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Abstract: Ticks, such as Ixodes ricinus and Dermacentor reticulatus, act as vectors for multiple pathogens
posing a threat to both human and animal health. As the process of urbanization is progressing, those
arachnids are being more commonly encountered in urban surroundings. In total, 1112 I. ricinus
(n = 842) and D. reticulatus (n = 270) ticks were collected from several sites, including recreational
urban parks, located in Augustów and Białystok, Poland. Afterwards, the specimens were examined
for the presence of Borrelia spp., Babesia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp.,
and Coxiella burnetii using the PCR method. Overall obtained infection rate reached 22.4% (249/1112).
In total, 26.7% (225/842) of I. ricinus was infected, namely with Borrelia spp. (25.2%; 212/842), Babesia
spp. (2.0%; 17/842), and A. phagocytophilum (1.2%; 10/842). Among D. reticulatus ticks, 8.9% (24/270)
were infected, specifically with Babesia spp. (7.0%; 19/270), A. phagocytophilum (1.1%; 3/270), and
Borrelia burgdorferi s.l. (0.7%; 2/270). No specimen tested positively for Rickettsia spp., Bartonella
spp., or Coxiella burnetii. Co-infections were detected in 14 specimens. Results obtained in this study
confirm that I. ricinus and D. reticulatus ticks found within the study sites of northeastern Poland are
infected with at least three pathogens. Evaluation of the prevalence of pathogens in ticks collected
from urban environments provides valuable information, especially in light of the growing number
of tick-borne infections in humans and domesticated animals.

Keywords: urban; suburban; Borrelia; miyamotoi; Babesia; Anaplasma; co-infection

1. Introduction

Over the past few decades, the phenomenon of urbanization has increased significantly
worldwide. Currently, more than 50% of the human population lives in urban areas, and
by 2050, this number is expected to rise to 75% [1]. The transformation of wild landscapes
into cities and recreational areas causes major changes in the distribution of wildlife. Ticks
are an example of arthropods that adapted to the new conditions, increasing the risk of
human exposure to tick-borne pathogens. Those arachnids are typically associated with
forests, meadows, and other rural landscapes. However, in recent decades, reports of their
presence in urban surroundings are becoming increasingly frequent [1–3]. The presence
of well-known tick-borne pathogens, such as Borrelia burgdorferi sensu lato, Anaplasma
phagocytophilum, or Babesia spp., among others, has been detected in ticks collected from
recreational areas in multiple studies across Europe [4–11].
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Alongside host availability, environmental conditions, such as temperature and hu-
midity, are the most important factors influencing the activity, development, and survival of
the ticks [12]. Higher temperatures and humidity contribute to faster development, shorter
lifecycle, and increased activity of ticks [13]. However, a warmer climate may contribute to
decreased humidity and thus causing higher tick mortality rates [12,13].

Both cities chosen for this study are located in the Podlaskie Voivodeship. This region
has one of the highest incidence rates of Lyme disease in Poland, and it is twice as high as
the national average [14], hence research regarding ticks occurring within this area is of
great importance.

This study aimed to assess the prevalence of six chosen tick-borne pathogens: Borrelia
spp., A. phagocytophilum, Babesia spp., Rickettsia spp., Coxiella burnetii, and Bartonella spp. in
questing Ixodes ricinus and Dermacentor reticulatus ticks collected from recreational areas of
Białystok and Augustów, Poland, as well as to analyze the influence of the climatic factors
on tick infection rates.

2. Materials and Methods
2.1. Collection of Ticks

Questing I. ricinus and D. reticulatus ticks were sampled with the usage of the flagging
method, from recreational sites within the cities of Białystok (2017–2019) and Augustów
(2018–2019), both located in the Podlaskie Voivodeship. During each sampling, air tem-
perature and relative air humidity were measured several times and the average value
was documented.

In Białystok, the collection took place in the Zwierzyniecki Forest Nature Reserve
(53◦6′45′′ N, 23◦9′41′′ E), which is dominated by hornbeam, oak, pine, and birch trees. This
area is located approximately 2 km from the city center and in the immediate vicinity of
the University of Bialystok campus. It is commonly used for recreational purposes, such
as hiking, jogging, dog walking, and biking, among others. The sampling of I. ricinus and
D. reticulatus ticks took place in July and August of 2017 and from April to October in
2018–2019. D. reticulatus ticks included in this study were collected in the year 2019, while
those from 2018 were analyzed previously [15]. The frequency of tick sampling in Białystok
was approximately once a week for up to 3 h, depending on weather conditions.

In Augustów, two sites were chosen for tick collection. The first location was the
“Królowa Woda” resort (53◦49′27.3′′ N, 22◦58′41.3′′ E), located on Lake Sajno. The second
location was the Public Beach (53◦51′14.9′′ N, 22◦59′03.9′′ E), located on Necko Lake. Both
areas are surrounded by a forest dominated by pine and spruce trees. However, birches,
maples, hornbeams, lindens, and alders may also be found. These are popular recreational
sites, with designated swimming areas, water equipment rentals, gastronomic premises,
and connections to walking and bike paths. The ticks were collected in the spring and
autumn of 2018–2019, over several trips for up to 6 h.

Obtained individuals were placed separately in Eppendorf tubes. Later, each one was
identified for species and stage [16] and stored at +4 ◦C for up to 1 week, until further
DNA extraction.

2.2. DNA Isolation

Collected ticks were crushed individually in a mortar with the addition of 1.5 mL of
PBS (without Ca2+ and Mg2+ ions). Obtained homogenate was centrifuged. Afterwards,
300 µL of supernatant was used to perform DNA extraction (EurX DNA Isolation Kit,
Gdańsk, Poland) in accordance with the manufacturer’s instructions. Finally, 100 µL of
obtained DNA extracts were stored at −20 ◦C until further analyses.

2.3. PCR Amplification

All PCR reactions were performed on the SensoQuest LabCycler (SensoQuest, Göttin-
gen, Germany). Obtained DNA isolates were pooled by five (15 µL of each). If a pool tested
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positive, components were tested again, separately, in order to obtain the exact number of
infected specimens.

Further PCR and electrophoresis, as well as sequencing analysis for the detection
of chosen pathogens, were performed according to the methods previously described by
Grochowska et al. [15].

For identification of Borrelia spp., a 120-bp fragment of the 16S rRNA gene encoding
small ribosomal subunit was amplified. PCR was performed with the Borrelia burgdorferi
PCR kit (GeneProof, Brno, Czech Republic) for in vitro diagnostics. The reaction program
was designed in compatibility with GeneProof instruction with its own modifications
and consisted of the following steps: UDG decontamination at 37 ◦C for 2 min, initial
denaturation at 95 ◦C for 10 min, amplification for 45 cycles (denaturation at 95 ◦C for
5 s, annealing at 60 ◦C for 40 s, extension at 72 ◦C for 20 s), and final extension at 72 ◦C
for 2 min.

For A. phagocytophilum DNA detection, a nested PCR, targeting a fragment of 16S rDNA
gene encoding small ribosomal 16S RNA subunit, was used. Reactions were performed
with the Anaplasma PCR kit (Blirt-DNA Gdańsk, Gdańsk, Poland), according to the
manufacturer’s instructions.

Identification of Babesia spp. was performed using a fragment of the 18S rDNA
gene, encoding a small ribosomal subunit, localized on conservative region V4. PCR was
performed with Taq PCR Core Kit (Qiagen, Hilden, Germany) with the use of a pair of
highly specific primers (Sigma-Aldrich, Schnelldorf, Germany): 18S rDNA BAB-F2 sense
5′-GAC ACA GGG AGG TAG TGA CAA G-3′ and 18S rDNA BAB-R2 antisense 5′-CTA
AGA ATT TCA CCT CTG ACA GT-3′ [17–20].

For Rickettsia spp., Bartonella spp., and C. burnetii identification, the Vet PCR RICK-
ETTSIA, The Hum PCR BARTONELLA, and The Hum PCR Coxiella burnetii detection kits
(BioIngenTech, Concepción, Chile) were used, respectively. All reactions were performed
in accordance with manufacturer’s instructions.

Electrophoresis on 2% agarose gel (Sigma-Aldrich, Darmstadt, Germany) stained with
ethidium bromide (5 µg/mL; Syngene, Frederick, MD, USA) was used to separate the
amplicons, as described by Grochowska et al. [15].

Samples positive for Borrelia spp. and Babesia spp. were sequenced by Macrogen
(Amsterdam, The Netherlands). In total, 5 µL of obtained amplification products were
mixed with specific primers: BIG BOR-F1 (5 µL, 50 mM) and BIG BOR-R1 (5 µL, 50 mM) for
Borrelia spp. and those used previously for PCR for Babesia spp. Prepared samples were sent
to Macrogen, where they were sequenced from both sides. All positive A. phagocytophilum
amplicons were purified with the Wizard® SV Gel and PCR Clean-Up System (Promega,
Madison, WIS, USA) and subjected to Sanger sequencing at a commercial facility (Macrogen
Europe, Maastricht, The Netherlands).

Afterwards, the results were compared with sequences deposited in the GenBank
using the BLAST program. Sequences with the highest compatibility were recorded.

2.4. Evolutionary Relationships of Taxa

The evolutionary history of the various Borrelia and Babesia genospecies was inferred by
using the Neighbor-Joining method [21]. The evolutionary distances were computed using
the Tamura-Nei method [22] were are in the units of the number of base substitutions per
site. Evolutionary analyses were conducted in MEGA X [23] with subsequent phylogenetic
tree visualization using iTOL v61 [24].

This analysis involved

• 118 nucleotide sequences for Borrelia isolated from I. ricinus in Białystok (1264 bp),
• 94 nucleotide sequences for Borrelia isolated from I. ricinus in Augustów (1243 bp),
• 17 nucleotide sequences for Babesia isolated from I. ricinus (289 bp),
• 19 nucleotide sequences for Babesia isolated from D. reticulatus (275 bp).
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2.5. Statistical Analysis of Previous and Present Research

This study is the expansion of the previous study, focusing on D. reticulatus ticks
collected in Białystok in 2018 [15]. Since the specimens were analyzed for the presence of
the same six pathogens and were obtained in the same area, it was decided to combine
the results and perform statistical analysis on a larger study group, including all collection
years, in order to obtain more accurate results.

Aforementioned research included 368 D. reticulatus ticks collected in the Zwierzyniecki
Forest Nature Reserve in Białystok, Poland, from April to October 2018. Among those, 9.2%
were infected with Babesia spp., 0.8% with A. phagocytophilum, and 0.3% with B. burgdorferi s.l.

Statistical analysis was performed using the Statistica 12.0 program (StatSoft, Tulsa,
OK, USA).

The Mann-Whitney test was used to assess the prevalence of pathogens in relation
to temperature (above and below 20 ◦C) and humidity (above and below 80%), both with
division to the sampling season (April–July, August–October). Overall infection rate, as well
as the prevalence of individual pathogens between the two tick species, and developmental
stages were also compared using the same test.

Additionally, logistic regression analysis was performed in order to compare the
influence of multiple factors.

Statistical significance was established as p < 0.05.

3. Results

In total, 1112 ticks were collected from the study areas. The majority of them (842), specif-
ically 460 from Białystok and 382 from Augustów, were classified as I. ricinus (239 females,
207 males, 319 nymphs, 77 larvae). The remaining 270 individuals (252 from Białystok and
18 from Augustów) were identified as D. reticulatus (162 females, 100 males, 8 nymphs)
(Table 1). Environmental conditions (temperature and humidity) recorded during collection
of the ticks are presented in Figure 1.

Table 1. The number of Ixodes ricinus and Dermacentor reticulatus ticks collected from the study areas.

Ixodes ricinus Dermacentor reticulatus

Collection Site Sampling Year Females Males Nymphs Larvae Total Females Males Nymphs Total

Białystok

2017 33 41 6 - 80 - - - -
2018 16 14 2 - 32 - - - -
2019 127 92 79 50 348 150 94 8 252
Total 176 147 87 50 460 150 94 8 252

Augustów
“Królowa

Woda” resort 2018 18 15 35 - 68 5 4 - 9

Public Beach - - - - - - - - -
“Królowa

Woda” resort 2019 3 14 14 - 31 1 - - 1

Public Beach 42 31 183 27 283 6 2 - 8
Total 63 60 232 27 382 12 6 - 18

Presence of tick-borne pathogens was confirmed in 22.4% (249/1112) of the ticks. Total
infection rate for I. ricinus was 26.7% (225/842; 85 females, 60 males, 79 nymphs, 1 larva).
The most prevalent pathogen was Borrelia spp. (25.2%; 212/842), followed by Babesia
spp. (2.0%; 17/842) and A. phagocytophilum (1.2%; 10/842). Among 270 D. reticulatus, 8.9%
(24/270) were infected, namely with Babesia spp. (7.0%; 19/270), A. phagocytophilum (1.1%;
3/270), and Borrelia spp. (0.7%; 2/270) (Figure 2). No specimen tested positively for Rick-
ettsia spp., Bartonella spp., or C. burnetii (Table 2). The most prevalent pathogen in both sam-
pling sites was Borrelia spp., followed by Babesia spp. in Białystok and A. phagocytophilum
in Augustów (Figure 3).
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Table 2. The percentage and number of pathogens detected in Ixodes ricinus and Dermacentor reticulatus
ticks collected during the study.

Ixodes ricinus Dermacentor reticulatus

Collection Site Sampling Year Bor Bab Ap Total Bor Bab Ap Total

Białystok

2017 20%
(16/80)

0%
(0/80)

1.3%
(1/80)

21.3%
(17/80) - - - -

2018 21.9%
(7/32)

3.1%
(1/32)

3.1%
(1/32)

28.1%
(9/32) - - - -

2019 27.3%
(95/348)

4.6%
(16/348)

0.3%
(1/348)

28.4%
(99/348)

0.4%
(1/252)

6.4%
(16/252)

0.8%
(2/252)

7.6%
(19/252)

Total 25.7%
(118/460)

3.7%
(17/460)

0.7%
(3/460)

27.2%
(125/460)

0.4%
(1/252)

6.4%
(16/252)

0.8%
(2/252)

7.6%
(19/252)
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Table 2. Cont.

Ixodes ricinus Dermacentor reticulatus

Collection Site Sampling Year Bor Bab Ap Total Bor Bab Ap Total

Augustów
“Królowa Woda”

resort 2018 26.5%
(18/68)

0%
(0/68)

0%
(0/68)

26.5%
(18/68)

0%
(0/9)

22.2%
(2/9)

11.1%
(1/9)

33.3%
(3/9)

“Królowa Woda”
resort 2019

12.9%
(4/31)

0%
(0/31)

3.2%
(1/31)

16.1%
(5/31)

0%
(0/1)

0%
(0/1)

0%
(0/1)

0%
(0/1)

Public Beach 25.4%
(72/283)

0%
(0/283)

2.1%
(6/283)

27.0%
(77/283)

12.5%
(1/8)

12.5%
(1/8)

0%
(0/8)

25%
(2/8)

Total 24.6%
(94/382)

0%
(0/382)

1.8%
(7/382)

26.2%
(100/382)

5.5%
(1/18)

16.7%
(3/18)

5.5%
(1/18)

27.7%
(5/18)

Bor—Borrelia spp., Bab—Babesia spp., Ap—Anaplasma phagocytophilum.
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3.1. Sequencing Analysis

In Białystok, among 118 Borrelia-positive I. ricinus ticks, the majority was identified as
Borrelia afzelii (65.3%; 77/118) with a similarity ranging from 86.88% to 98.69% to bacteria iso-
lated both from humans in Austria and Germany (GenBank: CP009058.1, CP018262.1) and
from ticks in Russia and France (CP009212.1, MW301927.1). Seventeen ticks (14.4%) showed
89.43–98.61% identity to Borrelia garinii isolated from different tick species from France,
Spain (GenBank: CP028861.1, DQ147793.1), and Russia (GenBank: EF488989.1, KY312011.1,
KY312012.1), as well as from human blood in China (GenBank: AY342031.1). Ten sequences
(8.4%) were 83.97–98.25% identical to Borrelia burgdorferi sensu stricto, found in I. ricinus in
the United Kingdom (GenBank: X98233.1) and in Peromyscus leucopus in the USA (GenBank:
CP031412.1). The next 10 sequences (8.4%) were identified as Borrelia miyamotoi with a simi-
larity range of 95.04–98.94% (GenBank: CP046389.1; Ixodes eggs, Czech Republic), while the
remaining four sequences (3.4%) showed 92.49–97.05% identity to Borrelia lusitaniae (Gen-
Bank: AB091820.1; I. ricinus, Turkey). One Borrelia-positive D. reticulatus tick showed 96.86%
similarity to B. afzelii (GenBank: CP009058.1). As for Babesia spp. sequencing, 15 out of
17 (88.2%) I. ricinus ticks showed 87.10–99.47% identity to Babesia microti isolated from ticks
and small mammals from Turkey, China, Thailand, and Germany (GenBank: MH628094.1,
KY649348.1, MG199182.1, MN355504.1, KP055650.1), while two were 91.83% and 99.36%
identical to Babesia venatorum (GenBank: KR003828.1). Among Babesia-positive D. reticulatus
ticks, 15 (93.8%; 15/16) were identified as Babesia canis, with 86.60–98.98% similarity to small
and medium mammals from Lithuania, Poland, Serbia, Iran, Ukraine, Turkey, Romania,
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and Italy (GenBank: MN078319.1, MK872807.1, MH702200.1, MN173223.1, MN704759.1,
MK934420.1, MG569903.1, KU821654.1, KT844899.1), as well as ticks from Ukraine and
Poland (GenBank: MT346582.1, MF797820.1). One sequence showed 93.69% identity to
B. microti (GenBank: KP055650.1, Myodes glareolus, Germany).

As for samples from Augustów, 34 out of 94 Borrelia-positive I. ricinus ticks were 82.89–
98.25% identical to B. garinii (GenBank: CP028861.1, DQ147793.1, EF488989.1, KY312011.1;
MW301936.1: I. ricinus, France). The next 29 sequences showed 88.80–99.10% similarity to
B. afzelii (GenBank: CP009058.1, CP018262.1, MW301927.1), while 15 were 93.29–98.93%
identical to B. burgdorferi s.s. (GenBank: CP031412.1; CP002228.1 and CP017201.1: humans,
USA). Borrelia valaisiana was identified in nine samples, with similarity ranging from 91%
to 98.24% to Ixodes ticks from France and Russia (GenBank: MW301935.1, CP009117.1).
One sequence was 97.05% identical to B. lusitaniae found in I. ricinus in Turkey (GenBank:
AB091820.1), and finally, six sequences were 96.83–98.94% similar to B. miyamotoi (GenBank:
CP046389.1). One Borrelia-positive D. reticulatus female was identified as B. garinii with
89.43% similarity (GenBank: CP028861.1). Sequencing analysis for Babesia-positive samples
(three male D. reticulatus) identified all of them as B. canis with 89.50–96.83% similarity
(GenBank: MN704759.1, MK934420.1).

Sequencing of samples positive for A. phagocytophilum showed 100% similarity with
the A. phagocytophilum strain Webster (188/188 bp) (GenBank: NR_044762.1).

3.2. Co-Infections

Overall, simultaneous presence of two different pathogens was detected in 14 I. ricinus
ticks (1.7%; 14/842), among which 13 were collected in Białystok (2.8%; 13/460). The most
prevalent co-infection was B. afzelii and B. microti, confirmed in 10 specimens (6 females,
3 males, 1 nymph). The remaining three samples, all females, were coinfected with B. afzelii
and B. venatorum, B. burgdorferi s.s. and B. microti, as well as B. garinii and B. microti,
respectively. Presence of B. afzelii and A. phagocytophilum was confirmed in one male tick
from Augustów.

3.3. Phylogenetic Analysis

The results of the phylogenetic analysis are presented in a graphical form in Figures 4–7.

3.4. Statistical Analysis

Statistical analysis revealed significant differences in several categories. Data from
previous and present research used in the evaluation is presented in Figure 8.

3.4.1. Mann-Whitney Test

Statistically significant results were obtained in the following categories (Table 3).

Table 3. Comparison of tick-borne pathogen infection rates in Ixodes ricinus and Dermacentor reticulatus
ticks, according to seasonal variety, air temperature, and relative air humidity.

Category Variable p Value

Overall infection rate between
Dermacentor reticulatus and
Ixodes ricinus

Borrelia spp. 0.001
Babesia spp. 0.001

Temperature in April-July Borrelia spp. 0.003
Babesia spp. 0.001

Temperature in
August-October

Borrelia spp. 0.001
Babesia spp. 0.001

Relative air humidity in
April-July Babesia spp. 0.001

Relative air humidity in
August-October Borrelia spp. 0.001

Sampling season (April-July,
August-October)

Borrelia spp. in females 0.001
Borrelia spp. in males 0.001
Borrelia spp. in nymphs 0.046
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Overall Infection Rate

Comparative analysis revealed a statistically significant difference between Borrelia
spp. infection rate in I. ricinus and D. reticulatus, with higher prevalence in I. ricinus ticks.
Moreover, significantly more D. reticulatus ticks were infected with Babesia spp.

Air Temperature

For April–July, a statistically significant difference was confirmed in Borrelia spp.
infection rates in ticks collected in over 20 ◦C temperature. Opposite results were obtained
for Babesia spp. The same relations in both pathogens were observed in August–October.
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gustów.

Relative Air Humidity

The comparative analysis revealed a higher amount of Babesia spp. infections in
ticks collected during periods of air relative humidity below 80% humidity in April–July.
In contradiction, Borrelia spp. was found more frequently in ticks sampled in over 80%
humidity in August–October.

Sampling Season

Comparative analysis of infection rates in individual developmental stages in relation
to the sampling season revealed statistically significant differences for Borrelia spp. It was
established that more adults were positive for this pathogen if collected in April–July, while
higher prevalence was noticed for nymphs sampled in August–October.
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Figure 8. Prevalence of Borrelia spp., Babesia spp., and Anaplasma phagocytophilum in collected Ixodes
ricinus (a–c) and Dermacentor reticulatus (d–f) ticks, divided by the sampling month and site.

3.4.2. Multivariate Logistic Regression Model

Multivariate logistic regression analysis showed that, for Borrelia spp. infections,
D. reticulatus ticks were 97.16 times less likely to be infected with this pathogen as com-
pared to I. ricinus. Moreover, the chance of detecting Borrelia spp. increased by 1.35 times
in the successive sampling years and decreased by 1.59 times in males and nymphs, as
compared to females (Table 4).

Table 4. Multivariate logistic regression model for Borrelia spp. infection rate.

Parameter Odds Ratio p Value 95% Confidence Interval

Tick species 0.01 0.001 0.003 0.033
Sampling year 1.35 0.024 1.04 1.76

Developmental stage 0.63 0.001 0.53 0.75



Pathogens 2022, 11, 468 12 of 18

4. Discussion

Up until the 1980s, reports on infections in ticks in urban landscapes were inciden-
tal. Ever since then, the number of publications on this subject rose, presumably due to
rapid development of recreational areas and green tourism, as well as progressing global
urbanization [2].

Sequencing analysis of Borrelia-positive I. ricinus ticks identified the majority as
B. afzelii and B. garinii, both in ticks collected in Białystok and Augustów. Those two
Borrelia species are predominant in Europe [25], which was confirmed in other studies,
including those from urban areas [6,7,26–28]. In this study, B. lusitaniae was confirmed in
four I. ricinus ticks. Other than the current study, its presence was detected in two studies
focusing on urban surroundings [7,27].

Interestingly, 6.4–8.4% of I. ricinus ticks were positive for B. miyamotoi, the causative
agent of relapsing fever. Literature data regarding this spirochete presence in urban
surrounding is scarce. However, B. miyamotoi was detected in such studies in Poland
(4.7%) [26] and Switzerland (4.2%) [7]. Krause et al. suggests that B. miyamotoi may be
prevalent in endemic borreliosis areas [29]. Human cases of B. miyamotoi infection were first
reported in Russia in 2011 [30] and were since then described in multiple studies across
Europe, the USA, and Japan [29,31,32].

It is worth emphasizing once again that Lyme disease incidence in the study region
(107.7 per 100,000 people) is twice as high as the average in Poland (53.7 per 100,000 peo-
ple) [14]. It is also worth noting that overall B. burgdorferi s.l. infection rates (23.5% and
23.0% for Białystok and Augustów, respectively) obtained in this study were also higher
than the mean prevalence of B. burgdorferi s.l. in I. ricinus ticks in Europe (12.3%). Strnad
et al. highlight that infection rates appear to increase significantly from western to eastern
Europe [33].

B. afzelii was detected in only two D. reticulatus ticks (0.7%). This spirochete was
also identified in other studies from Poland, although only in those from rural areas
(0.09–1.6%) [34–36]. Low prevalence of B. burgdorferi s.l. in D. reticulatus ticks was confirmed
in multiple studies in Europe [37–40], which may suggest that D. reticulatus ticks are
ineffective vectors for this pathogen. In their study, Rudolf et al. examined the effect of
D. reticulatus salivary glands and midgut extract on the growth, motility, and morphology of
B. garinii in vitro. It was revealed that the extracts inhibited the growth of the spirochete [41].

The statistical analysis revealed higher median Borrelia spp. infection rate in ticks
collected in temperatures above 20 ◦C in both seasons. It is known that the questing
activity of I. ricinus nymphs and adults ranges from March to October [42], with a peak
in AprilMay [43]. In a previous study that collected data on I. ricinus ticks from urban
areas in Europe, it was revealed that temperature over 20 ◦C was connected to greater B.
burgdorferi s.l. prevalence [44]. A relationship between higher mean temperatures and an
increase in Lyme disease incidence was also observed by other studies [45,46]. As Keith et al.
note, this may be further connected to the increase of human recreational activity in the
warmer weather, thus higher tick exposure [45]. Babesia spp. infections were detected more
frequently in temperatures below 20 ◦C and <80% humidity. In this study, D. reticulatus
ticks were found to be primarily infected with Babesia spp. Additionally, all of the spec-
imens were adults, who are most active during early spring (March-April) and autumn
(September-October) [47], which, in Poland, are associated with lower temperatures. In
comparison to I. ricinus ticks, D. reticulatus show higher resilience to colder environmental
conditions [47,48].

In this study, the presence of A. phagocytophilum was confirmed in 0.7–1.8% I. ricinus
ticks. Similar prevalence was reported in other Polish cities (1.7–3%) [11,49]. In Eu-
rope, A. phagocytophilum was detected in urban areas in Germany (1.7–3.8%) [10,27,50],
Ukraine (5.2%) [5], Czech Republic (0–5.2%) [4,6], Switzerland (1.4%) [8], and Slovakia
(3.1–7.2%) [51]. In a comprehensive study conducted by Derdakova et al. in various habitats
across Slovakia, the Czech Republic, and Austria, it was found that the mean prevalence of
A. phagocytophilum was 3.8% [52].



Pathogens 2022, 11, 468 13 of 18

Overall, 1.1% of D. reticulatus ticks were infected with A. phagocytophilum in the current
study, which is consistent with previous findings [15]. Similar results were obtained in
Kyiv, Ukraine (0–1%) [5,53], while in the outskirts of Berlin, Germany, none of the col-
lected D. reticulatus ticks were positive for this pathogen [39]. Comparable values were
reported in studies conducted in rural areas of Poland and Serbia (0–1.1% and 1.9%, respec-
tively) [36,40,54]. Results obtained in the current study most likely reflect the availability
and population density of A. phagocytophilum hosts, such as rodents, hedgehogs, ungulates,
foxes, and birds [5,11,51], which are necessary for the completion of the A. phagocytophilum
life cycle, since this bacterium is not transmitted transovarially [55].The majority of Babesia
in I. ricinus ticks were identified as B. microti in this study. Similar results were obtained
by Wójcik-Fatla et al. in their research on recreational sites of eastern Poland [56]. It is
worth noting that other studies focused on urban areas identified B. venatorum as the most
prevalent [7,49,57]. Interestingly, one of the identified B. microti sequences (KP055650.1) is
100% identical to the pathogenic Jena/Germany strain. However, as stressed by Obiegala
et al., it does not mean that the newly detected sequence is also pathogenic [58].

B. canis was the predominant pathogen identified in D. reticulatus ticks in this study
(6.7% of all specimens), similar to the previous study (6.8%) [15]. Comparable results
(4.18%) were obtained by Mierzejewska et al., who studied D. reticulatus ticks collected
from multiple localities in eastern, central, and western Poland. In that study, B. canis
was found only in ticks collected in the Eastern part of the country [34]. Noteworthy,
Eastern Poland belongs to the European macro-region for D. reticulatus presence [59]. It
is reflected by reported canine babesiosis cases. In a study conducted by Dwużnik et al.,
the authors collected data from 42 veterinary clinics from Eastern and Western Poland and
reported 1558 cases of canine babesiosis. Interestingly, the majority (1532) of them came
from clinics in the Eastern part of the country [60]. B. canis was also detected in a number
of different studies on D. reticulatus ticks from Ukraine, Latvia, Lithuania, Slovakia, and
Poland (0.63–3.4%) [53,56,61–63]. Notably, two studies from Poland and Serbia reported
exceptionally high B. canis prevalence (21.3% and 20.8%, respectively) [35,40].

In this study, one D. reticulatus was infected with B. microti (0.4%), which is consistent
with previous findings (0.8%) [15]. Other studies from Poland report 0.04–4.5% infection
rate [34,36,54,64]. It is worth noting that the detected sequence was the same potentially
pathogenic sequence as described in I. ricinus. Although it is known that D. reticulatus ticks
rarely feed on humans [65], they significantly contribute to the circulation of pathogens,
including those potentially harmful to humans, in the environment.

No I. ricinus ticks tested positively for C. burnetii, the causative agent of Q fever. Similar
values (0–0.2%) were reported in studies conducted in Poland [66,67], Switzerland [68],
Austria [69], and Sweden [70]. A notably higher infection rate (15.9%) was obtained by
Szymańska-Czerwińska et al. in I. ricinus ticks collected from forests in south-eastern
Poland [71]. In other European countries, obtained prevalence in rural areas was 0–4.9% in
Slovakia [72–74], 1.7% in Belarus [38], and 1.9% in Germany [75].

Similarly, C. burnetii was not detected in any of the tested D. reticulatus ticks, which is
consistent with results obtained in other studies [38,67,72,76]. Low prevalence of C. burnetii
was detected in studies from Slovakia (2.1%) [74] and Serbia (3.7%) [40].

Bartonella spp. was not detected in any I. ricinus ticks investigated in this study. Similar
values were reported in other European studies, both in urban Germany [77,78] and rural
areas [38,40,79]. This pathogen has been reported in other research conducted in Poland
with 1.7–4.8% prevalence, although all infected ticks were collected either from vegetation
in rural areas or from animals [63,80,81]. In the current study, no D. reticulatus ticks were
infected with Bartonella spp. Comparable results were obtained in research focused on
urban areas: 0.5% in Warsaw, Poland [80] and 1.0% in Kyiv, Ukraine [53], as well as in rural
surroundings: 0.6% in Belarus [38] and 0% in Serbia [40].

In this study, no I. ricinus tested positively for Rickettsia spp. In comparison, the
presence of this pathogen was confirmed in urban parks in Warsaw (2.9–7.7%) [11,66].
In other European countries, infection rates reported in ticks from city landscapes were
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also higher, ranging from 5.7% to 16.5% [4,7,8,53,82,83]. Exceptionally high prevalence
was confirmed within urban areas of Hanover and Hamburg, Germany (50.8% and 52.5%,
respectively) [10,84].

Interestingly, also no D. reticulatus ticks were found to be infected with Rickettsia
spp. in the current study. This pathogen has been reported with a high prevalence rate
(40.7–56.7%) in natural sites in Poland [34,36,66,85–87]. Studies from urban areas in Kyiv,
Ukraine, revealed 10.1–35.7% infection rate [5,53]. In other European countries, reported
infection rates in natural sites were similar (14–21.4%) [65,88]. Given such discrepancies
between Rickettsia spp. prevalence obtained in this and other studies, further research in
the study area, focusing on this pathogen, is needed.

5. Conclusions

In conclusion, the molecular investigation carried out in this study confirms that
I. ricinus and D. reticulatus ticks present within urban areas of the northeastern Poland are
infected with at least three pathogens: Borrelia spp., A. phagocytophilum, and Babesia spp.
Moreover, results reveal that the prevalence of B. burgdorferi s.l. is equal or even higher than
in natural ecosystems. As this is the first study on ticks in cities of northeastern Poland, it
provides valuable information for tick-borne pathogen surveillance.
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60. Dwużnik-Szarek, D.; Mierzejewska, E.J.; Rodo, A.; Goździk, K.; Behnke-Borowczyk, J.; Kiewra, D.; Kartawik, N.; Bajer, A.
Monitoring the expansion of Dermacentor reticulatus and occurrence of canine babesiosis in Poland in 2016–2018. Parasit. Vectors
2021, 14, 267. [CrossRef]

61. Karbowiak, G.; Vichová, B.; Slivinska, K.; Werszko, J.; Didyk, J.; Pet’ko, B.; Stanko, M.; Akimov, I. The infection of questing
Dermacentor reticulatus ticks with Babesia canis and Anaplasma phagocytophilum in the Chernobyl Exclusion Zone. Vet. Parasitol.
2014, 204, 372–375. [CrossRef]

62. Svehlová, A.; Berthová, L.; Sallay, B.; Boldiš, V.; Sparagano, O.A.E.; Spitalská, E. Sympatric occurrence of Ixodes ricinus, Dermacentor
reticulatus and Haemaphysalis concinna ticks and Rickettsia and Babesia species in Slovakia. Ticks Tick. Borne. Dis. 2014, 5, 600–605.
[CrossRef]
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85. Stańczak, J. Detection of Spotted Fever Group (SFG) Rickettsiae in Dermacentor reticulatus (Acari: Ixodidae) in Poland. Int. J. Med.
Microbiol. 2006, 296, 144–148. [CrossRef] [PubMed]
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