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Abstract
Globally, cardiovascular diseases take the lives of over 17 million people each year, mostly through myocardial infarction, or MI, and
heart failure (HF). This comprehensive literature review examines various aspects related to the diagnosis, prediction, and prognosis
of HF in the context of machine learning (ML). The review covers an array of topics, including the diagnosis of HF with preserved
ejection fraction (HFpEF) and the identification of high-risk patients with HF with reduced ejection fraction (HFrEF). The prediction of
mortality in different HF populations using different ML approaches is explored, encompassing patients in the ICU, and HFpEF
patients using biomarkers and gene expression. The review also delves into the prediction of mortality and hospitalization rates in HF
patients with mid-range ejection fraction (HFmrEF) using ML methods. The findings highlight the significance of a multidimensional
approach that encompasses clinical evaluation, laboratory assessments, and comprehensive research to improve our under-
standing and management of HF. Promising predictive models incorporating biomarkers, gene expression, and consideration of
epigenetics demonstrate potential in estimating mortality and identifying high-risk HFpEF patients. This literature review serves as a
valuable resource for researchers, clinicians, and healthcare professionals seeking a comprehensive and updated understanding of
the role of ML diagnosis, prediction, and prognosis of HF across different subtypes and patient populations.
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Introduction

Ventricular systolic or diastolic dysfunction resulting from
structural or functional heart abnormalities characterizes heart
failure (HF)[1]. As the final stage of diverse heart diseases, HF
accounts for one-third of worldwide deaths from cardiovascular
disease, according to the American College of Cardiology. In the
United States, over 5million people suffer fromHF, with 550 000
new cases diagnosed annually[2,3]. In China, ~8.9 million people
have HF, with a 1.3% prevalence rate for those over 35 years
old[4]. The global mortality rates and increasing prevalence of HF
make it a significant public health concern, with annual costs
estimated at $29 billion due to high hospitalization rates and
unsatisfactory prognoses[5]. Predicting mortality can assist doc-
tors in creating appropriate treatment plans, preventing

worsening conditions, reducing medical expenses, and enhancing
quality of life.

HF is linked to common indicators like difficulty breathing,
swelling in the legs, and feeling tired, alongside physical signs such
as crackling sounds in the lungs during examination and increased
pressure in the jugular veins[6]. Currently, natriuretic peptides and
common HF signs and symptoms are used to diagnose HF with
preserved ejection fraction (HfpEF), which is then classified
according to the left ventricular ejection fraction (LVEF)[7].
Clinical investigations have varied the cut-off LVEF for HFpEF
between 40%, 45%, and 50%. According to the most recent
recommendations[7], HFpEF is identified when a patient exhibits
symptoms and indications of HF with an LVEF below 50% and
indications for higher vascular volume (a rise in natriuretic pep-
tides, for example), myocardial abnormalities, or both.

HFpEF is a complex clinical illness due to its high genetic het-
erogeneity and varied presentations[8,9], as well as a possibly
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nonlinear link between genes and clinical results. Thus, traditional
linear generalized models [such as logistic regression (LR)] are
subpar for risk forecasting. It is recommended that advanced sta-
tistical approaches and ML methods be researched for HFpEF
prediction because they have the potential to improve classification
performance over traditional statistical tools by taking into account
nonlinear impacts of variables to arrive at an accurate prediction[9].

HF can stem from various underlying conditions, with cardiac
amyloidosis being a notable contributor. It is important to rule out
amyloidosis during the differential diagnosis of HF, especially in
older patients without conventional risk factors for HFpEF
(hypertension, obesity, and type 2 diabetes mellitus)[10,11].
Dyspnea, edema, angina, and syncope are the most typical signs of
heart disease. Peripheral neuropathy, numbness, neuropathic pain,
and loss of muscular strength in the lower limbs are examples of
noncardiac symptoms that may raise concern. Autonomic neuro-
pathy has been linked to gastrointestinal symptoms as nausea,
vomiting, diarrhea, and weight loss. Sexual problems, low blood
pressure when standing, and bladder problems caused by nerve
damage are all autonomic symptoms[12]. Historically, a biopsy was
the ‘gold standard’ for diagnosing amyloidosis[12].

HF can also result from cardiomyopathies. The most prevalent
kind of familial cardiac disease is hypertrophic cardiomyopathy.
Hypertrophy of the left ventricular (LV) muscle that is unrelated
to increasing afterload characterizes hypertrophic cardiomyo-
pathy. There is a hypertrophy, disorganization, and fibrosis of
myocytes, as seen on a histopathology slide. Common signs
include syncope, ventricular tachycardia, and orthopnea (dys-
pnea at rest)[13,14].

However, identifying HFpEF is still difficult. Elevated pul-
monary capillary wedge pressure at rest 15 mmHg or during
activity 25 mmHg by right catheterization is the gold standard
test for verifying HFpEF. The diagnostic criteria for HFpEF in the
current recommendations are not without some degree of
uncertainty. Natriuretic peptide and echocardiographic data are
used to diagnose HFpEF, although both have limited
sensitivities[15]. For instance, there may be only limited use in
using natriuretic peptides to assess HFpEF[16]. Natriuretic pep-
tides were within normal limits in a sizable proportion of HFpEF
patients despite the presence of clinical, echocardiographic, and
hemodynamic markers of HF[17].

Diagnosing HFpEF can be difficult since the symptoms are
ambiguous and may be caused by illnesses other than HF, such as
anemia, chronic lung disease, and chronic kidney disease[18].
Importantly, in a patient presenting with HF symptoms, a diag-
nosis of HFpEF can be made with only an EF >50% and signs of
elevated LV filling pressure (elevated E/e’ ratio, raised left atrial
volume, higher BNP or NT-proBNP, or increased invasive LV
filling pressure). The lack of ‘diastolic dysfunction’ on echo-
cardiography does not rule out the diagnosis of HFpEF if there is
other objective evidence of high LV filling pressure at rest or with
activity. This is because diastolic function classification can be
relatively varied and subjective.

Recently, the H2FPEF and HFAPEFF scores[19] have been
developed to address the diagnostic conundrum of HFpEF. Age,
BMI, AF, and hypertension are the four clinical components,
whereas E/e′ and right heart valve pressure are the two echo-
cardiographic components that make up the H2FPEF score.
Minor and major criteria within the practical (E/e′, e′, regur-
gitated tricuspid velocity, global vertical strain), structural (left
atrial volume score and measures suggesting LV hypertrophy),

and natriuretic peptides domains make up the HFAPEFF score. A
diagnosis ofHFpEF can bemadewith anH2FPEF score of 6 or an
HFA-PEFF score of 5. The authors recommend invasive hemo-
dynamic assessment, preferably with exercise, or exercise echo-
cardiography for patients with an H2FPEF score of 2–5 or an
HFAPEFF of 2–4 points[20,21].

The management of HF poses significant financial burdens in
high-income nations[22]. While traditional diagnostic modalities
have provided invaluable insights into HF pathophysiology, their
limitations in capturing the multifaceted nature of the disease
underscore the need for innovative approaches. Recent advance-
ments in diagnostic scoring systems, exemplified by H2FPEF and
HFAPEFF, offer promising avenues for addressing diagnostic
uncertainties and optimizing patient care. In this context, ML
emerges as a transformative tool capable of harnessing the wealth of
clinical data to facilitate more accurate risk prediction, prog-
nostication, and treatment optimization in HF. By leveraging com-
plex algorithms and computational techniques, ML methodologies
hold the potential to unravel intricate patterns within large datasets,
thereby empowering clinicians with actionable insights for perso-
nalized patient care[23]. A range of methods has been employed for
data collection and analysis of HF, including the application of ML
classifiers to predict patient survival, implementation of supervised
deep learning (DL), and ML algorithms[24].

In this holistic review of the literature, we aim to shed light on
the latest updates in an intuitive fashion on the use of ML for HF
diagnosis, prediction and prognosis to give an updated overview
to practicing care-givers and readers alike. A central illustrative
figure depicts the gist of this review shown in Figure 1.

Heart failure diagnosis

Artificial intelligence (AI) is a technology that can perform tasks
that typically require human intelligence. In the field of cardio-
vascular medicine, AI is being used more and more to transform
the way we diagnose, treat, predict risks, provide clinical care to
patients, and discover new drugs[25]. Unterhuber et al.[26] utilized

Figure 1. Machine-learning in heart failure diagnosis and prediction of read-
mission and mortality risks.
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a convolutional neural network (CNN) model to distinguish
between individuals with HFpEF and controls. There were two
patient cohorts in the trial. There were 1884 individuals in the
derivation cohort who had exertional dyspnea or similar, pre-
served ejection fraction (50%) and clinical signs suggesting for
coronary artery disease. The ECGs were segmented, providing
77 558 samples in total. The European Society of Cardiology
(ESC) criteria categorize HFpEF and control patients using CNN.
An external cohort of 203 participants from a prospective HF
screening program served as the CNN’s validation cohort. The
CNN demonstrated a high discriminatory ability, achieving an
AUC of 0.92 on the blinded test set, with a sensitivity of 0.98 and
specificity of 0.63[27]. These findings demonstrated the first DL-
enabled CNN for detecting patients with HFpEF based on ESC
criteria, using NT-proBNP values in the diagnosis algorithm
among at-risk patients. The CNN’s appropriateness was eval-
uated on an external validation cohort of individuals at risk of
developing HF, and the screening performance was essential.

These findings also highlight the potential of CNN-based ML
models to aid in HFpEF diagnosis and management, offering
valuable insights to clinicians for optimized patient care. Further
research and validation are warranted for their practical integra-
tion. In another study, Wang et al.[27] focused on utilizing DL with
long short-term memory to identify high-risk HFrEF patients using
a large US nationwide commercial insurance dataset. Long short-
term memory, a type of recurrent neural network, is commonly
used in DL for sequential data analysis. For example, it can predict
HF progression by analyzing a sequence of patient vital signs and
medical measurements as schematically presented in Figure 2[28].

Heart failure prediction

Mortality in heart failure with reduced ejection fraction
(HFrEF)

Tohyama et al.[28] emphasized the effectiveness of ML in pre-
dicting prognosis for HF patients using the Japanese

Administrative Claims Database (ACD). The ML approach
outperformed conventional risk models, leading the authors to
develop a new prediction model called SMART-HF. By com-
bining key variables identified throughML analysis, SMART-HF
demonstrated equivalent or superior performance while requir-
ing only a small number of easily accessible variables. These
variables can be assessed through a brief interview, even by
nonhealthcare providers, enhancing the model’s usability.
Among the ML algorithms considered, the voting classifier
algorithm emerged as the most effective for predicting mortality
in HF patients. This algorithm aggregates predictions from
multiple experts using different methods and determines the
outcome based on the majority. By leveraging the voting classifier
algorithm, HF specialists can access more accurate predictions,
facilitating decision-making in patient care. The permutation
feature importance technique proved valuable in understanding
the significance of different predictors, including mortality in HF.
This technique involves shuffling the values of a single feature and
observing its impact on prediction accuracy. If a feature is crucial,
shuffling its values significantly reduces accuracy. The voting
classifier algorithm is schematically described in Figure 3. By
utilizing this technique, HF specialists can identify the most
influential factors in predicting mortality, enabling them to
prioritize essential aspects of patient management. Tohyama
et al.[28] reported that evaluating the models’ effectiveness in
ranking HF patients based on mortality risk, metrics such as
C-statistics, including AUC-ROC, were utilized. A higher
C-statistic indicates a better ability to correctly order patients in
terms of their predicted mortality probabilities. Although the
differences in C-statistics between the models were marginal,
SMART-HF offered distinct advantages compared to the other
models that were studied. The use of ACD-based prediction
models can also facilitate ML-based modeling research in various
diseases in the future[29].

ML algorithms have also been utilized by others, for instance,
Mpanya et al.[30] used ML to predict all-cause mortality in HF
patients in lower-middle income countries. They trained six

Figure 2. Long-short-term memory is a form of neural network that receives data on patient characteristics through the input gate. The memory gate is only a
conveyor belt. The input gate selectively feeds data into the memory gate as needed. The forget gate deletes data that does not need to be remembered. The
output gate leads to the needed output, which could be prediction, diagnosis, or prognosis.
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supervised ML algorithms. The performance of different algo-
rithms was compared, revealing that support vector machines
(SVM) exhibited desirable performance, achieving an area under
the receiver operating characteristic (AUROC) curve of 0.77 and
high accuracy during training and testing. ML algorithms and
conventional statistical LR models identified similar predictors of
all-cause mortality inHF, as revealed by the study[31]. The SVM is
a valuable tool for predicting outcomes in HF patients. It employs
a technique of drawing a line to separate patients who may
encounter a particular outcome, such as mortality, from those
who are less likely to. This line is strategically positioned to
maximize the separation between the two groups, ensuring pre-
cise classification that is schematically presented in Figure 4. By
utilizing SVM, healthcare professionals can identify patients with
a higher risk of adverse outcomes, facilitating informed treatment
decisions. This approach enables the distinction between HF
patients with a higher likelihood of mortality and those with a
lower likelihood, enabling the implementation of personalized
patient management strategies. Both SVM and LR models iden-
tified various clinical factors as predictors, including medications
(such as furosemide, beta-blockers, and spironolactone), physical
examination findings (such as early diastolic murmur and para-
sternal heave), and comorbidities (such as coronary artery disease
and ischemic cardiomyopathy). These predictors align with pre-
vious studies that have reported similar associations between
clinical parameters and mortality in HF[31]. The study empha-
sized the significance of data quality and outlined plans to
enhance the sample size by collecting data from multiple cardiac
centers in sub-Saharan Africa, aiming to improve model
performance[31].

Mortality in the ICU

In a retrospective cohort study conducted by Li et al.[29], ML
algorithms were developed and validated for predicting the
mortality of patients with HF in an ICU setting. Four ML algo-
rithms, namely XGBoost, LR, random forest (RF), and SVM,
were developed and compared. Superior performance was
observed in the XGBoost model compared to the other algo-
rithms. The XGBoost model was further explained using the
SHAP (SHapley Additive exPlanations) method, which enhanced
clinical interpretability and provided insights into the decision-

making process. The study focused on a threshold probability
range of 15–25% to prevent ineffective clinical interventions[32].
This range helped guide decision-making based on predicted
probabilities. Setting a threshold probability range is akin to
establishing boundaries to determine the likelihood of an event.
For example, if the predicted probability for a person is above 0.7
within a threshold range of 0.3–0.7, it would be considered likely
that they have the disease. On the other hand, if the predicted
probability falls below 0.3, it would be deemed unlikely.
Predicted probabilities between 0.3 and 0.7 would be regarded as
uncertain and would require further investigation. This approach
simplifies decision-making and categorizes individuals into dif-
ferent groups based on their predicted probabilities, enabling
informed actions or further examination. Within the specified
threshold range, the XGBoost model outperformed the other
strategies examined. The most significant predictor variable was
found to be the average blood urea nitrogen (BUN) level. Previous
studies have also indicated the importance of BUN as a key pre-
dictor of HFmortality when usingML algorithms. BUN serves as
a marker of renal function and reflects neurohormonal activation
in HF patients. However, the study highlights the need for further
research to explore the applicability of the SHAP method, as
external validation was lacking.

In another study, an interpretable ML-based risk stratification
tool for in-hospital all-cause mortality in ICU patients with HF
was developed and validated by Chen et al.[31]. The authors
compared their ML model with traditional risk prediction
methods and highlighted the clinical implications of accurate
prognostic evaluation in ICU patients with HF. ML enables the
capture of both linear and nonlinear relationships from high-
dimensional datasets compared to traditional generalized linear
regression models, which fail to capture complex relationships
between risk prediction factors and mortality endpoints in HF.

Figure 3. The voter classifier algorithm takes input from multiple classification
models made by experts; aggregates predictions based on those models and
determines the outcome based on the majority input.

Figure 4. Patients separated into Class 1 (lower mortality risk) and Class 2
(higher mortality risk) using a support vector model. This line is strategically
positioned to maximize the separation between the two groups, ensuring
precise classification.

Saqib et al. Annals of Medicine & Surgery (2024) Annals of Medicine & Surgery

3618



Analyzing and modeling such datasets require tailored approa-
ches to effectively extract meaningful information and overcome
dimensionality challenges. Chen et al.[31] utilized the XGBoost
algorithm to develop a novel model that considered clinical fea-
tures, comorbidities, and medication information. The model
exhibited improved prediction performance compared to the
Logistic model and the Get With The Guidelines-Heart Failure
(GWTG-HF) model for all-cause mortality risk in ICU patients
with HF. Through LASSO screening, the authors selected 17
easily accessible variables with high predictive value, facilitating
risk assessment in primary hospitals. The SHAP value was
employed to optimize prediction and interpretability of the
XGBoost model, providing visual interpretation of the model’s
decision-making process. Furthermore, a website calculator was
developed by the authors to assist physicians in understanding
key features and prediction results[33].

Mortality in heart failure with preserved ejection fraction
(HFpEF)

Gao et al.[32] conducted a comprehensive study to explore the
prognostic value of circulating biomarkers in patients hospita-
lized for HFpEF. HFpEF is a common type of HF characterized
by a preserved ejection fraction and diastolic dysfunction. The
authors aimed to identify biomarkers that could predict the risk
of all-cause death and cardiovascular death in these patients.
Using Cox proportional hazards models, the researchers exam-
ined various circulating biomarkers to assess their association
with the 2-year risk of death in HFpEF patients. They found
several biomarkers to be significantly correlated with long-term
mortality risk. One noteworthy finding was the independent
predictive value of endoglin, a membrane co-receptor for trans-
forming growth factor-b. Elevated levels of endoglin in the cir-
culation were associated with inflammation, endothelial
dysfunction, cardiac fibrosis, and vascular remodeling. These
findings suggest that endoglin can serve as an important prog-
nostic marker for HFpEF patients, reflecting the severity of car-
diac impairment and predicting long-term mortality risk[34]. To
further improve risk prediction in HFpEF, the authors developed
a prediction model based on ML techniques[34]. The model was
implemented using the SVM method, a powerful algorithm for
classification and regression analysis. The results demonstrated
the model’s ability to accurately predict the 2-year risk of all-
cause death in patients with acute HFpEF. This suggests that
incorporating multibiomarker models based on ML can enhance
risk stratification and provide valuable insights for clinicians
managing HFpEF patients. The practical application of the
multibiomarker prediction model holds promising potential in
clinical practice. Analytical platforms capable of quantifying
multiple protein biomarkers simultaneously using small plasma
samples are already available, making multibiomarker tests
affordable and accessible to most patients. Implementing this
model in routine clinical practice could improve risk assessment
and aid in personalized treatment strategies for HFpEF patients.
Gao et al.’s[32] study sheds light on the prognostic value of cir-
culating biomarkers in HFpEF patients. The development of a
ML-based prediction model further enhances risk stratification,
offering potential benefits for clinical decision-making in HFpEF
management. Continued research in this field and the translation
of these findings into clinical practice hold promise for improving
outcomes in HFpEF patients.

In another study, Zhou et al.[35] explored the use of ML
methods to predict the survival status of patients with HFpEF
based on gene expression data. They focused specifically on
HFpEF, which distinguishes their study from previous research
that predominantly focused on predicting outcomes in HF in
general. They compared six different prediction models and
found that the Genetic Algorithm-Kernel Partial Least Squares
(GA-KPLS) model, utilizing gene expression data, showed high
accuracy in predicting survival status in HFpEF patients[35]. To
illustrate the GA-KPLS model, let’s consider a HF cardiologist
using it to predict hospital readmission in HF patients just as an
example. The model analyzes various patient factors, such as age,
blood pressure, kidney function, and medication usage. It iden-
tifies age and kidney function as the most influential factors. The
KPLS algorithm then examines the relationship between these
factors and hospital readmission, revealing that older age and
impaired kidney function are strongly associated with a higher
likelihood of hospital readmission in HF patients as described in
Figure 5. By applying the GA-KPLS model, the cardiologist can
predict whichHF patients are at a greater risk of being readmitted
to the hospital based on their age and kidney function. This
knowledge allows for proactive measures such as closer mon-
itoring, medication adjustments, or specialized interventions to
be implemented for these high-risk patients, ultimately reducing
hospital readmissions and improving patient outcomes. The GA-
KPLS model captures nonlinear relationships using kernel func-
tions, resulting in more accurate predictions. This emphasizes the
advantage of ML techniques in capturing complex patterns
within genomic data. The potential applications of risk prediction
models based on the GA-KPLS model are also discussed,
including motivating patients to adhere to treatments, assisting
clinicians in treatment decisions for high-risk patients, and
informing the design of future HFpEF clinical trials[36].

Zhao et al.[37] conducted a study to develop and validate a risk
prediction model, called HFmeRisk, for early assessment of
HFpEF using data from the Framingham Heart Study (FHS)
cohort. HFmeRisk combines different methods, including epige-
netic factors and environmental exposures, to provide valuable
insights for risk assessment of HFpEF at an early stage[37]. To
illustrate two of the methods used in HFmeRisk, let’s consider a
example. Suppose we have a dataset with features such as age,
blood pressure, cholesterol levels, and genetic markers for a
group of patients. The LASSO algorithm is employed to identify
the most relevant features by shrinking the less important ones
towards zero. It helps determine which factors, such as age and
blood pressure, have a stronger association with the risk of
HFpEF while downplaying less significant factors. On the other
hand, the XGBoost algorithm combines multiple weak models
(decision trees) to create a more powerful predictive model. It
iteratively learns from the data, giving more importance to
samples that are difficult to predict correctly. Zhao et al.[37]

reported how XGBoost could discover complex relationships
between features and the risk of HFpEF, such as the combined
impact of high cholesterol levels and specific genetic markers. By
incorporating these methods into the HFmeRisk model, along
with the deepFM algorithm that learns from data patterns, the
tool offered a comprehensive assessment of early risk for HFpEF.
It equips clinicians with valuable information to make informed
decisions and take proactive measures in preventing or managing
HF in patients.
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Mortality and hospitalization in patients with heart failure with
mildly reduced ejection fraction (HFmrEF)

In their study, Zhao et al.[36] focused on developing and validating
risk prediction models for HF hospitalization and all-cause mor-
tality in patients with mildly reduced ejection fraction (HFmrEF).
This subtype of HF is characterized by an ejection fraction ranging
from 41 to 49%. Zhao et al.[36] developed eight alternative risk
models. They employed ML techniques such as RF and LASSO
regression to construct these models. The models incorporated
various easily measurable clinical risk factors, making them prac-
tical for use in clinical practice. The study revealed that the physical
condition of patients, as assessed by the Kansas City
Cardiomyopathy Questionnaire (KCCQ) scores, was a strong
predictor of both mortality and HF readmission over a 6-year
follow-up period. Combining the KCCQ scores with NT-proBNP,

a biomarker for HF, provided a quick risk assessment tool for
HFmrEF patients. The study underscores the significance of utiliz-
ing ML techniques to improve the accuracy of risk prediction and
uncover novel relationships between risk factors and outcomes.
The developed models demonstrated good predictive performance
for mortality and readmission in HFmrEF patients[36].

Readmission in patients with heart failure

In a study by Shin et al.[38], the predictive performance of ML
methods with conventional statistical models (CSMs) in predicting
readmission and mortality was compared among HF patients. The
findings indicated that ML methods generally outperformed CSMs
in these predictions, with tree-type ML algorithms being the most
commonly used approach, and LR being the most frequent CSM
approach. The practical applications of ML in HF prognostication

Figure 5. This flowchart illustrates the steps of the Genetic Algorithm-Kernel Partial Least Squares (GA-KPLS) algorithm. The algorithm starts with inputting the data
and initializing themodel, followed by the application of a genetic algorithm to generate variations of themodel. Each variation is evaluated based on its fit to the data,
and the best model is updated accordingly. This iteration continues until the best model is found. The flowchart showcases the iterative process of the GA-KPLS
algorithm, demonstrating how it refines the initial model and helps discover meaningful relationships between variables in the data.
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hold promise. ML offers advantages such as flexibility and non-
parametric modeling. Nonparametric modeling allows for greater
flexibility in capturing complex relationships and patterns without
relying on predetermined mathematical functions or assumptions
about the underlying data distribution. To illustrate the concept,
consider a HF study where various patient characteristics are used
to predict the risk of HF. In parametric modeling, specific mathe-
matical equations, such as linear regression, are assumed to
describe the relationship between these features and the risk of HF.
However, nonparametric modeling takes a different approach by
allowing the data itself to guide the analysis, adapting to data
patterns using techniques like decision trees or RFs. Nonparametric
models, like decision trees, can capture complex and nonlinear
relationships between patient characteristics and the risk of HF.
They adapt to intricate relationships that may not be easily
described by predetermined equations. This adaptability is parti-
cularly useful when the true underlying data distribution is not well-
defined or when relationships are intricate and difficult to specify in
advance[38].

Sharma et al.[39] explored the use of administrative health data
and ML models to predict the risk of unplanned readmissions in
HF patients within 30 days after discharge. They compared the
performance of MLmodels with the commonly used LaCE score,
which includes four predictors. The ML models, leveraging more
data and predictors, demonstrated improved predictive cap-
abilities compared to the LaCE score. However, the study
revealed that predicting readmissions in HF patients, whether
using ML or non-ML methods, remains challenging. While the
ML models outperformed the LaCE score, even the best-per-
forming ML model provided only weak to moderate informative
value as a classifier. They reported that MLmodels incorporating
feature importance and impact plots, such as SHAP plots, can
offer interpretability by identifying variables strongly associated
with readmission risk[39].

Major adverse cardiovascular events (MACE) in patients with
heart failure

Sun et al.[40] developed a scoring system to predict the risk of
major adverse cardiovascular events in patients with congestive
heart failure (CHF). Sun et al.[40] study aimed to develop a pre-
dictive model suitable for different HF populations, focusing on
LVEF analysis variables without categorizing LVEF subtypes.
The study introduced the use of velocity flow mapping (VFM)
parameters in the predictive model. VFM parameters analyze
blood flow patterns within the heart and provide insights into the
likelihood of developing HF. By incorporating these parameters
into the model, the risk of HF can be estimated. These parameters
are obtained through color Doppler echocardiography, enabling
the visualization of blood flow as a velocity vector. The model is
trained on extensive patient data and patterns associated with
increased risk are identified. When VFM measurements are
inputted, the model provides an assessment of the patient’s like-
lihood of developing HF. The model demonstrated good per-
formance and showed significant differences in survival curves
among different risk groups. ML algorithms, particularly the
XGBoost classifier, were employed to analyze the predictive
ability of themodel. The inclusion of general parameters, speckle-
tracking echocardiography (STE)-related parameters, and VFM-
related parameters in the XGBoost classifier resulted in improved
classification accuracy compared to other algorithms[40].

Heart failure prognosis

HFhas a bad prognosis, according to studies of people hospitalized to
hospitals with HF and treatment trials. This knowledge, however,
only applies to a specific group of HF patients. For example, it is
evident those clinical studies in HF have primarily involved men and
that patients in these trials are younger and have fewer comorbidities
than the normal community HF patient. There is little information
available in society as a whole on the prognosis of HF; three studies
looked at the prognosis in people who had been diagnosed with HF
(i.e. prevalentHF, but not always new instances ofHF). Furthermore,
despite our study’s significant response rate (79%), nonresponse may
have resulted in an inaccurate estimation of HF survival, as the rates
of responses were lower in older age groups and it is possible that
those with severe HF were more unlikely to participate[41].

Tian et al.[42] conducted a study to evaluate prognostic models for
patients with CHF using patient-reported outcomes (PROs). They
developed and validated models that utilize PRO data to predict
events like mortality and HF readmission in CHF patients. These
models showed promising performance and can be easily imple-
mented in clinical practice since they only require variables that can be
collected after discharge. Tian et al.[42] emphasized the predictive
value of PROs, the potential of ML methods with parameter
adjustment, and the superiority of the XGBoost algorithm in their
study. They also introduce interpretability techniques and a web-
based risk calculator to enhance understanding and facilitate clinical
decision-making. These findings contribute to the growing body of
evidence supporting the integration of PROs into prognostic models
for CHF patients, ultimately improving patient care and outcomes[42].

Gandin et al.[43] developed and compared two prognostic
models for HF in diabetic patients using electronic health records
(EHRs) and compared their performance to the Risk Equations
for Complications Of type 2 Diabetes (RECODe). The first model
employed a Cox proportional hazards model with elastic net
regularization, while the second model utilized a deep neural
network (DNN). Both models demonstrated superior perfor-
mance compared to the RECODe risk equations. The DNN
model exhibited moderate performance in terms of discrimina-
tion and well-calibrated predictions. It selected eight covariates
that were either predictors of the RECODe equations or estab-
lished risk predictors from previous studies. Interestingly, the
DNN model indirectly incorporated atrial fibrillation through
related variables derived fromECG features associatedwith atrial
fibrillation. The DNN model exhibited adequate calibration,
which is crucial for effective clinical decision-making. This study
highlights the potential of leveraging EHRs and AI techniques to
develop accurate prognostic models for HF in diabetic patients.
The findings contribute to the growing body of knowledge on
predictive modeling in healthcare and pave the way for further
advancements in personalized risk assessment and management
strategies for patients with diabetes and HF[43].

The various applications of AI are summarized in Table 1.

Research in heart failure

Traditional clinical trials often lack generalizability due to strict
eligibility criteria, specialized environments, and limited data on
real-world interactions and adherence to therapy. To offer a
potential solution to this, D’Amario et al.[44] described the
GENERATOR HF DataMart, an AI laboratory that generates
real-world evidence for HF patients using real-world data
(RWD). They highlighted the need for big data analytics andAI to
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manage the volume, velocity, variety, veracity, and value of car-
diovascular data. The DataMart leverages RWD collected during
routine clinical practice, providing a broader representation of
real-life populations. The use of RWD and AI is an exciting area
of research that has the potential to overcome the limitations of
traditional clinical trials and improve the generalizability of study
findings. However, careful consideration of data quality, accu-
racy, and reliability is necessary to ensure that the generated
evidence is robust and reliable[44].

Conclusion

In conclusion, this review underscores the pivotal role of ML in
transforming various aspects of HF management. From enhancing
diagnostic accuracy, particularly in distinguishing between HF
phenotypes like HFpEF and HFrEF, to facilitating risk prediction
and prognosis, ML offers a promising avenue for personalized
treatment strategies. By harnessing advanced computational tech-
niques and analyzing vast clinical datasets, ML holds the potential
to revolutionize HF care by providing actionable insights for
improved patient outcomes. Future research should focus on
refiningML algorithms, validating predictive models across diverse
patient cohorts, and integrating ML-based approaches into routine
clinical practice, ultimately leading to better outcomes and
enhanced quality of life for individuals living with HF.
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Table 1
This table summarizes various studies showcasing the application of AI in HF diagnosis, prediction, and prognosis.

Application Study

Heart failure diagnosis Unterhuber et al.[26] developed a CNN model for distinguishing between HFpEF and controls, achieving high discriminatory ability
Wang et al.[27] utilized DL with LSTM to identify high-risk HFrEF patients using a large US nationwide commercial insurance dataset
Zhou et al.[35] used ML methods to predict survival status in HFpEF patients based on gene expression data, demonstrating high accuracy
Gao et al.[32] explored the prognostic value of circulating biomarkers in hospitalized HFpEF patients, developing a SVM-based prediction model
Zhao et al.[36] developed and validated risk prediction models for HFmrEF patients, incorporating easily measurable clinical risk factors

Heart failure prediction Tohyama et al.[28] emphasized ML’s effectiveness in predicting prognosis for HF patients, developing a new prediction model called SMART-HF
Mpanya et al.[30] trained six supervised ML algorithms to predict all-cause mortality in HF patients, with SVM exhibiting desirable performance
Li et al.[29] developed ML algorithms for predicting mortality of HF patients in an ICU setting, with XGBoost demonstrating superior performance
Chen et al.[31] developed an interpretable ML-based risk stratification tool for in-hospital mortality in ICU patients with HF, outperforming traditional methods

Heart failure prognosis Tian et al.[42] developed and validated prognostic models for CHF patients using PROs and ML methods, showing promising performance and easy
implementation

Gandin et al.[43] developed prognostic models for HF in diabetic patients using EHRs and DNN, demonstrating superior performance compared to traditional
methods

Zhao et al.[36] evaluated prognostic models for HF patients using PROs and ML methods, emphasizing the predictive value of PROs and the superiority of
XGBoost

CNN, convolutional neural network; DL, deep learning; DNN, deep neural network; EHR, electronic health record; HF, heart failure; HFmrEF, heart failure with mildly reduced ejection fraction; HFpEF, heart failure
with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; LSTM, long short-term memory; ML, machine learning; PROs, patient-reported outcomes; SMART-HF, Self-care Management
Intervention in Heart Failure; SVM, support vector model.
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