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We introduce a new and time-efficient memory-encoding paradigm for functional

magnetic resonance imaging (fMRI). This paradigm is optimized for mapping multiple

contrasts using a mixed design, using auditory (environmental/vocal) and visual

(scene/face) stimuli. We demonstrate that the paradigm evokes robust neuronal activity

in typical sensory and memory networks. We were able to detect auditory and visual

sensory-specific encoding activities in auditory and visual cortices. Also, we detected

stimulus-selective activation in environmental-, voice-, scene-, and face-selective brain

regions (parahippocampal place and fusiform face area). A subsequent recognition

task allowed the detection of sensory-specific encoding success activity (ESA) in

both auditory and visual cortices, as well as sensory-unspecific positive ESA in

the hippocampus. Further, sensory-unspecific negative ESA was observed in the

precuneus. Among others, the parallel mixed design enabled sustained and transient

activity comparison in contrast to rest blocks. Sustained and transient activations

showed great overlap in most sensory brain regions, whereas several regions, typically

associated with the default-mode network, showed transient rather than sustained

deactivation. We also show that the use of a parallel mixed model had relatively little

influence on positive or negative ESA. Together, these results demonstrate a feasible,

versatile, and brief memory-encoding task, which includes multiple sensory stimuli to

guarantee a comprehensive measurement. This task is especially suitable for large-scale

clinical or population studies, which aim to test task-evoked sensory-specific and

sensory-unspecific memory-encoding performance as well as broad sensory activity

across the life span within a very limited time frame.

Keywords: memory encoding, sensory encoding, functional magnetic resonance imaging, epidemiologic research

design, auditory cortex, visual cortex, hippocampus, parietal lobe

INTRODUCTION

With neurodegenerative diseases as one of the main challenges in aging populations, the precise,
comprehensive, and robust measurement of cognitive functions is of great importance. Functional
magnetic resonance imaging (fMRI) is one measurement that helps us to bridge the space between
biology and behavioral outcomes. Several large-scale studies have employed fMRI to map brain
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activity in the general population, including the Rotterdam
Study (Hofman et al., 2015), UK Biobank (Miller et al., 2016),
and the Rhineland Study (Breteler et al., 2014). These large-
scale population studies are usually not designed to answer one
specific hypothesis. Rather, they aim to perform an extensive
and deep phenotyping that allows addressing multiple questions.
As they are mostly prospective studies, they also need to
anticipate future questions. Therefore, tasks and paradigms
should ideally be as versatile as possible. In the absence of a
specific hypothesis, resting-state fMRI is often employed, mostly
for practical considerations, as it is rather easy to apply and can
also inform about neural dysfunction (Damoiseaux andHuijbers,
2017). Task-evoked fMRI provides complementary information,
that is, the brain’s response to specific demands (Campbell
and Schacter, 2017; Davis et al., 2017), and evokes activity in
cortical networks under more restrained conditions (Vanderwal
et al., 2015; Huijbers et al., 2017). Therefore, task fMRI is often
considered. However, most conventional task paradigms are not
easily applied in clinical or large-scale population studies (Pinel
et al., 2007) for the following reasons.

First, conventional task paradigms from cognitive
neuroscience are typically developed and applied in experimental
studies that pose less time constraints than population studies.
However, in clinical or large-scale population studies, acquisition
time is often more restricted, as the burden to participants, or
patients, should be limited and costs add up easily. Additionally,
fMRI acquisition time typically competes with anatomical or
clinically motivated MRI sequences, including T1, T2, fluid-
attenuated inversion recovery (FLAIR), susceptibility-weighted
imaging (SWI), perfusion, and diffusion (Jack et al., 2008; Glasser
et al., 2013). Thus, to be feasible for clinical or population-based
imaging, a task paradigm should be as time-efficient as possible.

Second, conventional fMRI task paradigms have often been
developed in homogenous cohorts of young adults. In a large-
scale population or clinical studies, the cohort of participants
is typically more heterogeneous with respect to age, education,
lifestyle, and health factors. This heterogeneity can result in
problems when task instructions are tailored to a specific age
group (such as young adults). As a consequence, paradigms
might show ceiling and/or floor effects for subgroups. Thus, an
ideal paradigm should have very simple or no instructions and
yet remain informative across the entire cohort.

Finally, conventional task paradigms are typically designed to
answer a specific hypothesis, often from the field of cognitive
neuroscience. As mentioned above, large-scale, population-based
studies mostly aim to employ fMRI to estimate neuronal activity
related to multiple research questions or outcomes at the same
time. An ideal task paradigm for population-based studies should
permit the analysis of multiple contrasts that span a wide range
of cognitive functions.

To address these various requirements, we designed a novel
task paradigm that we consider especially suited for large-
scale studies. It measures predominantly memory encoding, but
also perception and attention in both the auditory and visual
domains within 10min of fMRI acquisition time using simple
instructions. To our knowledge, memory-encoding paradigms

so far presented stimuli of one sensory condition or did face–
name associative memory tasks (Sperling, 2007; Barch et al.,
2013; Nenert et al., 2014; Sidhu et al., 2015; Hayes et al., 2017)
within a similar time frame. We optimized our task to allow
mapping of a versatile number of contrasts that are relatively
straightforward to interpret. To enable the separation of sensory-
specific and sensory-unspecific activities (Wheeler et al., 2000;
Daselaar et al., 2010; Langner et al., 2012), we used two sensory
modalities, auditory and visual. Twenty-five percent of the total
time consisted of passive rest blocks as baseline/rest condition
(Gusnard and Raichle, 2001). Each sensory condition contained
two distinct sub-conditions to cover a wide range of information
on visual and auditory system activations as well as joined
activation for sensory-unspecific functions like overall memory.
Within the visual condition, we chose to present faces and
spatial scenes, motivated by work on face-selective and scene-
selective brain regions (Kanwisher et al., 1997; Epstein and
Kanwisher, 1998; Gazzaley et al., 2005; Collins and Dickerson,
2019). Further, those stimuli seemed to show differences in age-
related reductions in neural dedifferentiation, which makes them
interesting for longitudinal studies (Srokova et al., 2020). To
select auditory stimuli on a similar level of specificity, we chose
voice and environmental stimuli motivated by previous work
on voice-selective brain regions (Belin et al., 2000, 2002; Pernet
et al., 2015; Agus et al., 2017; Zäske et al., 2017; Aglieri et al.,
2018). This decision was further supported by studies showing
that similarities as well as differences exist between the regional
activation of voice and face perception (Young et al., 2020).
Due to the simplicity of the design and to keep the paradigm
language free, we did not include language stimuli. A post-fMRI
recognition test, with previously seen/heard and novel items,
enables the computation of contrasts between subsequently
remembered (hit) and forgotten (miss) items (Wagner et al.,
1998; Otten and Rugg, 2001; Prince et al., 2009; Collins and
Dickerson, 2019). In the following, we will refer to these contrasts
as encoding success activity (ESA). We used a parallel mixed
block/event design to include a large number of stimuli within
a limited time and to enable the already versatile number
of contrasts also for the separation of sustained (block) and
transient (event) activities (Velanova et al., 2003; Visscher et al.,
2003; Petersen and Dubis, 2012). Differentiating both can help
to get a more complex understanding of the functional processes
underlying a task. Sustained effects give more information about
the maintenance of activity throughout a set of stimuli, for
example, representing also overall attentional performance or
arousal, whereas transient effects are specific for each trial of a
task (Visscher et al., 2003).

Thereby, our task allows a large degree of flexibility to analyze
the data in multiple ways with regard to other outcomes of
interest. This is important in studies spanning years to decades,
as research questions and analysis techniques change over time.
In this study, we introduce our task paradigm and demonstrate
several possible analyses to generate a range of different
behavioral and neuronal measures relating to perception and
memory encoding. These outcome measures are then available
for further analyses in the context of the overall population study.
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MATERIALS AND METHODS

Participants
We recruited 60 young adults between the ages of 19 and 30 years
(M = 24.18, SD= 2.90; 36 females), from the University of Bonn
community in the context of the pilot studies for the Rhineland
Study, a prospective cohort study. The study was carried out
in accordance with the recommendations of the International
Council for Harmonization (ICH) Good Clinical Practice (GCP)
standards (ICH-GCP). We obtained written informed consent
from all participants in accordance with the Declaration of
Helsinki. No incentives were offered to the participants. The
medical ethics committee of theMedical Faculty of the University
of Bonn approved the study. All participants had normal
or corrected-to-normal vision. Hearing levels were calibrated
individually before the experiment, for the sounds to be easily
audible above the scanner noise. For one participant, visual
retrieval data were not available in the fMRI analysis. ESA
contrasts for this participant were therefore analyzed only on
the basis of the auditory retrieval information. To detect possible
floor effects of the task, we obtained behavioral task data of 21
persons older than 30 years (M = 52.71, SD = 15.55; age range
= 31–77; 12 females) (see Supplementary Material “Behavioral
results in older adults”).

Stimuli
A total of 160 auditory and 160 visual items were presented
during the encoding task. Auditory stimuli had durations
between 538 and 2,771ms (M = 1,630ms, SD = 488ms) and
consisted of 80 environmental and 80 human vocal sounds.
The environmental sounds included a mix of sounds from
animals, traffic, tools, and musical instruments, selected from
previous auditory experiments (Belin et al., 2000; Daselaar et al.,
2010; Huijbers et al., 2011). The vocal sounds consisted of
vocal utterances, void of semantic content, such as laughing,
crying, or coughing, selected from previous experiments, from
the Oxford Vocal (OxVoc) Sounds database (Belin et al., 2000;
Parsons et al., 2014) or were recorded for the purpose of
this study. The recordings were from various male and female
voices. Duration of the auditory stimuli was not equalized,
because some are by nature rather short but nevertheless distinct,
whereas others need a longer duration to be distinct (e.g.,
cockcrow/doorbell vs. laughter/wind). To match stimuli for low-
level physical properties, we normalized all auditory stimuli to the
same amplitude using version 2.0.6 of Audacity R© recording and
editing software. The visual items consisted of color photographs
of 80 faces (size 570 × 360 pixels) and 80 scenes (size 500 × 375
pixels) on a black background. Face stimuli contained faces from
individuals with various ethnicities, between 18 and 90 years of
age, with an equal number of male and female faces selected from
previous experiments (Sperling et al., 2003; Minear and Park,
2004; Huijbers et al., 2015). Scenes were pictures from nature or
urban outdoor environments selected fromHuijbers et al. (2009).
Colors from the original scenic images were slightly de-saturated
to match the color contrast in the facial images.

From all available stimuli, we selected the final set of 160
stimuli with the aim to reach a hit-rate of ∼50% (for an

explanation, see section Behavioral Analysis) and a false alarm
(FA) rate as low as possible.

Auditory stimuli were presented via S14 Insert Earphones
(Sensimetrics, Malden, USA). Visual stimuli were presented on
a screen located at the head of the magnet bore and seen via
a mirror mounted on the head coil. All stimuli were presented
using PsychoPy software v1.82 (Peirce, 2007), running on a
Windows PC.

MRI Acquisition
fMRI data were acquired with a 3-Tesla Siemens MAGNETOM
Prisma system (Siemens Medical Systems, Erlangen, Germany).
The scanner was equipped with a 64-channel phased-array
head/neck coil. We used inflatable air pads to restrict head
movement, and participants were instructed to lie still for the
duration of the scan. For the applicability in large-scale testing,
we decided on a standard fMRI scanning protocol: we acquired
two task fMRI sessions of 140 volumes using echo-planar imaging
(EPI), including four dummies. Each volume consisted of 32 axial
slices of 3-mm thickness with a 0.75-mm gap. The repetition time
(TR) was 2,000ms, echo time (TE) was 30ms, flip angle was 84◦,
readout bandwidth was 2,300 Hz/pixel, the slice orientation was
anterior commissure–posterior commissure (AC-PC), and field
of view (FOV) was 192 × 192mm, resulting in an effective voxel
size of 3.0× 3.0× 3.75 mm.

Task Design and Implementation
The task was designed as a mixed model (Visscher et al.,
2003) and included 180 events (trials), grouped into 32 blocks
(Figure 1). Out of these 32 blocks, eight were rest blocks
(fixation), eight isolated auditory blocks, eight isolated visual
blocks, and eight parallel auditory/visual blocks. Sixteen blocks
contained auditory stimuli, half isolated auditory and half parallel
with visual images. Of these 16 blocks, eight blocks contained
environmental sounds (four isolated and four parallel), and eight
blocks contained vocal sounds (four isolated and four parallel).
Similarly, for the visual blocks, half were presented in isolation
and half in parallel with sounds (scene and face images equally
distributed). In each block, five items—sounds, images, or both—
were presented for a total of 16 s per block (Figure 1). Within
the auditory blocks, the inter-trial interval between items was
200–2,700ms. Within the visual stimulus blocks, the inter-trial
interval between items was 200–2,200ms. The difference in the
inter-trial intervals between auditory and visual blocks is due
to the variable duration of sounds. Each image was presented
for exactly 2,000ms. Inter-trial intervals as well as the order of
blocks and the order of stimuli within the blocks were once
randomly assigned and remained the same for all participants.
A white fixation cross on black background was shown during
the rest blocks, the inter-trial intervals, the isolated auditory
blocks, and the initial and final 8 s of each run. By design, we
tried to ensure that the different blocks and items would result
in separate, uncorrelated regressors (see section Parallel Mixed
Model Analysis). As we cannot predetermine which items will
be remembered or forgotten, we also evaluated the collinearity
of the regressors after data collection (see section Parallel Mixed
Model Analysis).
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FIGURE 1 | Scheme of the task paradigm. (A) The order of presented stimuli and sensory conditions. “On” represents presentation of the stimuli, and “Off” represents

no presentation of the stimuli. Each block contains five stimuli of one category and lasted 16 s. In parallel conditions, five auditory and five visual stimuli are presented

in one block. The auditory events consisted of environmental or vocal stimuli (see auditory timeline). The visual events consisted of face or scene stimuli (see visual

timeline; faces were not pixelated in the original task). (B) Four exemplary blocks in detail.

The task presentation was distributed over two sessions
(containing the same number of blocks for each stimulus and
presentation condition) of 4:54min each separated by a short
question about the participants’ well-being. At the beginning of
these sessions, participants were given written instructions via the
screen to pay attention to the sounds and images (“please watch
and listen carefully”). No motor responses were required in our
task, which had several advantages. Apart from keeping the task
simple, movement artifacts during scanning were minimized.
Also, the lack of motor activity facilitates the interpretation
of sensory and memory-related fMRI data across the life span
(Yarkoni et al., 2009; Viswanathan et al., 2020).

Before the fMRI sessions, vision and hearing abilities were
corrected to normal, by using MRI-compatible glasses and a
volume adjustment during the initial scout scan, respectively.
Following the scout scan, participants did a very short training
session of eight visual and eight auditory items including
encoding and retrieval, to get acquainted with the task procedures

and to ensure they understood the instructions. Our following
encoding task was therefore explicit. After completing the two
memory-encoding sessions, participants’ memory retrieval was
tested by two separate subsequent memory tests. Recognition
of auditory stimuli was tested first, followed by a visual
recognition test. Across the auditory and visual recognition
tests, 160 previously encoded (old) and 160 novel (new) items
were presented (80 environmental sounds/80 vocal sounds/80
face images/80 scene images). The participants responded with
two buttons (“Yes” and “No”) to a forced-choice question (in
German): “Did you hear/see this item previously?” (“Haben Sie
das Geräusch bereits gehört?” or “Haben Sie das Bild bereits
gesehen?”). The recognition tests were self-paced, and items were
presented in blocks. In each block, five old items (previously
encoded) and five new items were presented in a random
order. In each block, items were of the same type. Across the
blocks, the presentation order of the encoding intervals was
maintained to ensure an approximately equal time distance
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between encoding and retrieval. Both recognition tests were
done inside the MRI bore immediately after the encoding runs.
The auditory recognition test was done during a diffusion MRI
scan, and the visual recognition test was performed during an
anatomical T1-MPRAGE scan. Diffusion and anatomical MRI
data are not included in this manuscript, yet some of that data
have been examined in relation to head motion (Huijbers et al.,
2017). The fMRI and behavioral data in this paper have not been
published previously. All task scripts are uploaded under https://
www.rheinland-studie.de/data-code/boenniger2020.

Behavioral Analysis
Behavioral analyses were implemented in R v3.3.2 (http://
www.r-project.org/). To quantify memory performance, we
examined the percentage of correct responses for previously
presented items (labeled as hit-rate) and the percentage of
incorrect responses for new items (labeled as FA-rate). We
also calculated the discriminability index d-prime (d′), by
taking the z-standardized hit-rate minus the z-standardized
FA-rate. Additionally, we calculated the response bias (c)
by taking the sum of the z-standardized hit- and FA-rates
multiplied by −0.5. Differences between hit- and FA-rates
were calculated using paired and two-sided t-tests. A one-
sample t-test was used to examine the response bias. To
assess the main effects and the possible interaction between
sensory modality (auditory/visual) and presentation condition
(isolated/parallel) on memory performance, we used an ANOVA.
Correlation analyses described in the supplements employ
Pearson’s method, unless otherwise indicated. Reliability analysis
was done by splitting up the task into its two sessions (for
details, see Supplementary Material “Analysis of reliability”) and
calculating the intraclass correlation coefficients (ICC) (Shrout
and Fleiss, 1979; McGraw and Wong, 1996) with a two-way
model using single units for each participant, estimating the
consistency between the two sessions.

Functional MRI Preprocessing
fMRI data were preprocessed using MATLAB (MathWorks,
Natick, MA, USA), the Statistical Parametric Mapping Toolbox
(SPM8, UCL, London, UK), and GLM Flex (MGH, http://
mrtools.mgh.harvard.edu/index.php/GLM_Flex, MA, USA).
First, we dropped the four dummy volumes. Second, we realigned
the time series to the first volume. Third, we normalized the data
to a standard EPI template in Montreal Neurological Institute
(MNI) 152 space. Fourth, we smoothed the data with a full-
width-half-maximum (FWHM) kernel of 8mm. For assessing
the reliability, we split the task into two sessions (for details see
Supplementary Material “Analysis of reliability”) calculated
on the basis of the slice time-corrected and normalized data.
We calculated ICC values before smoothing the data, using
a publicly available online script for MATLAB by C. Pernet
(https://github.com/CPernet/spmrt/blob/master/spmrt_fMRI_
ICC.m, downloaded 8th February 2018). After calculating the
ICCs on the voxel level, we smoothed the group-level ICC maps
with a FWHM kernel of 8mm for visualization purposes, as
this makes it easier to appreciate the spatial overlap between the
contrast and the ICC map.

Parallel Mixed Model Analysis
The subject-level analyses were conducted in SPM8. For the
main analyses, the SPM regressors were modeled according to
the parallel mixed block/event design (Visscher et al., 2003). In
the Supplementary Material, we also added a model comparison
where we modeled the task data according to a block-only
design and an event-only design using the respective regressors
separately (see Supplementary Material “Model comparison
between mixed, block- and event-only modeling”).

In the mixed design, we included two block regressors:
one for the auditory blocks and one for the visual blocks
(Figure 2). The block onsets were convolved with the canonical
hemodynamic response function using the durations. Passive
rest blocks (fixation) were not modeled explicitly. The block
regressors were solely determined by the task design and
therefore fixed across subjects. In addition, we also added
eight unique event regressors, which were subject specific,
as they were determined by the combination of the task
design (stimulus type: environmental sounds/vocal sounds/face
images/scene images) and the participants’ performance on
the subsequent memory tasks (memory performance: hit/miss)
(Figure 2). To avoid collinearity (Andrade et al., 1999), we
included the parallel (auditory and visual) presentation condition
in an equal amount to the isolated (auditory or visual) and
rest (fixation) blocks to the task. In addition, we modeled
blocks for both sensory conditions (auditory/visual), whereas
events were modeled for each stimulus condition (environmental
sounds/vocal sounds/scene images/face images) separately. To
prevent correlations between regressors due to participants
who remembered or forgot too many items (events) presented
within one block, we aimed for a conservative response bias
(see section Behavioral Results). This also ensured roughly
equal hits/misses, so hits or misses did not dominate single
blocks. After data collection, before the analysis, we checked
the hemodynamic regressors for collinearity using a correlation
analysis. All regressors have shown to be largely independent with
r = 0.3 within sensory conditions and r around zero between
sensory conditions. On average, the event-related regressors were
modeled based on 20.65 environmental hits (SD = 5.87), 19.25
environmental misses (SD = 5.77), 24.63 vocal hits (SD = 6.35),
15.30 vocal misses (SD = 6.30), 26.42 scene hits (SD = 6.16),
13.58 scene misses (SD = 6.16), 23.73 face hits (SD = 6.64),
and 16.27 face misses (SD = 6.64). The event onsets were
convolved with the canonical hemodynamic response function
using no duration. Further, the subject-level models also included
regressors for motion parameters, bad-volume regressors, and a
high-pass filter (1/128Hz). The bad volumes were defined by the
amount of absolute movement in relation to the previous scans,
using a threshold >0.75mm or 1.5◦ in one or more directions.

We defined 10 contrasts. First, the block-based contrast was
performed between auditory and visual blocks (c1) to assess
activity caused by the different sensory conditions. Second, two
event-related contrasts based on stimulus type was performed to
assess within the sensory conditions differences between stimuli
types: (c2) environmental sounds vs. vocal sounds masked by
auditory activity greater than visual activity and (c3) face images
vs. scene images masked by visual activity greater than auditory
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FIGURE 2 | The parallel mixed design consisted of two fixed block regressors, one for the auditory and one for the visual blocks, and eight subject-specific event

regressors. These event-related regressors were determined by the combination of stimulus types, auditory (environmental/vocal) or visual (face/scene) and

subsequent memory performance (hits/misses). Event regressors represent the SPM regressors of a single exemplary subject.

activity. Third, we defined ESA based on the events during
isolated blocks: (c4) all (visual and auditory) hits vs. all misses
(sensory-unspecific ESA), (c5) auditory hits vs. auditory misses
(auditory ESA), and (c6) visual hits vs. visual misses (visual
ESA). We included ESA only for each sensory type (auditory
and visual stimuli), as we considered the type-specific ESA maps
(environmental sounds, vocal sounds, scene images, and face
images) to be too detailed and to have not enough trials. Fourth,
we defined contrasts relative to the rest condition (fixation),
to examine differences and similarities between sustained and
transient activities: (c7) auditory blocks vs. rest, (c8) isolated
auditory events vs. rest, (c9) visual blocks vs. rest, and (c10)
isolated visual events vs. rest.

For all group maps, we used a global threshold of p < 0.05
[false discovery rate (FDR) corrected] with a minimum cluster

size of five voxels (no cluster-size correction). The same threshold
was used to define the masks for the conjunction analyses
(c2/c3). Note that the remaining activities within the mask also
had to survive the global threshold (p < 0.05, FDR corrected).
Statistical group maps were projected to the cortical surface
using FreeSurfer (v5.1) via a standard MNI to the FreeSurfer
average template transformation or were resliced to 2.0 × 2.0
× 2.0mm voxels and overlaid on the standard SPM8 individual
T1-weighted volume.

RESULTS

Behavioral Results
The subsequent memory performance is listed in Table 1.
For each sensory and stimulus condition, the hit-rate was
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TABLE 1 | Memory performance.

Hit-rate FA-rate Hit-rate vs. FA-rate d′

M SD M SD t df p M SD t df p

Auditory 0.57 0.14 0.23 0.13 17.13 59 <0.001 0.99 0.46

Visual 0.63 0.14 0.15 0.12 21.81 59 <0.001 1.48 0.58

Auditory vs. Visual 6.09 59 <0.001

Environmental 0.52 0.15 0.19 0.11 15.73 59 <0.001 1.02 0.54

Vocal 0.62 0.16 0.27 0.16 15.80 59 <0.001 1.02 0.50

Environmental vs. Vocal 0.00 59 1.000

Face 0.59 0.17 0.19 0.15 17.35 59 <0.001 1.21 0.61

Scene 0.66 0.15 0.11 0.11 22.88 59 <0.001 1.87 0.75

Face vs. Scene 9.47 59 <0.001

Mean (M) and standard deviation (SD) for hit-rate, false alarm (FA)-rate, and d-prime (d′) (N = 60). Paired t-tests are used to depict differences between hit- and FA-rates and between

d′ of sensory and stimulus conditions. df indicates the degrees of freedom, t indicates the t-value, and p indicates the p-value representing the significance level.

significantly greater than the FA-rate. These differences between
the hit- and FA-rates indicate that participants were able to
successfully encode items in each category. The duration of
subsequent memory test was between 10 and 19min. The
auditory retrieval took on average 7.32min (SD = 0.86, range
6.40–11.16) and visual retrieval 3.86min (SD= 0.77, range 3.03–
8.18). Within the auditory blocks, the inter-trial intervals for
hits and misses were on average 1,556ms (range 194–2,713ms)
and 1,509ms (range 194–2,713ms), respectively. Within visual
blocks, the inter-trial intervals for hits and misses were on
average 1,136 (range 200–2,200ms) and 1,171ms (range 200–
2,200ms), respectively.

Across all conditions, we found a d′ of 1.19 (SD = 0.40)
and a c of 0.34 (SD = 0.27) [auditory: c = 0.32 (SD = 0.33);
visual: c = 0.39 (SD = 0.33)]. The response bias indicated
that participants were relatively conservative [t(59) = 9.59, p <

0.001] and thus more likely to rate items as “new.” Paired t-
tests indicated that memory performance was better for visual
items compared with auditory items and for scene images better
than for face images, but there was no difference in memory
performance between environmental and vocal auditory stimuli
(Table 1). Similar results, with slightly lower d′ but a comparable
response bias, have been observed for the small sample of older
participants (see Supplementary Material “Behavioral results in
older adults”).

In our paradigm, stimuli were presented either in
isolation or in parallel with stimuli of the other sensory
modality. We computed separate d′ values for each of the
presentation conditions (parallel/isolated) and sensory condition
(auditory/visual). d′ values for subsequent memory of auditory
stimuli were Misolated = 1.03 (SDisolated = 0.51) and Mparallel =

0.95 (SDparallel = 0.45) and for visual stimuli d′ values ofMisolated

= 1.69 (SDisolated = 0.70) and Mparallel = 1.31 (SDparallel = 0.60).
Results of the ANOVA supported a better subsequent memory
performance for visual than for auditory stimuli independent of

the presentation condition (isolated/parallel) [F(1,59) = 37.29,
p < 0.001]. Also the presentation condition showed a main

effect indicating a better subsequent memory performance for
items presented in isolation independent of the sensory modality
[F(1,59) = 40.60, p < 0.001]. Further, we found an interaction

effect between sensory modality and presentation condition
[F(1,59) = 25.62, p < 0.001], which suggested that the parallel
presentation of auditory and visual items was more detrimental
to learning of visual information than of auditory information.

Sensory-Specific Activity
For the auditory blocks, we found the global maxima in the
right auditory cortex and for the visual blocks in the left visual
cortex (Figure 3; c1). For the environmental sounds, the maxima
were in the right temporoparietal junction, and for the vocal
sounds, in the right superior temporal gyrus (Figure 3; c2). For
scenes, we found maxima in the left parahippocampal gyrus, and
for faces, in the left fusiform gyrus (Figure 3; c3). See sensory-
specific activity in Table 2 for the MNI coordinates and values
of the global maxima (activation) and minima (deactivations).
Supplementary Table A.2 in the supplement provides cluster
specific peaks for all contrasts.

Encoding Success Activity
The ESA contrast showed the greatest positive ESA (hits >

misses) (global maximum) in the right hippocampus and the
greatest negative ESA (misses > hits) (global minimum) in the
right precuneus (Figure 4; c4). For auditory items, we found
the maximum positive ESA in left auditory cortex and the
maximum negative ESA in the right precuneus (Figure 4; c5).
For visual items, we found the maximum positive ESA in the
right visual cortex and the maximum negative ESA in the right
precuneus (Figure 4; c6). See ESA in Table 2 for the MNI
coordinates and values and Supplementary Table A.2 for all
cluster specific peaks.

Together, these maps demonstrate that positive ESA in the
auditory and visual cortices is sensory-specific while the positive
ESA in hippocampus and the negative ESA in the precuneus
are sensory-unspecific.

Sustained and Transient Activations
To clarify the patterns of sustained and transient activations,
we mapped the block- and event-related activity vs. the rest
condition for each sensory condition. For sustained (block-
based) auditory activity, we found the global maxima in the right
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FIGURE 3 | Task-based activity contrasts between (Auditory vs. Visual) and within (Environmental vs. Vocal and Face vs. Scene) sensory conditions. (c1) Block-based

contrast between auditory and visual stimulus blocks. (c2) Event-related contrast between environmental and vocal sounds masked by auditory greater visual activity

(see c1). (c3) Event-related contrast between face and scene images masked by visual greater auditory activity (see c1). Brain activity is shown at a threshold of p <

0.05 [false discovery rate (FDR) corrected], and the color intensity shows the t-value. Contrast maps are uploaded under https://neurovault.org/collections/

IABCOPVN/.

superior temporal lobe (Figure 5; c7). For the transient (event-
based) auditory activity, we found the maxima in the left primary
auditory cortex (Figure 5; c8). For sustained visual activity, we
found the maxima in the primary visual cortex (Figure 5; c9).
Finally, for transient visual activity, we found the maxima in the
right fusiform gyrus (Figure 5; c10). For MNI coordinates and
values, see sustained and transient section in Table 2; and for
cluster specific peak activation, see Supplementary Table A.2.
We also examined the local minima (deactivations) of the same
contrasts for which the results and images can be found in the
Supplementary Material “Sustained and transient deactivation”.

In comparison with the results from the block-only or
event-only models, mixed models show slightly different levels
of activity in the regions of interest. The directionality and
the appearance of the main effects stayed the same (see
Supplementary Material “Model comparison between mixed,
block- and event-only modeling”).

Reliability Analysis
ICCs for all calculated behavioral outcomes in total (hit-rate,
FA-rate, and d-prime) and separated for sensory and stimulus
conditions ranged between 0.400 and 0.812, with the highest

ICC in FA-rates and the lowest in stimulus-specific d′ and hit-
rates. Overall, d′ showed an ICC of 0.675. Sensory-specific d′

showed ICCs of 0.622 for auditory and 0.649 for visual stimuli.
More detailed results are described in Supplementary Material

“Analysis of reliability”.
Smoothened voxel-wise ICC analysis for the fMRI data

revealed for all contrasts stronger reliability for regions that
showed also high activation. In c1, the visual and auditory
cortices showed the highest reliability with a global peak of
ICC = 0.663 in the left middle occipital gyrus (MNI(x,y,z): −12,

−100, −1). In c2, ICCs are lower but still showed a global peak

of ICC = 0.206 in the right auditory cortex (middle temporal
gyrus, MNI(x,y,z): 57, −37, 5). In c3, ICC values had a similar
range as in c1 with a global peak of ICC = 0.608 in the
right fusiform gyrus (MNI(x,y,z): 33, −49, −10). C4 showed a
maximum ICC of 0.306 in the right fusiform gyrus (MNI(x,y,z):
27, −82, −13). Other local peaks of ICC in c4 are found, for
example, in the right hippocampus (ICC = 0.132, MNI(x,y,z): 15,
−4, −16) and the left parahippocampal region (ICC = 0.230,
MNI(x,y,z): −15, −4, −19). More detailed results are shown in
the Supplementary Material “Reliability of sensory-specific and
encoding success activity”.
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TABLE 2 | Maximally activated and deactivated brain regions for each contrast.

Contrast Region MNI(x,y,z) t-value BA

Sensory-specific activity

c1 Auditory > Visual Auditory cortex 54, −1, −13 9.90 22/41

Visual > Auditory Visual cortex −3, −91, −4 13.13 17/18

c2 Environmental > Vocal Temporoparietal junction 57, −28, 32 3.78 39/40

Vocal > Environmental Superior temporal gyrus 63, −1, −10 11.65 22

c3 Face > Scene Fusiform gyrus −42, −49, −22 8.17 37

Scene > Face Parahippocampal gyrus −27, −49, −7 24.08 19/36

Encoding success activity (ESA) for isolated blocks

c4 Positive ESA Hippocampus 21, −7, −25 6.09 36/54

Negative ESA Precuneus 9, −70, 44 −6.37 7

c5 Positive auditory ESA Auditory cortex −60, −13, −4 5.72 22

Negative auditory ESA Precuneus 21, −55, 23 −5.06 23

c6 Positive visual ESA Visual cortex 27, −91, −4 5.31 18

Negative visual ESA Precuneus 12, −67, 32 −5.53 7/31

Sustained (blocks)

c7 Auditory > rest (activation) Superior temporal lobe 54, 2, −13 9.71 22

Auditory < rest (deactivation) Visual cortex 18, −100, 8 5.39 18

c9 Visual > rest activation) Primary visual cortex −6, −88, −1 14.81 17

Visual < rest (deactivation) Temporoparietal junction −63, −25, 26 6.01 40

Transient (events)

c8 Auditory > rest (activation) Primary auditory cortex −42, −28, 8 7.89 41

Auditory < rest (deactivation) Putamen 21, 8, −13 7.10 49/52

c10 Visual > rest (activation) Fusiform gyrus 30, −55, −13 8.79 37

Visual < rest (deactivation) Inferior temporal gyrus −30, −49, 5 7.15 19/37

Contrasts are as follows: c1, block-based contrast between auditory vs. visual stimulus blocks; c2, event-related contrast between environmental vs. vocal sounds; c3, event-related

contrast between face vs. scene images; c4, ESA for all (visual and auditory) hits vs. all misses; c5, ESA for auditory hits vs. auditory misses; c6, ESA for visual hits vs. visual misses;

c7, auditory vs. rest blocks; c9, visual vs. rest blocks; c8, auditory events vs. rest; and c10, visual events vs. rest. All brain regions are described with Montreal Neurological Institute

(MNI) coordinates [MNI(x,y,z) ], t-values of the beta coefficients, and the related Brodmann area (BA). Contrast maps are uploaded under https://neurovault.org/collections/IABCOPVN/.

Positive ESA: hits > misses contrast; negative ESA: misses > hits contrast.

DISCUSSION

We demonstrate the feasibility of a parallel mixed design as an
efficient strategy for acquisition of rich fMRI data in limited time.
The acquired data can give information about sensory-specific
brain activation as well as sensory-specific and sensory-unspecific
memory performance (taking the behavioral retrieval task data
into account) using the key contrasts c1 to c6. The additional
contrasts c7 to c10 show that also information on the difference of
sustained (block-based) and transient (event-based) models and
resulting activation can be obtained.

Behavior
In the retrieval task, participants showed a hit-rate close to 50%,
which is optimal for ESA modeling, as it ensures a balanced
number of observations on each side of the contrast (hits
vs. misses). Furthermore, FA-rates were very low, which was
reflected in a conservative response bias and resulted in d′ values
far above chance for each stimulus category (environmental and
vocal sound, and scene and face images). The d′ values far above
chance suggested that the ESA contrast is driven by memory
encoding and not guessing. Although the hit-rates were all close
to 50%, we see slight differences between stimulus conditions

(Table 1). Therefore, we cannot rule out completely that some
stimulus conditions influenced the weighting and the ESA
contrasts and caused small differences between the conditions.
Due to the low number of stimuli and the between-subject
variance, we did not have sufficient observations for reliable ESA
in each separate stimulus category in this sample. If this task is
applied in larger studies, there would be also interesting contrasts
to examine. For now, we focused on examining auditory ESA,
visual ESA, and (overall) ESA.

Already during task construction, we found visual memory
performance to be superior for visual scenes compared with
visual faces or sounds. This was despite our initial (design)

objective to achieve balanced memory scores for each stimulus
type. Given this objective, auditory retrieval was tested before
visual retrieval, so the time delay between encoding and retrieval
for visual stimuli was longer than for auditory stimuli. We
enriched the auditory experience by using various speakers for
the vocal sounds and the environmental sounds by presenting
a large range of stimuli from animals to vehicles. Finally, we
degraded the visual scenes slightly by desaturating the originally
bright colors of the images (Huijbers et al., 2009). Nevertheless,
memory performance for the visual items remained superior,
especially for the scenes (Table 1). This finding replicated
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FIGURE 4 | Brain maps of sensory-unspecific encoding success activity (ESA), assessed through the contrasts between activity of subsequently remembered (hit)

and subsequently forgotten (miss) stimuli of the isolated encoding condition. (c4) ESA across all conditions (auditory and visual). (c5) ESA of auditory stimuli. (c6) ESA

of visual stimuli. Brain activity is shown at a threshold of p < 0.05 [false discovery rate (FDR) corrected], and the color intensity shows the t-value. Contrast maps are

uploaded under https://neurovault.org/collections/IABCOPVN/.

FIGURE 5 | Brain maps of block-related (sustained) and event-related (transient) activations. (c7) Auditory block vs. rest activation (pink). (c8) Auditory event vs. rest

activation (orange). (c9) Visual block vs. rest activation (pink). (c10) Visual block vs. rest activation (orange). Brain activity is shown at a threshold of p < 0.05 [false

discovery rate (FDR) corrected], and the color intensity shows the t-value. Contrast maps are uploaded under https://neurovault.org/collections/IABCOPVN/.

behavioral work that indicated better memory performance for
visual scenes than for any kind of auditory stimuli (Cohen et al.,
2009). In general, visual stimuli are more often remembered
and with more detail in comparison with auditory memory, if
recalled immediately (Thelen et al., 2015; Gloede and Gregg,

2019). However, after a time delay, auditory memories are more
stable than visual memory (Gloede and Gregg, 2019). This
may imply that it may be more difficult to encode auditory
than visual stimuli. In addition, auditory stimuli were presented
above the rhythmic scanner noise, whereas visual stimuli were
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presented in a dark and visually “quiet” environment. Although
we took care to select stimuli that were distinctly different
from the scanning sounds with regard to spectral and temporal
structure, we must consider the possibility that some acoustic
masking occurred. The noisy scanning environment creates
additional challenges for the auditory system on several levels
of processing, in particular for the detection of signal in noise
as well as asking for greater attentional demands and efforts.
With regard to applying this paradigm in studies with a wider
age range, it must be considered that complex listening skills
(such as processing speech in noise) decline with age even when
controlling for overall hearing thresholds. Also, considering the
blood oxygenation level-dependent (BOLD) effect, it is likely
that the continuous scanner noise resulted in continuously high
activity in the auditory areas, rendering it more difficult to detect
more subtle effects of condition on top of this saturation effect
(Tomasi et al., 2005). However, we decided against presenting
auditory stimuli in quiet(er) pauses (between volumes), as such a
sparse sampling paradigm would have significantly extended the
scanning time. In future developments of such paradigms, and
especially in studies including older adults, novel methodological
approaches such as interleaved silent steady state or special
scanning sequences that minimize acoustic impact could be
considered [see methodological review by Peelle (2014)].

Looking into differences between the two presentation
conditions (isolation and parallel presentation), we also observed
differences in memory performance. Isolated presentation
resulted in better memory performance for both visual and
auditory items. This is consistent with the model that memory
encoding is limited by a working memory capacity (Baddeley,
2003) and that it is impaired if semantically incongruent
information is presented in parallel (Thelen et al., 2015). One
interpretation is that divided attention between auditory and
visual information is detrimental to encoding. Note that we tested
the auditory and visual retrieval separately, and the information
of the two parallel presented stimulus classes was not congruent.
There is a large body of evidence that multisensory encoding
of congruent information is beneficial for memory performance
[Shams and Seitz, 2008; Thelen et al., 2015), for review, see (Quak
et al., 2015)]. Therefore, depending on the scientific aim, one
could adapt our paradigm andmatch voices with faces and scenes
with environmental sounds. By doing so, memory performance is
likely to improve at the expense of either the factorial design or a
longer acquisition period.

Interestingly, the relative difference between isolated and
parallel encoding was not the same for auditory and visual
stimuli. We found that visual memory performance declined
more under parallel conditions, while auditory encoding was
less hindered. This has also been found in a working memory
study on isolated and parallel retention of auditory (vocal) and
visual (abstract objects) information (Saults and Cowan, 2007).
Together with the finding from Gloede and Gregg (Gloede
and Gregg, 2019) that visual memory is more hindered by a
delayed recall than auditory memory, this suggests that auditory
encoding might be more difficult but relatively robust. One
explanation for the robustness of auditory encoding over the
presentation conditions might also be related to the noisy

scanner environment, creating continuously higher demands
on auditory processing during both presentation conditions,
as discussed above. This might have reduced the size of the
effect of additional between-modality parallel processing for the
auditory stimuli. A second explanation could be that learning
auditory stimuli in similar detail as visual memory is more
difficult and takes more attentional effort (Gloede and Gregg,
2019). Therefore, parallel conditions that demandmore attention
influence auditory information less than visual memory.

As discussed above, d′ values showed that the participant’s
memory scores were far above chance. Within the young adults,
we did not find ceiling effects, and we did not find floor effects
in the older adults (see Supplementary Material “Association
between age and memory performance”). Together, this makes
the task suitable for a life span study. We also assume that our
task can be performed by participants with cognitive impairment
and dementia. Sperling et al. (2003) showed that mild Alzheimer’s
disease patients were able to do a face–name association task in
which participants had to remember which name was associated
with which face. In comparison, we had similar to even less
instructions in our encoding task, and our retrieval task was
easier, as we probed recognition memory, via old/new judgment,
and not associative memory with previously seen lures. Further,
for the recognition task, the questions and the answering options
were shown on the screen for each trial. In conclusion, as long
as participants are willing to be scanned for at least 10min, the
task should be applicable for people across all age ranges as well
as people affected by neurodegenerative diseases.

Sensory-Specific Activity
Mapping of perceptive auditory and visual brain activity
(Figure 3: c1) showed quite consistent results with previous work
with activity for auditory conditions in environmental and vocal
selective brain regions (Belin et al., 2000; Pernet et al., 2015;
Agus et al., 2017; Young et al., 2020) and with activity for visual
conditions in face- and scene-selective brain regions, i.e., the
fusiform face and the parahippocampal place area (Kanwisher
et al., 1997; Epstein and Kanwisher, 1998; Gazzaley et al., 2005;
Collins and Olson, 2014; Young et al., 2020). Response strength
differences for vocal vs. environmental sound stimuli are also
consistent with previous work (Belin et al., 2000, 2002; Mostafa,
2012). This imbalance could reflect either the properties of the
auditory stimuli (spectral frequencies and temporal structure)
or the organization of the auditory system. Although we found
slightly stronger responses to scene stimuli, the contrast between
face and scene stimuli was more balanced. These more similar
levels of activity might also reflect either some property of the
visual stimuli (i.e., similar discriminability) or the organization
of the visual system.

From a design perspective, the relative imbalance in evoked
auditory activity is suboptimal. We mostly used stimuli from
previous experiments to replicate known activity patterns by
using the parallel mixed design (Belin et al., 2000; Sperling et al.,
2003; Huijbers et al., 2009). The application of two different
stimulus conditions for visual and auditory senses allowed a
detailed examination of the sensory cortices, and it enabled
us to use the task also in people with possible or known
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problems in parts of the sensory cortices. If, for example, a
person has face recognition dysfunction, data from the visual
scene stimuli can still be used. As we aim to make this task
suitable for large-scale population-based studies, which mostly
examine people of different ages and health states, it can give
usable and comparable information on a wide range of sensory
and memory functions.

Encoding Success Activity
The ESA maps demonstrated that the auditory cortex and visual
cortex showed sensory-specific ESA (Figure 4). In contrast,
the hippocampus and a subset of default network structures—
including the precuneus and angular gyrus—showed ESA across
both sensory domains. These results suggest that sensory-
independent, or multimodal, brain regions form a core memory
network (Johnson and Rugg, 2007; Kim et al., 2010; Gilmore
et al., 2015; Kim, 2019). The precuneus showed negative ESA,
consistent with previous findings on task-induced deactivation
in the default network (Raichle et al., 2001; Daselaar et al., 2004;
Huijbers et al., 2013; Krieger-Redwood et al., 2016). Especially
negative ESA seems to be altered under the influence of early
Alzheimer’s disease pathology (Sperling et al., 2010; Ewers et al.,
2011; Jagust, 2013; Fu et al., 2020). Although hit-rates for visual
stimuli and especially for scene stimuli were slightly higher
and might have resulted in an unbalanced weighting (compare
Discussion - Behavior section), the consistency with previous
results demonstrates that small differences in the weighting did
not influence results strongly. Therefore, our paradigm might be
an efficient alternative for clinical and population studies that
are interested in the functional responses of the memory system.
Further, the encoding of both auditory and visual information
allows investigators to disentangle factors that influence sensory-
specific responses vs. alterations to the core memory system.
One idea could be that age-related hearing loss is likely to affect
auditory ESA, glaucoma in the retina is likely to affect visual
ESA, and Alzheimer’s pathology might target ESA in the core
memory system. Our task is properly designed to disentangle
these peripheral changes in sensory systems from alterations to
the core memory network.

Sustained and Transient (De)Activations
The activation maps (task > rest) between sustained and
transient activities show largely an overlap between activated
regions indicating that sustained and transient activations co-
occur simultaneously in sensory cortices (Visscher et al., 2003;
Petersen and Dubis, 2012). However, deactivation maps (rest
> task) show no overlap (Supplementary Figure A.2). Hence,
we did not find any brain region—within or outside of the
default network—that simultaneously showed sustained and
transient deactivations. The lack of overlap between sustained
and transient deactivations is not easily explained by overfitting
or competition within the mixed model, as we did find overlap
between sustained and transient activities. This is also confirmed
by our comparisons of parallel mixed model with the block-
only and event-only models (Supplementary Figure A.3). We
also found that the majority of brain regions showed transient
and not sustained deactivations. We interpret these findings in

terms of task-intrusive and spontaneous thoughts (Weissman
et al., 2006; Andrews-Hanna et al., 2010; Christoff et al., 2016).
Task-induced deactivations are modulated by task demands
(McKiernan et al., 2003) consistent with transient deactivation
in response to the task. This would mean that the higher the
task demands, the more deactivation will occur. The relative
lack of brain regions that showed sustained deactivation suggests
that a stable pattern of reduced activity is very rare, whereas
event modeling gives more information about deactivation.
This finding is also consistent with other mixed design studies
that suggested mean activity is a relatively poor predictor of
task performance (Garrett et al., 2014) because it disregards
differences between stimuli and easily overestimates outlier.
Finally, it is also possible that task-induced deactivations are
modulated by, but not very tightly coupled to, stimulus onset.
This would hinder the separation of sustained and transient
deactivation. This last explanation is consistent with spontaneous
thoughts (e.g., on the task instruction or other distractions
coming from the situation in the scanner) that are partially
restricted by the cognitive demands but not tightly coupled to
stimulus onset.

Reliability
As we did not have data to conduct a test–retest reliability
across the complete task, we estimated the task reliability using
the second task session as the retest session. ICC analysis
for the behavioral overall and sensory-specific data according
to Koo and Li (2016) showed moderate-to-good reliability.
Stimulus-specific ICCs were slightly lower. However, the two
task sessions were not identical, as the order of blocks was
different and new stimuli of the same conditions were presented.
Therefore, we expect to have underestimated the actual ICC
values, and we consider the obtained values to be quite
plausible. The poor-to-moderate reliability values in the stimulus
conditions confirmed our decision to exclude the separate
stimulus conditions from ESA analyses. Overall, the moderate-
to-good behavioral reliability permits the application of this task
as an fMRI paradigm.

Voxel-wise ICC analysis for fMRI data smoothed on group-
level shows in general lower ICC values than the behavioral
data. These values are similar to those of other studies that
reported low or very heterogeneous ICC values for fMRI tasks
(Bennett and Miller, 2010; Barch et al., 2013; Brandt et al.,
2013; Elliott et al., 2020). fMRI reliability is influenced by many
factors, including scanner noise, physiological noise, cognitive
factors and processes, sample size, sample characteristics, and
task characteristics (Bennett and Miller, 2010; Noble et al., 2020).
We observed in most contrasts high ICC values in regions
showing high activity (especially visual and, more specifically,
in scene-related areas). This is not completely unexpected, as
high fMRI activity can reduce the influence of errors, which
results in a decreased within-participant variation, which then
leads to an increase in ICC values (Bennett and Miller, 2010;
Brandt et al., 2013). However, we observed also in some
highly activated regions a fairly low ICC (e.g., hippocampus,
precuneus, or superior temporal gyrus). This could be a
property of the regions showing a greater variability in the
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hemodynamic response. In this case, low ICC represents a low
congruence between the two halves of activity of the task within
participants, although activation was commonly observed over
the complete task. Still, we consider our reliability estimates
as quite realistic and conclude that even with the parallel
presentation, the reliability in comparison with other fMRI
studies is not reduced.

LIMITATIONS

Parallel mixed block/event-related fMRI designs measure
transient and sustained information within a single,
time-efficient paradigm that includes a large number
of stimuli. However, this makes mixed designs very
complex, and regressors are always affected by both
events and blocks. Especially, events are always modeled
on a changing baseline. This can make it difficult
to interpret the comparison between transient and
sustained effects.

Our study was sufficiently powered to calculate sensory-
specific and overall ESA. However, we were not able to calculate
stimulus-specific ESA within our sample. In the current study,
we only included behavioral results from a small sample
of older participants. Although their memory performance
was slightly worse than that of participants in our younger
sample, the hit-rates were close to 50%. Therefore, we would
expect this task to be also applicable in older populations
as well.

Finally, we would like tomention that we were able to estimate
low-to-moderate reliability using a split-half reliability. These
estimates are comparable with those of other fMRI tasks, but
reliability should be kept in mind especially when analyzing
smaller sample sizes (Turner et al., 2018; Bossier et al., 2020;
Noble et al., 2020).

CONCLUSIONS AND OUTLOOK

The presented parallel mixed design task paradigm enables
efficient mapping of a versatile number of contrasts in limited
time, making it attractive to acquire task-evoked fMRI in an
epidemiological context for large-scale studies. The ability to
map sensory activity as well as sensory-specific and unspecific
ESA, and the ability to separate sustained and transient activities,
can provide new insights into the dynamics of fMRI across
the life span (Jimura and Braver, 2010; Petersen and Dubis,
2012). Currently, it remains unclear how multiple modifiable
factors like lifestyle, education, or blood pressure, together
with non-modifiable factors, like APOE status or gender,
determine the brain’s functional responses over age and to
pathology. Only large-scale population studies that possess
sufficient power to dissociate these factors can provide answers
to these questions.

Besides these relevant questions, we would like to encourage
future studies using the task to evaluate between-scanner
reliability and to explore intra-individual variability in more
depth. As the task is easily applicable, it does not require

special scanning parameters and shows quite strong activation
in the relevant brain regions relating to the main functions,
we would not assume a huge loss of information if the data
were collected with different scanners. As mentioned, the task
requires only 10min of fMRI scanning time. However, for
generating ESA contrasts, an additional 10 to 19min of (post-
scan) recognition task needs to be performed. For many large-
scale population studies, the limiting factor is the fMRI scanning
time. The additional recognition task can be performed during
other structural scans, which makes it user-friendly and cost-
efficient. Previously, we demonstrated that the scan quality
was not affected, or even benefitted, from performing a task
inside the MRI (Huijbers et al., 2017). In case no other scans
are needed, it is also possible to perform the recognition
task outside the scanner, as long as the delay is constant for
all participants.
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