently, the increasing multi-omics data pro-

ide a new chance to investigate the pathogenesis of childhood asthma

rom a collaborative perspective, which should help explore interpreta-

ive biomarker candidates and efficient diagnostic models. 

Previously, Soliai et al. assessed transcriptional and epigenetic re-

ponses to rhinovirus (an asthma-promoting pathogen) based on an up-
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er airway epithelial cell culture model, and provided specific tran-

criptional and epigenetic response mechanisms for explaining variants

ound in asthmatic GWASs annotation [2] . Forno et al. identified several

op-ranked IL5RA SNPs associated with transcriptional factors of asthma

y logistic regression models on childhood asthma omics data [3] . How-

ver, these analyses assumed a linear relationship between the data

amples and could not completely capture the rich prior information.

ndeed, suitable prior information can improve analysis model’s perfor-

ance to a certain extent and guide biologically meaningful discovery.

or example, Zhang et al. fused the relationship matrix of data samples

nto the association analysis by network regularization and verified such
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trategy’s effectiveness [4] . Besides, the weighted gene co-expression

etwork analysis (WGCNA) aggregated gene and metabolite signatures

nto multiple co-expression modules and found asthma-associated genes

n different gene modules [5] , but this analysis obviously cannot de-

ect nonlinear associations between different omics data (e.g. genes and

etabolites). 

For efficiently integrating disease-related multi-omics and clinical

ata by considering diverse correlation information among samples and

hat among molecules/features, various computational schemes have

een developed [6–8] . Especially, the integration method based on the

on-negative Matrix Factorization (NMF) technique has attracted wide

ttention due to its low time complexity and strong interpretability ad-

antages. Zhang et al. proposed the Joint Non-negative Matrix Factor-

zation (JNMF) algorithm to integrate cancer-related multi-omics data

9] ; however, the JNMF algorithm adopts a strategy of random initial-

zation of parameters, resulting in non-uniqueness in solving the ob-

ective function and making it sensitive to data noise, which affects

he stability of the results. Deng et al. further proposed a Joint Sparse

etwork-Regularization Multiple NMF (JSNMNMF) algorithm to con-

truct a ceRNA network and other variant models [ 10 , 11 ], which in-

orporates various prior information [12] . Wang et al. further incor-

orated more network regularization constraints into the algorithm

nd applied it to ceRNA network construction, revealing the interac-

ion of three cancer-related RNAs [13] . Wei et al. proposed a Joint

onnectivity-Negative Matrix Factorization (JCB-SNMF) algorithm to

earch for Alzheimer’s disease-related biomarkers, by introducing con-

ectivity information from imaging and genetic data into JNMF model

14] . However, these models they proposed assume a linear relation-

hip between the omics data and would underestimate the nonlinear

elationship. By contrast, Diego Salazar et al. proposed a Kernel Joint

on-negative Matrix Factorization, which integrated the factorization

f the original matrices into a high-dimensional space and obtained bet-

er clustering and interpretation results than JNMF [15] . Sehwan Moon

t al. proposed a Joint Deep Semi-Nonnegative Matrix Factorization

JDSNMF) algorithm and applied it to various multi-omics integration

asks, achieving improved algorithmic performance and biological re-

ults [16] . However, these methods do not make full use of available

iagnostic information. 

In addition, the above work generally conducted an overall analy-

is and could not efficiently evaluate the element/feature importance so

s to reduce the model interpretability. Canonical correlation analysis

CCA) would be an effective method for conducting multivariate cor-

elation analysis on a group of features. Most CCA-based methods are

nsupervised and require a separate downstream analysis of diagnos-

ic groups [ 17 , 18 ]. CCA based on assumptions within linear association

ay not be able to explain the implicit nonlinear associations. Although

 few CCA variants based on kernel methods, e.g. KCCA [19] and grad

CCA [20] have been proposed to use kernel function for non-linearly

ata transformation, the limited kernel choices and parameter optimiza-

ion are still not satisfactory enough. 

Inspired by these computational questions and analysis issues, we

im to simultaneously identify nonlinear associations between multi-

mics data and combine diagnostic information within such integrative

nalysis, which can help reduce the influence of unnecessary data sig-

als/noises and provide an interpretable diagnostic model. In this work,

e designed and implemented an interpretable machine learning ap-

roach, i.e. deep association model (DAM), and applied it to integrate

ranscriptome and DNA methylation data of childhood asthma. DAM

ncludes three main steps: (i) the deep subspace reconstruction (DSR),

hich considers the clinical diagnosis information of patients as a pri-

ri information to correct the data distribution, enhancing clinical signal

nd reducing noisy signal; (ii) the deep joint NMF inference (JDSNMF),

hich performs deep correlation analysis on different omics datasets,

dentifying their potential nonlinear relationship within collaborative

odules and discriminating candidate biomarkers; (iii) a new deep or-

hogonal canonical correlation analysis (DOCCA), which performs mul-
739
ivariate correlation analysis between reconstructed elements (e.g. gene

nd methylation loci) in the collaborative module, providing the top-

anked features to construct a robust diagnostic model based on multi-

mics signatures. 

Using DAM, we deeply analyzed the transcriptome and methylation

ata of childhood asthma as a detailed case study. First, the effectiveness

f DAM is verified from the perspectives of algorithm performance and

iological significance on both the train and test datasets, by wide ab-

ation experiments and comparison with many baseline methods. Then,

fter efficient learning of DER and JDSNMF, the prediction AUC of DAM-

nduced diagnostic model with logistic regression can achieve 0.912,

hich is larger than those of many other alternative methods. Next, rel-

vant pathways and biomarkers of childhood asthma are recognized by

OCCA to be collectively altered on the gene expression and methyla-

ion levels, which are also assessed on test data and independent data.

ollectively, DAM should be effective for multi-omics data analysis, si-

ultaneously providing discriminative molecular features and nonlin-

ar biological correlations/explanations for deeply understanding hu-

an complex diseases. 

. Methods 

.1. Deep association model 

.1.1. Deep subspace reconstruction with prior information integration for 

leaned data 

Previous studies have confirmed that prior information can improve

he association analysis performance of multi-omics integration models

nd algorithms. However, most multi-omics integration schemes used

arious penalty terms directly on original data with technical and bi-

logical noise, resulting in the estimation bias during integration [21] .

herefore, considering the multi-subspace structure at the bottom of the

ata, DAM is first to integrate the subjects/samples’ diagnostic infor-

ation into the original data by deep subspace reconstruction (DSR).

pecifically, DSR applies the self-expressive nature of the data; and it

uarantees that the samples with the same diagnosis labels will gather

n the same subspace and the samples with different diagnosis labels

hould distribute in different subspaces. 

Obviously, applying self-expressivity directly to original data would

gnore nonlinear relationships among data points/samples. By contrast,

SR first makes the original data go through a multi-layer feed-forward

eural network to perform a nonlinear transformation on the original

ata and then reconstructs the embedding data in the subspace at the

utput layer of the network. On the training/discovery data, DSR com-

ines the transcriptome matrix X1 ∈ RN × p , and DNA methylation ma-

rix X2 ∈ RN × q , and the diagnostic labels of samples as input of multi-

ayer feed-forward neural network, where N , p , and q are the number of

amples, transcriptome genes, and DNA methylation sites/loci, respec-

ively. The clean data after non-linearly transformation is output at the

utput layer, along which the subspace is iteratively calculated. 

Briefly, the subspace reconstruction of X1 = [x1 , x2 , …xi , … , xN ]
s used as an example to illustrate the detailed calculation. First

roup X1 by label, i.e. X1 = [x(1) 1 , x(1) 2 , ⋯ , x(1) N1 
, … , x(2) 1 , x(2) 2 , ⋯ , x(2) N2 

] ,

here x(1) i (i = 1 , 2 , .., N ) represents the first label of the

rst class i − th samples. Let x(1) i = h(0)(1) i ∈ Rp , set θ =
{W(m) , b(m) , C ,m = 1 ∶ M , i = 1 ∶ N } is the hyperparameter in the

eedforward neural network, where m represents the current number of

ayers in the network, and the output of the i𝑡ℎ sample of the first-class

abel of the m𝑡ℎ layer is defined as follows: 

( m) ( 1) 
i = G 

(
W( m) h( m−1 ) ( 1) 

i + b( m) 
)

(1) 

Given dm represents the dimension of the m𝑡ℎ layer of the neural

etwork, W(m) ∈ Rdm × dm−1 and b(m) ∈ Rdm represent the weight ma-

rix and bias matrix of this layer, respectively. The output of the last

ayer is H(M)(1) = [h(M)(1) 
1 , h(M)(1) 

2 , ⋯ , h(M)(1) 
N1 

, … , h(M)(2) 
1 , h(M)(2) 

2 , ⋯ , h(M)(2) 
N2 

] ,
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nd then apply the nonlinearly transformed output layer data to perform

he subspace reconstruction. Among them, h(M)(1) 
i represents the i𝑡ℎ sam-

le in the first class after the nonlinear transformation of the multi-layer

eural network. The following is the objective function of reconstruct-

ng the i𝑡ℎ sample of the d𝑡ℎ class label with the samples of the same class:

min 
 W( m) , b( m) } M m = 1 , C

( d) 
i 

1 
2 

Nd ∑
𝑖 =1 

∥ h( M) ( d) 
i − C( d) 

i H
( M) ( d) ∥2 F +λ ∥ C( d) 

i ∥1 (2)

Among them, C(d) 
i is the vector composed of the self-expression co-

fficients of the i𝑡ℎ nonlinearly transformed sample of the d𝑡ℎ class la-

el. Then, the process of updating W(m) , b(m) and C(d) 
i is carried out as

ection 1.1 in the supplementary material. Finally, the self-expression

oefficient matrix C of all samples can be expressed as 

 =
[
C( 1) 
1 , … , C( 2) 

N2 

]
+

[
C( 1) 
1 , … , C( 2) 

N2 

]T 
(3) 

C has a block structure, which can reflect the similarity structure

f the cleaned data by reconstructing the original data with schematic

iagram shown in Fig. S1 in supplementary material. 

Finally, the cleaned multi-omics data from DSR is subsequently a

ew data matrix as follows: (
Xi 
)

= Ci Xi ( i = 1 , 2 ) (4) 

C1 and C2 represent the self-expression coefficient matrix of two

raining datasets X1 and X2 , respectively. Thus, f (X1 ) and f (X2 ) are the

econstruction matrices from DSR. In the execution process of the DSR

lgorithm, the integration of diagnostic label information is mainly man-

fested in the following aspects. 

When learning the self-expression matrix, the learning process of the

elf-expression matrix takes into account label information. Specifically,

hrough Eq. 2 , for each sample, the model uses data and label informa-

ion from other samples to learn the self-expression matrix. Thus, the

elf-expression matrix is not only used for data reconstruction but also

akes into account the label relationships between samples. In the pro-

ess of data reconstruction, the learned self-expression matrix is used

o reconstruct the original data. In addition to label information, our

odel also takes into account the similarity and correlation between

amples. The weight matrix 𝑊 in the self-expression matrix is used to

apture relationships between samples, including label information. The

SR is capable of reducing noise in raw data, improving the perfor-

ance of subsequent algorithms while discovering more robust diag-

ostic biomarkers. A detailed explanation of this aspect can be further

ound in Section 1.2 of the supplementary material. 

The difference between DSR and traditional classification or regres-

ion models is that DSR can learn hidden representation of samples be-

ore predicting labels. In fact, a representation is learned that preserves

he features of the original data as much as possible, taking into ac-

ount the label information. This learned representation can be used

or subsequent tasks such as classification or regression. Unlike tradi-

ional models that are trained directly based on original data and labels,

SR emphasizes the incorporating self-expression relationship of sam-

les during the representation learning process. This makes DSR more

exible and can better capture the inherent structure of the data. 

.1.2. Joint deep semi-nonnegative matrix factorization with nonlinear 

eature correlation extraction for collaborative module 

Based on the above adjusted multi-omics data, Joint Deep Semi-

onnegative Matrix Factorization (JDSNMF) is then carried out accord-

ng to the principle of multilayer NMF and nonlinear manifolds [16] . 

JDSNMF decomposes different cleaned omics data into a common

ample latent matrix and multiple feature latent matrices, where the

onlinear feature association analysis is achieved by layer-by-layer di-

ensionality reduction of the feature latent matrix and nonlinear trans-

ormation during dimensionality reduction by a layer-by-layer activa-

ion function. The objective function of JDSNMF is shown as follows:
740
min 
2 ∑

𝑖 =1 

‖‖‖𝑓
(
𝑋𝑖 

)
− 𝑈𝐻𝑖 0 

‖‖‖2 𝐹 + 𝜆‖𝑆‖𝐹 

𝑠.𝑡.𝐻𝑖𝑜 = 𝑠

(
𝑍𝑖𝑛 

𝑠

(
𝑍𝑖2 

...𝐻𝑖𝑁−1 

))
𝐻𝑖𝑛 −1 

= 𝑠

(
𝑍𝑖𝑛 

𝐻𝑖𝑛 

)
, 𝐻𝑖𝑁−1 

≥ 0 , 

𝑆 ∈
{ 

𝑈 , 𝑍𝑖 =1 
‖‖‖𝑓

(
𝑋𝑖 

)
− 𝑈𝐻𝑖 0 

‖‖‖2 𝐹 + 𝜆‖𝑆‖𝐹 

} 

(5) 

Among them, U ∈ ℝn ×k0 is the sample latent matrix; Hi0 ∈ ℝk0 ×pi 

s the feature latent matrix produced at the first layer; Hin ∈ ℝkn ×pi 

s the feature latent matrix produced at the (n + 1 ) th sub-layer; Zn ∈
ℝkn−1 ×kn is the junction latent matrix; N is the number of layers of the

etwork. S is the set of decomposition terms. ∥ ⋅∥F is the Frobenius norm.

n the JDSNMF, 𝑘0 < 𝑘𝑖 < 𝑘𝑖 +1 < 𝑘𝑛 < min {n , pi } need to be satisfied.

nd the nonlinear decomposition of 𝐻𝑖0 
adopts the sigmoid activation

unction as follows: 

( x) = 1 
1 + e−x 

(6) 

Through JDSNMF, the final U , H10 , and H20 can be obtained. The

leaned data matrices (e.g., gene expression matrix f (X1 ) and DNA

ethylation matrix f (X2 ) ) might share a sample latent matrix U , which

an be regarded as the common feature basis matrix for samples and

ach feature basis indicates a collaborative module across a group of

amples. Meanwhile, H10 and H20 would represent the decomposed fea-

ure coefficient matrices respectively, indicating the potential relation

etween feature basis (e.g. hidden sample representation) and original

eatures (e.g. genes or methylation loci). 

To further determine the salient (original) features corresponding to

ach feature base of U , a z-score is applied to extract the coefficients of

ach feature coefficient vector of each feature coeff icient matrix. It is de-

ned as Zij =
hij −μj 
σj 

, where hij refers to the feature coefficient element, μj 
s the mean of feature coefficients of feature base j , and σj refers to the

tandard deviation of these feature coefficients. For each original fea-

ure, if its z -score is greater than a threshold T (e.g., 2), it is considered

o be a salient feature for one feature base. The whole salient features

or each feature base consist of a collaborative module. 

.1.3. Deep orthogonal constrained canonical correlation analysis with 

alient feature ranking for diagnostic model 

For each collaborative module, a Deep Orthogonal Constrained

anonical Correlation Analysis (DOCCA) algorithm was developed to

educe the influence of the colinearity of salient features on the feature

anking and selection for building diagnostic model, by the orthogonal

onstraint on weight vectors of CCA. The input data of DOCCA should

e the cleaned data corresponding to one collaborative module, and the

bjective function of DOCCA is as follows: 

in 𝑢,𝑣 − 𝑢T f
(
X[ K] 
1 

)T (
X[ k] 
2 

)
v+ 𝜆1 ‖uuT − I ‖2 2 + λ2 ‖VVT − I ‖2 2 

𝑠.𝑡 ‖f(𝑋
[ K] 
1 

)
u ‖2 2 = 1 , ‖f(X[ k] 

2 

)
v ‖2 2 = 1 (7) 

Among them, f (X[k] 
1 ) ∈ ℝn ×p[k] is the cleaned gene expression sub-

atrix for collaborative module k , p[k] represents the gene in module

 quantity. f (X[k] 
2 ) ∈ ℝn ×qk is the cleaned methylation expression sub-

atrix for the same module, and qk represents the number of methyla-

ion loci in module k. u ∈ ℝpk × 1 and v ∈ ℝqk × 1 represent CCA weight

ectors for genes and methylation, respectively. I is the identity matrix,

nd λ1 and λ2 are hyperparameters used to control the strength of u and

 sparsity constraints, respectively. Especially, above objective function

an be re-presented as the following formula: 

in 𝑢,𝑣 ‖𝑓

(
𝑋

[ 𝐾] 
1 

)
𝑢 − 𝑓

(
𝑋

[ 𝑘] 
2 

)
𝑣 ‖2 2 + 𝜆1 ‖𝑢𝑢𝑇 − 𝐼‖2 2 + 𝜆2 ‖𝑣𝑣𝑇 − 𝐼‖2 2 

𝑠.𝑡. ‖𝑓

(
𝑋

[ 𝐾] 
1 

)
𝑢 ‖2 2 = 1 , ‖𝑓

(
𝑋

[ 𝑘] 
2 

)
𝑣 ‖2 2 (8) 
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Obviously, this objective function can be optimized by alternately

teratively updating u and v using the Lagrange operator: 

( 𝑢, 𝑣 ) = 

‖‖‖‖𝑓
(
𝑋𝑘 

1 
)
𝑢 − 𝑓

(
𝑋

[ 𝑘] 
2 

)
𝑣 
‖‖‖‖2 2 + 𝜆1 

‖‖‖𝑢𝑢𝑇 − 𝐼 
‖‖‖2 2 + 𝜆2 

‖‖‖𝑣𝑣𝑇 − 𝐼 
‖‖‖2 2 

+ 𝛾1 

( ‖‖‖‖𝑓

(
𝑋

[ 𝑘] 
1 

)
𝑢 
‖‖‖‖2 2 − 1 

) 

+ 𝛾2 

( ‖‖‖‖𝑓

(
𝑋

[ 𝑘] 
2 

)
𝑣 
‖‖‖‖2 2 − 1 

) 

(9) 

First considering v as a constant term, fix v to solve u , and L(u , v )
akes the derivative of u and sets it as 0. 

f
(
X[ k] 
1 

)T 
f
(
X[ k] 
2 

)
v + 2λ1 (uuT − I )u + 

(
1 + γu 

)
f
(
X[ k] 
1 

)T 
f
(
X[ k] 
1 

)
u = 0 

(10) 

Then the iterative formula of u can be obtained: 

 =
( 

2λ1 (uuT − I )u +
(
1 + γ1 

)
f
(
X[ k] 
1 

)T 
f
(
X[ k] 
1 

)) −1 
f
(
X[ k] 
1 

)T 
f
(
X[ k] 
2 

)
v

(11) 

In the same way, the iterative formula of v can be obtained: 

 =
( 

2λ2 (vvT − I )v +
(
1 + γ2 

)
f
(
X[ k] 
2 

)T 
f
(
X[ k] 
2 

)) −1 
f
(
X[ k] 
2 

)T 
f
(
X[ k] 
1 

)
u

(12) 

.2. Evaluation and case study 

.2.1. Dataset 

In this work, the childhood asthma datasets were used for model and

lgorithm evaluation and deep case study, which were downloaded from

he GEO database [22] . The gene expression profiling dataset GSE40732

nd DNA methylation expression profiling dataset GSE40576 [23] of

he same samples from children with asthma were collected. The sam-

les of the two datasets were DNA/RNA of peripheral blood mononu-

lear cells (PBMCs) from inner-city 6–12-year-old children, which were

sed to compare gene expression and methylation patterns in children

ith persistent atop-rankedic asthma and healthy controls. There was

otal 194 samples, including 97 normal samples and 97 correspond-

ngly matched diseased samples. The data platform of GSE40732 is

PL16025 (NimbleGen Homo sapiens Expression Array). The data plat-

orm of GSE40576 is GPL13534 (Illumina HumanMethylation450 Bead-

hip). Dataset probe name annotations all use the chip GPL platform file.

e have also collected two gene expression profile datasets (GSE27011

nd GSE40888) as external test sets. The GSE27011 dataset comprises

amples of DNA/RNA from white blood cells of children in the asthma

nd healthy control groups, including 18 healthy control samples and 36

sthma samples. The GSE40888 dataset includes samples of DNA/RNA

rom children’s PBMCs recruited by the Munich Clinical Asthma Re-

earch Association during visits to asthma clinics from January 2009 to

uly 2014, consisting of 40 healthy control samples and 65 asthma sam-

les. The platforms for both datasets are GPL6244 (Affymetrix Human

ene 1.0 ST Array). The GSE109446 dataset comprises samples from

he nasal epithelial cells of children at the Cincinnati Children’s Hospi-

al Medical Center, including 29 healthy control samples and 29 asthma

amples. The platform for this dataset is GPL13534 (Illumina Human-

ethylation450 BeadChip). All data samples in datasets were included

n subsequent analysis after pre-procession. 

.2.2. Setting of model and algorithm evaluation 

The original datasets were divided as training/discovery and

est/validation datasets independently. The training and test samples in

 ratio of about 8:2, and the proportion of asthma and control samples

ere kept the same in the training and test datasets. 

(i) The Limma package was used to perform differential expression

nalysis of gene expression and DNA methylation profiles in the training

ataset, respectively. 
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(ii) The DSR was applied to obtain cleaned training data matrices by

ncorporating the sample diagnostic information. 

(iii) The JDSNMF was carried out to extract collaborative modules

nd corresponding salient gene or methylation features, and two per-

ormance measurements were adopted in the parameter selection. One

s the Pearson correlation coefficient (PCC) between the original and

econstructed matrices of the two datasets as a recovery indicator: 

 𝐶 𝐶

(
𝑋𝑖 , 𝑈𝐻𝑖0 

)
=

𝐸

((
𝑋𝑖 − 𝜇𝑋𝑖 

)(
𝑈𝐻𝑖0 

− 𝜇𝑈𝐻𝑖0 

))
√ 

𝐸

( (
𝑋𝑖 − 𝜇𝑋𝑖 

)2 
) 

√ 

𝐸

( (
𝑈𝐻𝑖0 

− 𝜇𝑈𝐻𝑖0 

)2 
) 

(13)

Among them, 𝐸 represents the expectation, and 𝜇𝑋𝑖 
represents the

ean values. Two is the reconstruction error for measuring the algo-

ithm’s performance, as follows: 

𝑒𝑙𝑎𝑡𝑖𝑣𝑒 − 𝑒𝑟𝑟𝑜𝑟 = 

( 1∕ 𝑁 ∗ 𝑝 ) 
∑

𝑖𝑗 

|||(𝑋1 
)
𝑖𝑗 

(
𝑈𝐻10 

)
𝑖𝑗 

|||
1∕ 𝑁 ∗ 𝑝

∑
𝑖𝑗 

(
𝑈𝐻10 

)
𝑖𝑗 

+
1∕ 𝑁 ∗ 𝑞

∑
𝑖𝑗 

|||(𝑋2 
)
𝑖𝑗 
−
(
𝑈𝐻20 

)
𝑖𝑗 

|||
1∕ 𝑁 ∗ 𝑞

∑
𝑖𝑗 

(
𝑋2 

)
𝑖𝑗 

𝑎 (14) 

(iv) The escape rate is also used as an evaluation indicator for col-

aborative module selection. Suppose there are 𝑚 candidate modules in

otal. When calculating the escape rate for the 𝑛𝑡ℎ (0 < 𝑛 ≤ 𝑚 ) mod-

le, the escape rate is defined as the ratio of elements in the 𝑛𝑡ℎ module

hat do not overlap with other 𝑚 − 1 modules to the total number of

lements in the 𝑛𝑡ℎ module. The smaller the escape rate, the more the

ntersection between the representative modules, and the more repre-

entative the common elements contained. 

(v) Ten-fold cross-validation was performed on the training dataset

ith feature ranking by a grid search strategy to select the best param-

ters for the classifier. Such validation was repeated ten times with dif-

erent random seeds fixed, and the area under the receiver operating

haracteristic curve (AUC) was calculated for each classification model.

he average AUC of ten times was taken as the final classification per-

ormance, and the standard deviation of AUC of ten times was also cal-

ulated for assessing the stability of classification modeling. 

Then, four main compared algorithms as baselines were briefly in-

roduced, with their objective functions and parameter settings. 

(i) The JNMF algorithm is a common multi-omics data integration

lgorithm, and its objective function is as follows: 

2 

𝑖 =1 
||𝑓(𝑋𝑖 

)
− 𝑊 𝐻𝑖 ||2 𝐹 𝑆.𝑡.𝑊 ≤ 0 , 𝐻𝑖 ≤ 0 (15)

(ii) The JCB-SNMF algorithm made some improvements based on the

NMF algorithm, by adding the Frobenius norm constraints on 𝑊 and

𝑖 and the Laplacian constraint terms on the coefficient matrix, whose

bjective function is as follows: 

2 ∑
𝑖 =1 

||𝑓(𝑋𝑖 

)
− 𝑊 𝐻𝑖 ||2 𝐹 − 𝜆1 𝑇 𝑟

(
𝐻1 𝐴1 𝐻

𝑇 
1 
)
− 𝜆2 𝑇 𝑟

(
𝐻2 𝐴2 𝐻

𝑇 
2 
)

+
(
𝐻1 𝐵𝐻𝑇 

2 
)
+ 𝛾1 ||𝑊 ||2 

𝐹 
+ 𝛾2 

( 2 ∑
𝑖 =1 

𝐻2 
𝑖𝐹 

) 

𝑠.𝑡. ⋅ 𝑊 

≤ 0 , 𝐻𝑖 ≤ 0 (16) 

Among them, A1 or A2 are matrices composed of the absolute values

f the PCC of 𝑋1 or 𝑋2 , B is a matrix composed of the absolute values

f the PCC between 𝑋1 and 𝑋2 , and 𝛾2 is used to control the degree of

onstraint of the orthogonal constraint. 

 =
⎡ ⎢ ⎢ ⎢ ⎣ 
||𝑟11 || ⋯ 

|||𝑟1 𝑝 |||
⋮ ⋱ ⋮ |||𝑟𝑞1 
||| ⋯ 

|||𝑟𝑝𝑞 
|||
⎤ ⎥ ⎥ ⎥ ⎦ (17) 
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Among them, | ⋅ | represents the absolute value of ⋅. 𝑟ij represents

he vector corresponding to the 𝑖𝑡ℎ feature of 𝑋1 𝑖 . 𝑋1 𝑖 can be expressed

s (𝑥1 𝑖 , 𝑥12 ,𝑖 , ⋅ ⋅ ⋅, 𝑥1𝑛𝑖 
) and the vector corresponding to the 𝑗𝑡ℎ feature of

2 𝑖 . 𝑋2 𝑖 can be expressed as (𝑥1 𝑖 , 𝑥12 ,𝑖 , ⋅ ⋅ ⋅, 𝑥2𝑛𝑖 
) , then rij can be expressed

s 𝑃 𝐶 𝐶 (𝑋1 ,𝑖 , 𝑋2 .𝑗 ) . In addition, A1 and A2 represent the connectivity

atrices of 𝑋1 and 𝑋2 , respectively, which can be used to explore the

tructural correlation between features within the same data. Taking 𝐴1 
s an example, 𝐴1 = 𝐷1 − 𝐶1 . 𝐶1 can be obtained by calculating the

earson correlation between any two features of 𝑋1 . 𝐷1 is a diagonal

atrix, and its 𝑖𝑡ℎ diagonal element represents the sum of the 𝑖𝑡ℎ row

lements of the connectivity matrix 𝐶1 . 

(iii) In addition to using the Pearson correlation coefficient matrix

s prior information, the MDJNMF algorithm also adds orthogonal con-

traints to the coefficient matrix to prevent redundant features from

heir negative influence on the analysis results. The objective function

f the MDJNMF algorithm is shown below: 

2 ∑
𝑖 =1 

‖‖‖𝑓
(
𝑋𝑖 

)
− 𝑊 𝐻1 

‖‖‖2 𝐹 − 𝜆1 
‖‖‖𝐻1 𝐻

𝑇 
1 − 𝐼 

‖‖‖2 𝐹 − 𝜆2 
‖‖‖𝐻2 𝐻

𝑇 
2 − 𝐼 

‖‖‖2 𝐹 
+βTr 

(
𝐻1 B 𝐻𝑇 

2 
)
+ 𝛾1 ‖𝑊 ‖2 

𝐹 
+ 𝛾2 

( 2 ∑
i=1 

‖‖𝐻𝑖 
‖‖2 𝐹 

) 

𝑠.𝑡.𝑊 

≥ 0 , 𝐻𝑖 ≥ 0 𝑠.𝑡. 𝑊 ≥ 0 , 𝐻𝑖 ≥ 0 (18) 

here 𝛼 is used to control the strength of the orthogonal constraint. 

(iv) Based on the MDJNMF algorithm, the NSOJNMF algorithm si-

ultaneously embeds the absolute values of PCC between different

odal data and the same modality. The NSOJNMF algorithm was used

o construct the ceRNA network of liver cancer patients, and its con-

traint term needed to use the interaction information between different

NAs. Therefore, the Laplace matrix and Pearson correlation coefficient

atrix mentioned in the MDJNMF and JCB-SNMF algorithms could be

sed instead. The objective function of the NSOJNMF algorithm is as

ollows: 

min 
2 ∑

𝑖 =1 

‖‖‖𝑓
(
𝑋𝑖 

)
− 𝑊 𝐻𝑖 

‖‖‖2 𝐹 + 𝛼

2 ∑
𝑖 =1 

‖‖‖𝐻𝑖 𝐻
𝑇 
𝑖 
− 𝐼 

‖‖‖2 𝐹 − 𝜆1 

2 ∑
𝑖 =1 

𝑇 𝑟
(
𝐻𝑖 𝐴𝑖 𝐻

𝑇 
𝑖 

)
−𝜆2 𝑇 𝑟

(
𝐻1 𝐵𝐻𝑇 

2 
)
+ 𝛾

2 ∑
𝑖 =1 

‖‖𝐻𝑖 
‖‖1 𝑠.𝑡.𝑤 ≥ 0 (19) 

Among them, 𝜆1 and 𝜆2 respectively control the degree of the con-

traint of the absolute value of PCC in the same mode and different

odes. A𝑖 is the PCC matrix of co-modal data. 

For selecting the number 𝐾 of co-expression modules, all algorithms

ere adopted the consistent method with the JDSNMF algorithm under

iven parameter setting: for the JCB-SNMF algorithm, 𝜆1 = 𝜆2 = 𝛾1 = 𝛾2 =
= 0 . 01 ; for the MDJNMF algorithm, 𝜆1 = 𝜆2 = 𝛾1 = β = 0 . 01 , 𝛾2 = 10 ; for

he NSOJNMF algorithm, 𝛼 = 10 , 𝜆1 = 𝜆2 = 𝛾 = 0 . 01 . 
Finally, the DOCCA was applied to assign feature weights for rank-

ng the salient features in given collaborative module, which was also

ompared with typical CCA, KCCA, and gradKCCA, whose input was the

ame DSR-reconstructed data for given collaborative module and output

he corresponding canonical correlation coefficients. 

(i) Again, the objective function of typical CCA algorithm is as fol-

ows: 

in 𝑢,𝑣 − 𝑢𝑇 𝑓
(
𝑋𝑘 

1 
)𝑇 

𝑓

(
𝑋

[ 𝑘] 
2 

)
𝑣𝑠.𝑡.

‖‖‖𝑓
(
𝑋31 

1 
)
𝑢 
‖‖‖2 2 = 1 , ‖‖‖𝑓

(
𝑋31 

2 
)
𝑣 
‖‖‖2 2 = 1 (20)

And let 𝑓 (𝑋[k] 
1 ) be mapped into a Hilbert space 𝐹 through a nonlinear

apping 

∶ 𝐑𝑛𝑥 → 𝐅 , 𝑓
(
𝑋

[ k] 
1 

)
→ Φ

(
𝑓

(
𝑋

[ k] 
1 

))
(21)

𝜌gradKCCA =
1 
𝑛 

∑𝑛 

i=1 𝜙𝑥

1 
𝑛 

∑𝑛 

i=1 𝜙𝑥 

(
𝑓 ( 𝑋[ k] ( 𝑖) 

1 

)
, 𝜙𝑥 ( u) 𝜙𝑥 ( 𝑓

(
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(ii) The objective function of the KCCA algorithm is as follows: 

in 𝑢,𝑣 − 𝑢𝑇 Φ
(
𝑓

(
𝑋

[ k] 
1 

))
Φ
(
𝑓

(
𝑋

[ k] 
2 

))𝑇 

𝑣 

𝑠, 𝑡.
‖‖‖‖Φ(

𝑓

(
𝑋

[ k] 
1 

))
𝑢
‖‖‖‖2 2 = 1 ,

‖‖‖‖Φ(
𝑓

(
𝑋

[ k] 
2 

))
𝑣
‖‖‖‖2 2 = 1 (22) 

(iii) And the gradKCCA model is a more direct way to find the un-

erlying relationship, which will optimize the KCCA with respect to the

oefficients of the data space. In this setting, the data space coefficient

ectors 𝑢 and 𝑣 can be regarded as pre-images. There are constraints

n the pre-images of 𝜙𝑥 ( 𝑢 ) and 𝜙𝑥 ( 𝑣 ) to solve the KCCA problem in the

eature space, and the objective function is as follows: 

[ k] ( 𝑖) 
1 

)
, 𝜙𝑥 ( u) 𝜙𝑦 

(
𝑓 ( 𝑋[ k] ( 𝑖) 

2 

)
, 𝜙𝑦 ( v) 

 𝑖) 
)
, 𝜙𝑥 ( u) 

1 
𝑛 

∑𝑛 

𝑘 =1 𝜙𝑦 

(
𝑓 ( 𝑋[ k] ( 𝑖) 

2 

)
, 𝜙𝑦 ( v) 𝜙𝑦 ( 𝑓

(
𝑋

[ k] ( 𝑖) 
2 

)
, 𝜙𝑦 ( v) 

(23) 

here 𝑎, 𝑏 represents the inner product between 𝑎 and 𝑏 . Further, replace

he inner product with a kernel function 𝑘𝑥 ( 𝑓 (𝑋[k] 
1 , 𝐳 ) = 𝜙𝑥 ( 𝑓 (𝑋

[k] 
1 ) , 𝜙𝑥 ( 𝐳) ,

𝑦 ( 𝑓 (𝑋[k] 
2 , 𝐳 ) = 𝜙𝑥 ( 𝑓 (𝑋

[k] 
2 ) , 𝜙𝑦 ( 𝐳) and denoting the resulting score vectors

s 𝐤𝑥 ( 𝐮 ) = (𝑘𝑥 (𝑓 ( 𝑋[k](i) 
1 , 𝐮 ) )𝑛 

𝑖 =1 and 𝐤
𝑦 ( 𝐯 ) = (𝑘𝑦 (𝑓 ( 𝑋[k](i) 

2 , 𝐯 ) )𝑛 
𝑖 =1 . 

𝑔𝑟𝑎𝑑𝐾 𝐶 𝐶 𝐴 = max 𝑢,𝑣 
𝑘𝑥 ( 𝑢) 𝑇 𝐾𝑌 ( 𝑣) ‖𝑘𝑥 ( 𝑢) ‖2 ‖𝑘𝑦 ( 𝑣) ‖2 (24) 

In addition, the performance evaluation criteria of all the above al-

orithms are canonical correlation coefficients (CCCs), whose formula

s as follows: 

 𝐶 𝐶 𝑠 = 𝑃 𝐶 𝐶

(
𝑓

(
𝑋

[ k] 
1 

)
𝑢, 𝑓

(
𝑋

[ k] 
1 

)
𝑣 

)
(25)

.2.3. Setting of case study on childhood asthma 

As mentioned above, the whole dataset contained of 97 asthma and

7 normal samples; 80% of the samples were random selected as the

raining dataset and remaining 20% sample were the test dataset; e.g.,

54 training samples (including 77 diseased and 77 normal samples)

ere used for collaborative module and biomarker discovery and other

0 test samples (including 20 diseased and 20 normal samples) were

repared for case study. 

Limma package was applied to identify differentially expressed genes

nd methylation sites between asthma and normal samples in the train-

ng set, ensuring the independence of the training set and the test set.

here were 449 differentially expressed genes and 856 differentially

ethylated loci identified with p < 0.05. 

The DSR was used to reconstruct the two kinds of data, and change

he data sample distribution by introducing the diagnostic information

f the samples, and use the t-distributed Stochastic Neighbor Embedding

tSNE) algorithm to reduce the data dimension and visualize the sam-

le distribution in reconstructed/cleaned data [24] . Then, the JDSNMF

ecomposed the reconstructed data normalized by DSR and performed

arious downstream analyses on the extracted collaborative modules. 

The collaborative modules were screened using typical methods

 10 , 11 ]. And the escape rate and reconstruction error values of differ-

nt modules were also calculated to evaluate corresponding modules’

iological salient and reconstruction quality. The salient features in se-

ected/targeted module with the slightest reconstruction error were se-

ected for further analysis, including protein-protein interaction network

PPI) analysis, functional enrichment analysis, and diagnostic model

onstruction. In PPI network analysis, the gene pairs were filtered ac-

ording to the significance of the gene expression correlation and only

he significant gene pairs ( p < 0.05) were retained for diseased and nor-

al samples respectively, e.g., differential network analysis [25] . The

unctional enrichment analysis was carried out as following steps: the

odules containing no salient elements were filtered; the remaining

odules were considered as effective modules when they were enriched

n at least one GO term [26] or one KEGG pathway [27] ( p < 0.05). 
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. Results 

.1. Discriminative effect of DSR for adjusting data matrices 

The parameter settings of the DSR were detailed in section 1.3 of

he supplementary material. To confirm that DSR can effectively incor-

orate diagnostic information into the original data matrix, the t-sne

imensionality reduction of original and adjusted data matrices were

isualized in Fig. 1 a, where 𝐶1 and 𝐶2 respectively represent the self-

xpression coefficient matrix of genes after DSR. Obviously, the groups

f samples had disorganized distribution in original data space; mean-

hile the same groups of samples displayed a distinguishing distribution

n the new adjusted data space after incorporating the diagnostic labels

hrough DSR. 

.2. Deep matrix decomposition of JDSNMF for extracting collaborative 

odules 

The parameters used in JDSNMF were detailed in section 1.4 of the

upplementary material. The loss of JDSNMF and the PCC between the

nput and output data matrices were adopted for parameter selection. 

In Fig. S2a-d, these two performance indicators of JDSNMF under

ifferent parameter combinations were summarized and compared. In-

eed, different hyperparameter combinations would have remarkable

mpact on the JDSNMF, e.g., the larger the neural network dimension,

he better the reconstruction performance, which indicated that the non-

inearity of the data would be fully captured and help improve analysis

erformance. Finally, a set of parameter combinations maximizing the

verage recovery PCC were determined, and the reconstruction process

f two data matrices by the JDSNMF algorithm was visualized in Fig.

3a-l. 

.3. Ablation analysis of deep association model 

To verify the effectiveness of the DAM, it is necessary to evaluate the

ffect of DSR on the loss of following JDSNMF. As an ablation analysis

or this evaluation, one is to directly input the original data after Min-

ax normalization into the JDSNMF; the other is to input the cleaned

ata from DSR with Min-Max normalization into the same JDSNMF. As

hown in Fig. 2 i, DSR indeed enables JDSNMF to have a faster conver-

ence rate and effective matrix decomposition. 

.4. Ranking and selection of collaborative modules 

By DAM analysis, 151 collaborative modules were obtained. To ver-

fy the biological significance of all modules, this paper takes the union

f genes and methylation site genes in all modules. Further, this pa-

er uses the Dose package [28] to perform disease ontology enrichment

nalysis on these genes ( p < 0.05) (Fig. S4). The circle size in the fig-

re represents the number of genes enriched in the disease, and the line

olor corresponds to different diseases. These genes can be enriched for

llergic asthma. 

Then, 78 modules were removed because they did not contain any

alient features; 9 modules were retained, which included exceeded 2%

f the total number of genes and methylation loci. Since too few ele-

ents in the module will be unfavorable for subsequent analysis, we

alculate the mean of the number of elements contained in these mod-

les separately and retain four modules with the number of elements

reater than the mean. 

Actually, DAM has shown its effective reconstruction of the original

ata on the module level again. The correlation scatter plot between the

wo kinds of data matrices and their reconstructed matrices ( Fig. 2a-h )

ndicated that these co-expression modules have good reconstruction

erformance, and Venn diagrams revealed many overlapping elements

n these modules too (Fig. S5), which both confirmed the effectiveness of
AM. The element intersection of four essential collaborative modules d  
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ere shown in Fig. S6a-b, and the escape rates of module 12, module 25,

odule 31, and module 75 were 23.8%, 86.67%, 16.67%, and 100% on

ene expression level; meanwhile, they were 79.31%, 14.29%, 81.48%

nd 4.17% on methylation level, respectively. These findings disclosed

he element preference of collaborative modules on gene expression or

ethylation, which supported the necessity of integrative analysis on

mics data, such as done by DAM. 

On the functional level, there were six pathways observed in many

odules ( Table 1 ). Three pathways have been confirmed to be closely

elated to the occurrence of a Tachykinins: receptor to effector asthma.

hu et al. demonstrated that macrophage migration inhibitory factor is

nvolved in the pathogenesis of asthma [29] . Corinna Braun et al. re-

ealed the existence of a vinculin-binding sequence in CPn0572, a TarP

amily member of Chlamydia pneumoniae closely related to asthma

30] . And Tachykinins related to intra-species interaction have also been

hown to be involved in developing asthma-like drugs [31] . Thus, es-

ential collaborative modules have remarkable biological significances,

ndicating the biological interpretability of DAM ( Table 2 ). 

Besides, the features contained in the collaborative modules with

mall reconstruction error should be more accurate in representing the

riginal data, thus, the reconstruction performance of selected essential

ollaborative modules were comprehensively evaluated as shown in Fig.

b-1i and Fig. 1j-1q . On one hand, the DSR effect of genes in module

5 and module 75 is better; while the DSR effect of methylation loci

n module 12 and module 31 is better. On the other hand, there are

etter JDSNMF effect of genes in module 25, module 31, and module

5; and better effect of methylation loci in four modules. According to

he total sum of reconstruction errors for both genes and methylation

oci displayed in Fig. S7, module 31 tended to have the least global

econstruction error, and was a key collaborative module for following

iagnostic model analysis. 

.5. Ranking of salient features in key collaborative module based on 

OCCA for diagnostic model analysis 

For the features in the key collaborative module 31, our proposed

OCCA algorithm was applied to assign feature weights considering the

roup-wide association in the CCA manner. The hyperparameter selec-

ion of DOCCA and the comparison with CCA, KCCA and gradKCCA on

he test dataset were shown in Table 3 and the highest CCCs indicated

he effectiveness of DOCCA. After taking the absolute value of the fea-

ure weights from DOCCA, they were sorted from high to low ( Fig. 5 h).

.6. Comparison of the results of single-omics and multi-omics integrated 

nalysis 

To validate the advantage of integrating multiple omics data over

sing a single modality alone, we compared the performance of the

AM model when integrating gene and methylation data versus using

ach data type separately. In detail, the Pearson correlation coefficients

efore and after matrix factorization, and the AUC of the selected top

arkers, serve as baseline performance metrics for both multi-omics and

ingle-omics analysis. Deep semi-supervised matrix factorization was ap-

lied to reconstruct the training sets for both gene and methylation loci.

he Pearson correlation coefficients for gene and methylation loci before

nd after factorization were 0.9988 and 0.9971, respectively. By inte-

rating the two data types, the corresponding correlation coefficients

ncreased to 0.9995 for genes and 0.9982 for methylation loci. Coop-

rative modules were then set up and errors were calculated for each

odule (Fig. S8a-b). The errors for genes in Module 3 and methylation

oci in Module 136 were minimal, with values of 1.36 and 10.52, respec-

ively. For comparison, we evaluated the AUC of the diagnostic model

y integrating both omics data types and analyzing the top 10 weighted

arkers of each omics data type separately. ROC curves for diagnostic

odels based on these genes and methylation loci are shown in Fig. S8c-

, with AUC values of 0.723 and 0.705, respectively. Thus, integrating
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Fig. 1. Subspace reconstruction visualization. (a) Visualization of the original data and cleaned data by DSR using t-sne. 𝑋1 and 𝑓 (𝑋1 ) are the original and 

cleaned differential gene expression matrices, respectively. 𝑋2 and 𝑓 (𝑋2 ) are the original and cleaned differential methylation matrices, respectively. 𝐶1 and 𝐶1 are 

expression heatmaps of the self-expression coefficient matrix for genes and methylation, respectively. (b-i) The t-sne visualization of sample distribution based on 

cleaned gene expression data from DSR and the reconstructed data from JDSNMF in four collaborative modules. (b), (d), (f), and (h) are t-sne visualization of gene 

expression data from DSR. (c), (e), (g), and (i) are the t-sne visualization of the reconstructed gene expression data from JDSNMF. (j-q) The t-sne visualization of 

sample distributions based on cleaned DNA methylation data from DSR and reconstructed data from JDSNMF in four collaborative modules. (j), (l), (n), and (p) are 

t-sne visualization of cleaned DNA methylation data from DSR. (k), (m), (o), and (q) are the t-sne visualizations of the reconstructed DNA methylation data from 

JDSNMF. 

744
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Fig. 2. Analysis of reconstruction performance of DSR and JDSNMF. (a-h) Scatter plots of the data reconstructed by subspace and the reconstructed data 

decomposed by the JDSNMF algorithm in the four modules. (a), (c), (e) and (g) are the scatter plots between the subspace-reconstructed data of genes and the data 

reconstructed by JDSNMF algorithm in module 12, module 25, module 31 and module 75, respectively. (b), (d), (f) and (h) are scatter plots between the subspace- 

reconstructed data of DNA methylation and the data reconstructed by JDSNMF algorithm in module 12, module 25, module 31 and module 75, respectively. (I) 

Influence of whether subspace reconstruction is used on the reconstruction error generated by the algorithm. 

Table 1 

Common pathways for the four modules. 

Numbers and names of common pathways of modules 12, 31, and 75 Numbers and names of common pathways of modules 12, 25, and 31 

GO:0035176 social behavior GO:0017166 vinculin binding 

GO:0051703 intraspecies interaction between organisms GO:0016289 CoA hydrolase activity 

GO:1905517 macrophage migration GO:0016790 thiolester hydrolase activity 
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oth data types can achieve the best performance (Fig. S9q-r), i.e. the

ntegration of multiple omics data outperforms single-omics analysis. 

.7. Evaluation of dam model performance with comparable multi-omics 

ntegration algorithms 

To further validate the performance of the DAM model, in accor-

ance with the literature review of predictive models for childhood

sthma based on clinical indicators rather than omics data [32] , we

ompared the performance of two machine learning models with su-

erior prediction capabilities, namely, the Least Squares Support Vector

achine and the Multi-Layer Perceptron, with that of the DAM model

Fig. S9a-d). The AUC of the diagnostic models built on the DAM model

or two data types is higher than that of the above two algorithms. In
745
ddition, three multi-omics integration analysis algorithms based on dif-

erent technologies (CIMLR, MOGONET, and MTSCCALR) are presented

n this study. The CIMLR algorithm learns the similarity between each

air of samples in multi-omics datasets by combining multiple Gaussian

ernels for each omics data type, corresponding to different complemen-

ary representations of the data [33] . It enforces a block structure in the

enerated similarity matrix, which is then utilized for dimensionality

eduction, k-means clustering, and feature selection. The MOGONET al-

orithm employs graph convolutional networks for omics-specific learn-

ng [34] . MOGONET not only directly connects the label distributions

f each omics data type, but also utilizes the View Correlation Dis-

overy Network to explore cross-omics correlations in the label space,

chieving effective multi-omics integration. MTSCCALR is a multi-task

earning-based correlation analysis method that combines the advan-
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Table 2 

Top-ranked 10 gene/methylation loci based on weights. 

Genes Weight Methylation loci Weight 

LARS1 0.8307 cg00456348 0.1496 

WBP1L 0.5583 cg00053393 0.1175 

NLRP12 0.4887 cg00313876 0.1058 

HIBCH 0.4273 cg00322319 0.0932 

RPUSD3 0.3967 cg00483304 0.0774 

ASRGL1 0.3759 cg00266865 0.0757 

MGST2 0.3130 cg00240732 0.0640 

OAS2 0.2996 cg00146676 0.0638 

CORO2B 0.2985 cg00610021 0.0533 

TRIM5 0.1770 cg00594129 0.0504 

Table 3 

CCCs comparison of four CCA-based algorithms on the test set. 

Algorithm CCCs 

CCA 0.2287 

DOCCA 0.2681 

KCCA 0.1067 

gradKCCA 0.1307 
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ages of SCCA and logistic regression to jointly learn the correlation be-

ween two omics data types for multiple tasks [17] . Each task focuses on

dentifying a diagnosis-specific pattern. Since all three algorithms only

rovide feature weights, for the purpose of performance comparison,

e present the impact of these three algorithms and the DAM model

n building diagnostic models using top features (Fig. S9e-p). The DAM

odel achieves a slightly lower AUC than the MTSCCALR model when

onstructing a diagnostic model using gene expression data (Supplemen-

ary Material, Fig. S9q). However, the highest AUC is achieved when

uilding a diagnostic model using DNA methylation data (Supplemen-

ary Material, Fig. S9r). 

. Discussion 

.1. Improvement of association analysis during multi-omics data 

ntegration by deep association model compared with typical methods 

To verify the association analysis ability of DAM on multi-omics data,

he reconstruction error and recovery PCC were evaluated on the test

ataset under the same experimental conditions as the other compared

ethods. As shown in Table 4 , DAM can achieve least reconstruction er-

or and highest recovery PCC. Especially, DSR and JDSNMF have shown

heir great contributions in performance promotion of DAM. The non-

inear feature association and extraction strategy in DAM can fully in-

egrate prior information, improving the reconstruction performance of

AM. As shown in Fig. 3a-b , DMA outperforms several other competing

lgorithms in reconstructing gene and methylation data. 

In addition, according to the functional enrichments of modules de-

ected by different methods illustrated in Fig. 3c-d , DAM can effec-

ively find many collaborative modules with significant functional en-

ichments with GO and KEGG, indicating the improved biological inter-

retability by DAM considering nonlinear association in omics data. 

.2. Diverse biological significance and disease relevance of the key 

ollaborative module 

For the key collaborative module 31 linking gene and methylation

ignatures to asthma, the correlation heatmap of collaborative genes and

NA methylation loci was shown in Fig. 4a-b . There are strong correla-

ions between the heterogeneous elements, and these features especially

ad more significant correlation pairs in the asthmatic group than those

n the non-asthmatic group, confirming the effectiveness of DAM con-

idering diagnostic information fusion. 
746
Next, the gene and methylation expression pattern of module 31

ould remarkably distinguish the asthmatic and non-asthmatic groups

n the test dataset as shown in Fig. 4 f. The expression levels of six

enes in module 31 were significantly different between two groups.

ndeed, the proportion of differentially expressed genes in module 31

as 58.33%, while such proportion is 16.26% (73 genes) in all genes,

onfirming again that JDSNMF in DAM can efficiently identify discrim-

native patterns of the two groups by multi-layer nonlinear transforma-

ion. 

Then, the differential PPI network among those key module genes

nd genes where the methylation sites are located were extracted for

sthmatic and non-asthmatic group respectively. As shown in Fig. 4c-e ,

he significantly co-expressed gene pairs of asthmatic groups were dif-

erent from those of non-asthmatic group, and PVT1, MACF1, LIMA1,

GST2, TRIM5, NIPSNAP1, WBP1L, CORO2B, OAS2, WBSCR17 and

CC were only presented in the PPI network of asthmatic group, in-

icating their relevant functional roles in asthmatic condition. 

Furthermore, the functional enrichment analysis showed many asth-

as associated pathways of genes and methylation loci respectively

rom module 31, as seen in Fig. 4g-h . 

On one hand, key genes related to asthma would involve in exces-

ive airway hyperresponsiveness and inflammation, and lipopolysaccha-

ide exposure is associated with disease severity and steroid resistance

35] . Airway hyperresponsiveness is independent of various Th2 cy-

okines and their signaling pathways but is dependent on interferon- 𝛾

36] . Neurotransmitter-triggered calcium signaling induces actomyosin-

ediated contraction of airway smooth muscle, and the resulting short-

ning of cells leads to airway narrowing, which induces asthma [37] .

in et al. confirmed that Transgelin-2, an actin-binding protein, can re-

ax the myosin cytoskeleton of airway smooth muscle cells by acting

s a receptor for extracellular metallothionein-2, which may be used as

 treatment for asthma [38] . PD-L1, an immune checkpoint molecule

ssociated with viral escape from the host immune system, is an im-

une checkpoint molecule in which double-stranded RNA from viruses

nduces host immune responses and plays a role in a persistent viral

nfection leading to exacerbation of asthma or chronic obstructive pul-

onary disease [39] . Jayalatha et al. has confirmed that the receptor

nterleukin-1 receptor-like-1 (IL-1RL1) is a susceptibility gene for child-

ood asthma, and the IL-1RL1 gene transcript encodes different isoforms

enerated by alternative splicing, whose soluble isoforms IL-1RL1-a in-

ibit IL1RL1-b/IL-33 signaling by sequestering IL-33 as a decoy receptor

40] . 

On the other hand, the genes where the methylation sites are lo-

ated were also involved in many pathways linked to the occurrence of

sthma. Recent research has shown that microRNAs play multiple roles

n regulating airway smooth muscle phenotypes, including cell prolifer-

tion and size, that play a key role in asthma pathogenesis [41] . Bianco

t al. reviewed the studies on asthma patients’ inhaled transmembrane

on transport modulators, which confirmed that some mechanisms of ion

ransmembrane transport are involved in regulating airway responses to

arious stimuli. Highly conductive calcium-sensitive potassium channels

BK + Ca) and ATP-sensitive potassium channels (K + ATP) play essential

oles in airway smooth muscle cell, goblet cell function, and cytokine

roduction [42] . The BK + Ca channel is also a promising new drug for

reating airway allergic inflammation [43] . Thymic stromal lymphopoi-

tin, and innate cytokine that plays a key pathogenic role in asthma, ac-

ivates dendritic cells after its release from airway epithelial cells [44] . 

.3. Efficient diagnostic model based on key collaborative module for 

istinguishing childhood asthma 

The logistic regression model in IBM SPSS Statistics 2016 selected

he top 10 genes/methylation sites from the key modules to construct a

iagnostic model of childhood asthma. Using the top 12 genes, the AUC

n the inner test set can reach 0.875 ( Fig. 5a-b ), and the AUC in the two

uter test sets (GSE27011 and GSE40888) can reach 0.906 and 0.832,



K. Wei, F. Qian, Y. Li et al. Fundamental Research 4 (2024) 738–751

Table 4 

Omics data reconstruction performance comparison for DAM and other comparable methods. 

Algorithm Pearson correlation coefficient between 𝑋1 and 𝑊 𝐻1 Pearson correlation coefficient between 𝑋2 and 𝑊 𝐻2 

Subspace reconstruction + JDSNMF (DAM) 0.9995 0.9982 

JDSNMF 0.9899 0.9592 

Subspace reconstruction + MDJNMF 0.9689 0.9714 

MDJNMF 0.9350 0.9146 

Subspace reconstruction + JCB-SNMF 0.9810 0.9800 

JCB-SNMF 0.9436 0.9230 

Subspace reconstruction + NSOJNMF 0.9812 0.9820 

NSOJNMF 0.9432 0.9240 

Subspace reconstruction + JNMF 0.9818 0.9824 

JNMF 0.9432 0.9239 

Fig. 3. Comparison of reconstruction performance and enrichment ratio with other algorithms. (a) and (b) are the reconstructed boxplots of genes and 

methylation, respectively. (c) and (d) are the histogram of KEGG and GO enrichment ratio of genes and methylation in all co-expression modules of several algorithms. 
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espectively ( Fig. 5c-d ). We observed obvious differences in model per-

ormance between two external test sets. This phenomenon may be due

o biological disparities or data heterogeneity. Specifically, the cell types

ampled in the two datasets are distinct, and there is no standardized

riterion for disease severity. Batch effects may also be present, leading

o variations in the distribution of dataset features and consequently

ffecting the generalization ability of the model. In future research, ef-

orts will be made to use samples derived from the same cell type as the

raining set, and additional methods like transfer learning will be imple-

ented to overcome possible batch effects, and ensure that the trained

odel has both generalization and applicability. The ROC of the model

sing the top 22 methylation sites can reach AUCs of 0.912 in the inter-
747
al test sets, respectively ( Fig. 5e-f ), and 0.818 in the external validation

et GSE109446 ( Fig. 5 g). 

Especially, several top-ranked genes used in diagnostic model are

trongly associated with asthma. Airway remodeling in asthma is char-

cterized by thickening of the reticular basement membrane, which may

e associated with altered epithelial structure and function. Among the

enes associated with increased reticular basement membrane (RBM)

hickness, OAS2 is one of the most critical genes in cell activation, pro-

iferation, and growth [45] . TRIM5 [46] , LIMA1 [47] , NLRP12 [48] and

X3CR1 [49] have also been confirmed to be involved in multiple path-

ays related to inflammation . 



K. Wei, F. Qian, Y. Li et al. Fundamental Research 4 (2024) 738–751

Fig. 4. C omprehensive Analysis of Module 31. (a) and (b) are the correlation heatmaps of genes and methylation loci in module 31 for the non-asthmatic group 

and the asthmatic group, respectively. (c) PPI network for module 31 in the non-asthmatic group. (d) Venn diagram of overlapping genes. (e) PPI network for module 

31 in the asthmatic group. (f) Boxplot of gene expression in module 31. (g) and (h) are the GO enrichment results of genes and methylation-driven genes. 

748
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Fig. 5. The features selected by the DOCCA algorithm are applied to the construction of the diagnostic model. The diagnostic model constructed using top- 

ranked genes is shown in (a-d). In (a), the line graph illustrates the AUC variation in the internal test set corresponding to different numbers of top genes. (b-d) present 

the AUC values for the internal test set and two external test sets (GSE27011 and GSE40888) based on genes. On the other hand, (e-g) represent the diagnostic model 

built using the highest ranked methylation sites. In (e) and (f), the AUC values for the internal training and test set are shown, respectively. (g) displays the AUC in 

the external validation set (GSE109446). Specifically, the abscissa of (h) represents f(X[31 ] 
1 )u , and the ordinate represents f(X[31 ] 

2 )v . The two colored dots represent 

two types of samples, respectively. Two kinds of sample points are distinguished using ellipses. 
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.4. Feasibility of DAM for multi-omics data analysis 

Besides, the proposed DAM has great feasibility for multi-omics data

nalysis in the new single-cell fields [50–52] . Taking the integration of

ene expression profiles (scRNA-seq) and epigenome profiles (scATAC-

eq) as an example, DAM would also be able to identify cell types and

ignatures, together with the associations between scRNA and scATAC

lements/features. 

Let X1 ∈ ℝn × p be the normalized expression profile of scRNA-seq

ata, where the columns correspond to 𝑝 genes, and the rows represent

 cells. Similarly, let X2 ∈ ℝn × q be the indicator matrix of 𝑞 ATAC

eaks (regions) in n cells. Given DAM, the cell-related information can

e introduced at the first stage of DSR, such as calculating the score of

ach cell involved in the pathway by the single-sample gene set enrich-

ent analysis (ssGSEA) and setting a threshold to discretize the score to

e new input data for following analysis. Then in the second stage, cell
749
lustering can be achieved by JDSNMF, where the objective function

an be formulated as bellows: 

min 
2 ∑

i = 1 
‖Xi − 𝑈0 𝐻𝑖 ‖2 F + 𝜆 ∥ 𝑆∥𝐹 

𝑠.𝑡. U0 = 𝑠
(
s
(
s
(
Un Zn 

)
…Z2 

)
Z1 

)
U𝑛 −1 = 𝑠

(
Un Zn 

)
,U0 …Un ≥ 0 , 

𝑆 ∈
{ 

Un ,Zi1 , … ,Zin , 𝐻𝑖 

} 

, 𝑖 = 1 , 2; 𝑛 = 1 , 2 , … (26) 

Among them, 𝑛 represents the number of layers of decomposition,

0 ∈ ℝn ×k0 is the cell (sample) latent matrix, 𝐻1 ∈ ℝk0 × p and 𝐻2 ∈
ℝk0 × q are the feature latent matrix of the first layer of the neural net-

ork, Zn ∈ ℝkn ×kn−1 is the junction latent matrix, and U0 ∈ ℝkn × n can

e used for cell clustering and cell type identification, and kn is the num-

er of clusters. 
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.5. Scalability of the DAM model 

Multidimensional omics data is often at risk of overfitting due to

mall sample sizes and high feature dimensions. In situations with ex-

remely high feature dimensions, feature selection becomes imperative.

he DAM model, based on omics features that have differential expres-

ion between two groups, has shown excellent performance. When the

imensionality of differentially expressed features remains high, vari-

us feature selection strategies can be used. For instance, the variance

hreshold method filters out features whose variance is below a prede-

ned threshold, thereby excluding features that have minimal variation

cross the entire dataset [53] . Recursive feature elimination can recur-

ive remove features that are considered least important by the model

ntil the specified number of features is reached [54] . To validate the

calability and computational efficiency of the DAM model, we also gen-

rated simulated datasets for different omics types. The study calculated

he running time and performance variations of the DAM model under

ifferent sample sizes and feature dimensions (Supplementary Material

.6). The results indicate that the DAM model has fast operation effi-

iency and high performance even with a sample size of 3000 and a

eature count of 7000 for four omics data types. 

. Conclusion 

Asthma is a common respiratory disease in children, and its patho-

enesis is closely related to airway inflammation. Based on the multi-

mics data of childhood asthma, a deep association model was designed

nd implemented explore the collaborative module and biomarkers,

hich help building efficient diagnostic model for asthma. Different

mics datasets can carry complementary molecular information and spe-

ific prior clinical information [55–57] . First, both gene expression and

NA methylation provide insights into various aspects of gene func-

ionality and regulation. By synthesizing information from these two

olecular levels, a more comprehensive understanding of the active

tates of genes and the biological mechanisms associated with the on-

et of asthma can be achieved. Second, pediatric asthma is a complex

isease involving the regulation of multiple genes and biological pro-

esses. Relying solely on gene expression or DNA methylation may not

apture this complexity. The Integration of information from both lev-

ls enables a more holistic understanding of the molecular mechanisms

ssociated with the development of asthma. Finally, integrating gene ex-

ression and DNA methylation data helps consider information at multi-

le molecular levels, reducing the impact of noise or variation resulting

rom a single data source and increasing the reliability of diagnosis. The

lgorithms involved in DAM are scalable and can be flexibly extended

o the integration analysis of various omics data. It can also solve the

ulti-classification problem by cooperating with the classifier [58] . A

uture work should integrate new types and domains of multi-omics data

59] to conduct a more comprehensive and systematic nonlinear asso-

iation analysis of biological system involved in childhood asthma or

ther complex diseases. 
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