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Abstract

Background: Serotonin (5-hydroxytryptamine; 5-HT) performs a variety of functions in the body in-
cluding the modulation of muscle tone in respiratory airways. Several studies indicate a possible role of 
5-HT in the pathophysiology of bronchial hyperresponsiveness. However, the receptors and the molecular 
mechanisms by which 5-HT acts on airway smooth muscle (ASM) continue to be controversial. Most of the 
evidence suggests the participation of different subtypes of receptors in an indirect response. This study 
supports the proposal that 5-HT directly contracts ASM and characterizes pharmacologically the subtypes 
of serotonergic receptors involved. The characterization was carried out by using selective antagonists in an 
organ bath model allowing study of the smooth muscle of segments of bovine trachea. Results: The results 
obtained show that 5-HT2A receptors are the main mediators of the direct contractile response of bovine 
ASM, with the cooperation of the 5-HT7, 5-HT3 and 5-HT1B/D receptors. Also, it was observed that the mus-
cle response to serotonin is developed more slowly and to a lesser extent in comparison with the response to 
cholinergic stimulation. Conclusion: Overall, the receptors that mediate the direct serotonergic contraction 
of the smooth muscle of the bovine trachea are 5-HT2A, 5-HT7, 5-HT3 and 5-HT1B/D receptors.
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Introduction

Serotonin (5-HT) has a variety of functions both in the nervous system and in the rest of the body. At the 
smooth muscle level, 5-HT contributes to the maintenance of blood pressure, peristalsis, and the modulation of 
airway smooth muscle (ASM) tone (1). On the airways, the 5-HT not only participates in tone control but also 
its accumulation promotes cell degranulation and has immunomodulatory effects that facilitate the contraction 
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of this tissue (2). Consequently, different authors postulate that 5-HT could have a crucial role in the airway 
hyperresponsiveness (3–5). Nevertheless, the receptors and molecular mechanisms used by this amine to act 
on the ASM are not completely understood.

There is contradictory evidence found in animal models that associate one or more subtypes of serotoner-
gic receptors with the contraction of ASM (4, 6–10). The main limitation of most of these studies is they were 
carried out in the presence of epithelium and other accompanying tissues, so the action described may be due 
to an indirect effect of 5-HT over the muscle by promoting the release of Acetylcholine (ACh), probably by 
acting on its receptors located in epithelial cells (11, 12) or cholinergic nerve endings (4, 8, 10, 13–15). Thus, it 
is Ach instead of 5-HT that directly contracts ASM.

The 5-HT effect on ASM has been evaluated in the absence of epithelium in only a limited number of stud-
ies. Most of them were performed in cell culture, where changes in the generation of phosphoinositols, intra-
cellular variations in calcium levels or modifications in the activity of the muscle Na+/K+ pump were assessed 
(16–18), and not the contractile response per se. Nonetheless, Kummer et al. supports a direct contractile effect 
by 5-HT on ASM in rodents. They observed that 5-HT produces contraction of this muscle in knock-out mice 
for muscarinic receptors (M2 and M3), thus discarding a contraction mediated by ACh, and indicating instead 
a serotonergic direct activation of this tissue (19).

Likewise, there are clinical findings that support the role of 5-HT in ASM contraction. In 1996, Lechín et 
al. observed that an increase in the levels of free 5-HT in plasma correlates with the severity of the respiratory 
dysfunction present in the attacks of asthmatic patients (20). When the patients were treated with Tianeptine, 
a drug that helps platelets reuptake 5-HT through serotonin transporter (SERT) (21), there was a significant 
improvement in their respiratory capacity (22). Similarly, in 2012, Lau et al. demonstrated that elevated levels 
of 5-HT in plasma, which can be induced by cigarette smoke, increase the probability of suffering chronic 
obstructive pulmonary disease (COPD) (23). The principal source of 5-HT would be platelets and to a lesser 
extent mast cells, as both migrate toward airways due to the induction of an inflammatory response (24–26). In 
pathological processes such as asthma and COPD, this response is persistent, which leads to the accumulation 
of 5-HT in the tissue.

The establishment of 5-HT as an important element capable of directly contracting the airways would 
promote research and development of new therapeutic strategies that can modulate its action. These new ap-
proaches would enable the treatment of respiratory diseases like the aforementioned, particularly in those 
patients that do not respond to present therapies. Asthma, for example, gives a global burden of near 260 mil-
lion people with an annual mortality of 461,000 patients. While COPD is currently the third leading cause of 
death worldwide, with a 50% mortality in the first five years and about three million deaths annually (27–29). 
For these reasons, it is urgent to find a new effective therapy for those patients resistant to current treatment.

The selection in this study of bovine tracheal smooth muscle as a model to evaluate the direct contractile 
effect of 5-HT on the airways is based on the fact that the muscle of the trachea from cattle do not normally 
produce action potentials (30). They have a contractile system without automatic and rhythmic activity (31). 
Instead, this muscle responds to stimulation of the Parasympathetic Nervous System (PNS) or to chemical me-
diators. This, together with the fact that cattle do not develop diseases such as asthma, makes it an ideal model 
where muscle contraction can be evaluated in a physiological state in the absence of interfering contractile 
responses. Additionally, the bovine model also has the advantage that huge amounts of muscle tissue can be 
obtained in comparison with mouse, rat, and guinea pig. It is also bioethically more convenient as the animal 
is sacrificed for human consumption and not exclusively for research. Finally, the cholinergic contractile re-
sponses have been widely studied in our lab using this model, which allows us to understand as a whole the 
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contractile responses of the airways.
In the present work, we have shown that serotonin directly induces the contraction of the ASM of the 

bovine trachea by activation of several specific receptors. Also, a model of the action mechanisms has been 
proposed by which the contractile response could be enhanced. This may play a role in the pathophysiology of 
respiratory diseases.

Methods

Isolation of the Bovine Tracheal Smooth Muscle (BTSM)
Fresh bovine tracheas were obtained from certified healthy animals recently sacrificed in the local slaugh-

terhouse and keep cold during their transport to the laboratory.
The tracheas were washed with abundant water to remove blood and other contaminants. Then, the tra-

chealis muscle was dissected, all the connective and epithelial tissue removed, and cut into longitudinal strips 
(following the plane of the muscle fibres) of 10 × 2 mm (approximately) attached to the cartilage to preserve 
muscle tone. Each strip was placed in Krebs-Ringer-Bicarbonate Buffer (KRB) with the following composi-
tion: 118.5 mM NaCl, 4.47 mM KCl, 1.18 mM KH2PO4, 1.18 mM MgSO4, 2.54 mM CaCl2, 24.9 mM NaHCO3 
and 10 mM Glucose; pH 7,4, oxygenated with 95% O2 and 5% CO2 and maintained at Room Temperature (RT), 
making changes of the buffer every 30 min. The strips were used within a period no longer than 3 h after dis-
section.

Standardization of the contraction of the BTSM with carbachol
To evaluate the viability of using BTSM as a model and determine its maximum contractile capacity; 

the effect of Carbachol (CCh), an analogue of ACh, was evaluated. This was done by developing a cumulative 
concentration-response curve with CCh in concentrations from 10 nM to 10 mM.

Evaluation of the contractile effect of the 5-HT on BTSM
Once the viability of the model was determined, the effect of 5-HT on BTSM was evaluated in concentra-

tions from 10 nM to 1 mM, both alone and in the presence of one of the specific antagonists against serotoner-
gic receptors: 5-HT1B/D (GR127935), 5-HT2 (Ritanserin), 5-HT3 (Ondansetron), 5-HT4 (RS 23597), 5-HT7 (SB 
258719), 5-HT2A (Spiperone), 5-HT2B (SB 204741), 5-HT2C (N-Desmethylclozapine) or the non-selective antag-
onist of the muscarinic receptors, Atropine. The antagonists were added to the organ bath in a concentration of 
1 μM, 5 min before the addition of 5-HT. Serotonin, carbachol, atropine and ondansetron were purchased from 
Sigma-Aldrich Co. (St. Louis, MO, USA). GR127935, ritanserin, spiperone, SB204741, N-Desmethylclozapine, 
RS23597 and SB258719 were purchased from Tocris Bioscience (Ellisville, MO, USA).

Concentration-response curves were constructed following the method described in Current Protocols in 
Pharmacology and modified by Guerra de González in 1995 (32). In summary, the BTSM was placed inside of 
an organ bath of 10 ml coupled to a polygraph (Polygraph 7400; Grass Instruments, Quincy, MA, USA) with 
a system of force displacement transducers (model FT03; Grass Instruments) and calibrated to 1 gram (g) of 
initial tension. The strips were attached to the transducers and then immersed in KRB at 37 °C and constantly 
bubbled with 95% O2/5% CO2. The tissue was equilibrated for 30–40 min (with washes every 10 min). After 
each concentration-response curve with 5-HT, the muscle was contracted with CCh 1 mM. This with three 
aims: 1) to obtain the maximum contraction response, 2) to verify the integrity of the contractile machinery is 
preserved, and 3) to normalize the contractile response induced by 5-HT, alone or in presence of the different 
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antagonists.
The experimental data are expressed as the mean ± standard error (SE). The results are analysed using a 

two-way ANOVA and the comparison between the antagonists with the control group (5-HT) is made using an 
unpaired Student’s t-test with Welch’s correction with a significance of P<0.05. Multiple comparison is made 
with the use of the Sidak test. The effective concentration 50 (EC50) is estimated by non-linear regression with 
the Prisma 8.0.1 program. Prisma 8.0.1 (GraphPad Software, San Diego, CA, USA).

Results

The model in this study was validated through the contractile response generated by CCh, which showed 
its maximum effect (Emax) at a concentration of 1 mM with an EC50 of 3.11 ± 0.53 µM. While the contractile 
response induced by 5-HT started from 10 nM and reached similarly its Emax at 1 mM with an EC50 of 2.00 
± 0.57 µM, which is significantly lower than the EC50 of CCh (P<0.05). Additionally, the Emax-normalized of 
5-HT on the BTSM is 72.02 ± 1.32% in relation to the Emax stimulated by CCh (Fig. 1).

The direct contractile response of the BTSM as a function of time of a single dose of 5-HT was deter-
mined and compared to CCh at a concentration of 1 mM. It was observed that the contraction of muscle by CCh 
began immediately and reached its Emax at 120.33 ± 2.55 sec, while with 5-HT the effect commenced around 
2.5 sec after being administrated and its Emax obtained at 158.83 ± 5.53 sec, which represents a significantly 
longer time than CCh and evidence that the kinetic of both contractile responses are different (Fig. 2).

During the evaluation of the Atropine effect on the direct contraction of BTSM induced by 5-HT, it was 
observed that 5-HT 1 mM produced an Emax of 1.930 ± 0.050 g, which decreased to a value of 1.630 ± 0.087 g 

Fig. 1.	 Direct contractile response of cumulative 5-HT concentrations on BTSM compared to CCh. The 
contractile response was determined in an isolated organ system coupled to a GRASS polygraph 
(calibration: 1 g). 5-HT EC50 2.00 ± 0.57 µM and an Emax-normalized of 72.02 ± 1.32% in com-
parison with CCh, with a EC50 3.11 ± 0.53 µM. Each point represents the mean ± SE of 5 indepen-
dent preparations (n=5), expressed in the case of 5-HT based on the percentage of the maximum 
response induced by 1 mM CCh.
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Fig. 2.	 Comparison of the response of BTSM to CCh and 5-HT as a function of time. The direct contrac-
tile response of the bovine tracheal smooth muscle was determined in an isolated organ system 
coupled to a GRASS polygraph (calibration: 1 g). CCh and 5-HT were added in a concentration 
of 1 mM. Each value represents the mean ± SE of 6 independent preparations (n=6). Significant 
difference with respect to CCh: **P<0.005; ****P<0.0001.

Fig. 3.	 Effect of Atropine on the contractile response induced by single doses of 5-HT on BTSM. The 
direct contractile response was determined in an isolated organ system coupled to a GRASS poly-
graph (calibration: 1 g). Maximum contractile response to single doses of 1 mM 5-HT: 1.930 ± 
0.050 g; 1 mM 5-HT + 1 µM Atropine: 1.630 ± 0.087 g; 1 µM 5-HT: 0.370 ± 0.035 g; 1 µM 5-HT 
+ 1 µM Atropine: 0.303 ± 0.033 g. Each point represents the mean ± SE of 5 independent prepara-
tions (n=5). Significant difference compared to 5-HT alone: *P<0.05.
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in the presence of 1 µM of Atropine. This represents a 15.55% reduction in the Emax (P>0.05). On the other 
hand, 1 µM of 5-HT generated a contraction of 0.370 ± 0.035 g, which was not affected by Atropine at a con-
centration of 1 µM, 0.303 ± 0.033 g (Fig. 3).

In the pharmacological characterization of the serotonergic receptors that participate in the direct con-
tractile effect of 5-HT on the ASM of bovine, 1 µM Ritanserin, a non-selective antagonist of 5-HT2 receptors, 
significantly blocked the response (P>0.01). Ritanserin decreases the value of Emax-normalized of 5-HT to 
19.51 ± 2.21%, which represents a reduction in the contraction of 73%, EC50 of 97.86 ± 56.52 µM (Fig. 4a). 
Spiperone 1 µM (a 5-HT2A antagonist) produce a blockade of 95% of the response induced by 5-HT (P>0.001), 
with an Emax of 2.95 ± 0.46% and an EC50 of 0.09 ± 0.25 µM (Fig. 4b). Additionally, the Spiperone reduced 
the contractile basal tone of the BTSM by approximately 5%. Contrarily, the use of 1 µM of SB204741 (5-HT2B 
antagonist) or N-Desmethylclozapine (5-HT2C antagonist) did not inhibit the effect of 5-HT on the tissue. This 
was supported by finding an Emax of 85.10 ± 1.55%, with an EC50 of 19.27 ± 4.17 µM in the case of SB204741 
(Fig. 4c), and an Emax of 74.55 ± 3.40%, with an EC50 of 62.31 ± 28.57 µM for N-Desmethylclozapine (Fig. 4d). 
Both responses have a variation in the adjustment of the curve in comparison with the concentration-response 

Fig. 4.	 Effect of 5-HT2, 5-HT2A, 5-HT2B and 5-HT2C antagonists on the contractile response induced by 5-HT. The direct 
contractile response of the bovine tracheal smooth muscle was determined in an isolated organ system coupled 
to a GRASS polygraph (calibration: 1 g). The receptor antagonists a) 5-HT2 (Ritanserin), b) 5-HT2A (Spiperone), 
c) 5-HT2B (SB 204741) o d) 5-HT2C (N-Desmethylclozapine) were added 5 min before the start of the curve. Each 
point represents the mean ± SE of 5 independent preparations (n=5), expressed as a percentage of the maximum 
response induced on BTSM with 1 mM CCh.
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curve of 5-HT alone, without a significant difference when tested by an unpaired Student’s t-test with Welch’s 
correction or after an analysis of multiple comparisons.

The effects of 1 µM of GR127935 (5-HT1B/D antagonist), Ondansetron (5-HT3 antagonist), RS23597 (5-HT4 
antagonist) or SB258719 (5-HT7 antagonist), which have been described in the literature as possible inhibitors 
of the serotonin contractile response on the ASM, were evaluated. After an analysis of multiple comparisons of 
concentrations of the curves it was observed that GR127935 significantly reduced the contraction of BTSM by 
5-HT at a concentration of 10 µM or higher in comparison with 5-HT alone (P>0.05), with an Emax of 60.26 
± 3.60% and an EC50 of 5.20 ± 1.87 µM (Fig. 5a). The inhibitory effect of Ondansetron (P>0.01) and SB258719 
(P>0.01) began from a concentration of 1 µM of 5-HT. In the presence of Ondansetron, the 5-TH produces an 
Emax of 54.96 ± 1.86%, which represent a decrease of about 17% in the direct effect of 5-HT alone, EC50 of 
15.75 ± 4.25 µM (Fig. 5b). While with SB258719, we saw a reduction of nearly 23% of the response, reaching an 
Emax of 48.73 ± 1.08%, and an EC50 of 3.57 ± 1.21 µM (Fig. 5c). Finally, RS23597 does not produce inhibition 
of the effect of 5-HT on the muscle, Emax. 77.84 ± 2.66% and EC50 of 12.44 ± 4.65 µM (P=0.8407) (Fig. 5d).

Fig. 5.	 Effect of 5-HT1B/D, 5-HT3, 5-HT4 and 5-HT7 antagonists on the contractile response induced by 5-HT. The con-
tractile response of the bovine tracheal smooth muscle was determined in an isolated organ system coupled to a 
GRASS polygraph (calibration: 1g). The receptor antagonists a) 5-HT1 (GR127935), b) 5-HT3 (Ondansetron), c) 
5-HT7 (SB 258719) or d) 5-HT4 (RS 23597) were added 5 min before the start of the curve. Each point represents 
the mean ± SE of 5 independent preparations (n=5), expressed as a percentage of the maximum response induced 
on BTSM with 1 mM CCh. Significant difference in comparison to the 5-HT curve alone: **P<0.01, ***P<0.001; 
****P<0.0001.
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Discussion

The present work is the first to characterize pharmacologically the different subtypes of serotonergic 
receptors that mediate the direct contractile response of the smooth muscle of the bovine trachea induced by 
5-HT in the absence of the epithelium and connective tissue.

Initially, the validation of the contractile model was carried out by determining the concentration-re-
sponse curve to CCh, which presented an equivalent pattern to that obtained by Guerra de González et al., in 
1999 (33). The Emax of CCh was reached at a concentration of 1 mM, agreeing with the value observed by 
Barnes et al. for the cholinergic activation of the bovine ASM in absence of epithelium (34). In addition, the 
elimination of the epithelium and the accompanying connective tissue in the experiments significantly in-
creased the contractile sensitivity of the tissue to both cholinergic and serotonergic stimulation, as previously 
described by Spicuzza et al. (35).

The pharmacological parameters obtained with 5-HT in the concentration-response curve are comparable 
with the findings of Barnes et al. (34), but differ from those values observed by Cadieux et al. (36), Baumgart-
ner et al. (13) and Spicuzza et al. (35). However, such difference could be explained by the presence of epithelial 
and connective tissue in their preparations. In these cases, serotonin would induce the contractile response in-
directly by stimulating the release of several chemical mediators stored mainly in the epithelium, such as Ach, 
histamine and catecholamines, which will contract the ASM (10, 15). Likewise, 5-HT shown to have an Emax 
close to 30% lower than the cholinergic agonist on the BTSM, a value that is similar to the results described 
in the ASM by Pérez & Sanderson in mice and by Szarek et al. in rats (15, 37). A response that is important to 
highlight, are the consequences of the interaction of 5-HT with all of its different subtypes of receptors present 
in the ASM.

Antagonists of serotonergic receptors were used at a concentration of 1 µM to identify the subtypes in-
volved in the direct contractile response of BTSM to 5-HT. This concentration has shown to be effective, and 
it is equivalent to more than 100 times that of the reported inhibition constant (Ki) for each one of them (9, 
38–41).

Ritanserin, a non-selective antagonist of 5-HT2 receptors (42), inhibited by 73% the contractile response 
induced by 5-HT on the BTSM, which is significant. This result is in accord with that described by Selig et al. 
in 1988 (41), who found that Ritanserin blocked the increase in the intra-tracheal pressure induced by 5-HT in 
the ASM of guinea pig and corroborated the importance of 5-HT2 receptors in ASM cited in previous works 
(13, 14, 43, 44).

Different specific antagonists of the three subtypes of 5-HT2 receptors (5-HT2A, 5-HT2B, 5-HT2C) were 
used to discern which subtype or subtypes of 5-HT2 receptors mediate the response (38, 45). In our study was 
found that 1 µM of Spiperone (5-HT2A antagonist) blocked by nearly 95% the direct contractile response of 
BTSM to 5-HT, even when it is used at a concentration of 1 mM of the amine, which is a concentration three 
orders of magnitude higher. Also, we observed that Spiperone reduced the muscle tone by 5% in the absence 
of 5-HT. Based on the literature reviewed, these results represent an original pharmacological finding and sug-
gest a future therapeutic utility.

Regarding the subtype receptors 5-HT2B and 5-HT2C, when the antagonists SB204741 or N-Desmethylclo-
zapine were used, no significant change was seen in their concentration-response curves, respectively, when 
compared with that for 5-HT alone (46, 47). These results are in agreement with the findings of Rhoden et al. 
in guinea pigs (18), Adner et al. in mice (48), and more recently by Sommer et al. in the bovine, where they 
associated the response induced by 5-HT on ASM mainly to the 5-HT2A subtype (49).
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GR127935, an antagonist of the 5-HT1B/D receptor (50, 51), produced a reduction of about 10% in the Emax 
in comparison with 5-HT alone. This effect was only significant at high concentrations of 5-HT, suggesting that 
these receptors are not the principal mediators of the response. Additionally, it is possible that at least partially 
the effect observed is due to a non-selective binding of GR127935 to 5-HT2A receptors, which have previously 
been described by De Vries et al. in 1997 (51), who demonstrated that GR127935 can block the contraction me-
diated by 5-HT2A receptors of smooth muscle in the blood vessel of rat when it was used in high concentrations.

In this study, the use of Ondansetron (an antagonist of 5-HT3 receptor) blocked by about 17% the direct 
contractile response induced by 5-HT on BTSM in the absence of the epithelium and connective tissue. This 
observation together with the findings of Takahashi et al. (52), Rizzo et al. (7) and Dupont et al. (8), where 
they found that 5-HT3 receptors can stimulate the contraction of ASM by an indirect mechanism, indicating 
that these receptors contract ASM both directly and indirectly. In addition, the inhibition of 15.5% produced 
by Atropine over the contractile response induced by 5-HT on BTSM is similar to the Ondansetron response, 
which could be explained by a non-selective binding of Atropine to 5-HT3 receptors. This possibility is based 
on the structural similarity between Atropine and the antagonists of these receptors, which has been described 
in the literature (53).

RS23597, an antagonist of 5-HT4 receptors (54), did not modify the contractile response induced by 5-HT. 
This agrees with the work of Lucchelli et al. in 1994 (9), who point out that 5-HT4 antagonists are unable to 
inhibit the contraction stimulated by 5-HT on the trachea of guinea pigs. However, it is postulated that these 
receptors could play a role in the modulation of the relaxation process of the muscle (55).

SB258719, a 5-HT7 antagonist (56), produced a reduction in the contractile response of the BTSM induced 
by 5-HT. These receptors are associated mainly with a Gs protein capable of activating adenylate cyclase (AC) 
and thereby produced an increase in the generation of the cyclic adenosine monophosphate (cAMP) inside cells 
of the ASM (57, 58), which would cause relaxation of the muscle (59–61). Nevertheless, recent studies estab-
lished that these receptors can activate another less known signalling pathway mediated by G12 protein (57, 62). 
Through this pathway the 5-HT7 receptors block the activation of the myosin light chain phosphatase (MLCP) 
and produce the phosphorylation of the myosin light chain. The mechanism consists in a protein cascade in-
volving the guanine nucleotide exchange factors (GEFs), RhoA and RhoKinase. The effect is the enhancement 
of the contractile process of the muscle (57, 62, 63). The possibility of a dual response for 5-HT7 receptors in 
conjunction with the fact of these receptors exist in three different isoforms due to alternative splicing and 
their ability to form both homodimers and heterodimers, as shown in the literature (57, 64, 65), would help to 
explain the complex and paradoxical effect observed with these receptors, which has also been described in 
another type of tissue (66).

Conclusion

In conclusion, our data show that together with the 5-HT2A receptors, which are the principal mediators 
of the direct contractile response induced by 5-HT in the ASM, the receptor subtypes 5-HT3, 5-HT1B/D and 
particularly 5-HT7, also play an important role in the contraction of this tissue, particularly when 5-HT is 
present in high concentrations. Therefore, we propose a model described in Figs. 6 and 7, where we depict the 
possible mechanisms used by serotonin to contract and enhance its effect in this muscle. This model describes 
how 5-HT, which comes mainly from platelets and in a smaller proportion from mast cells, accumulates in 
the airways during the inflammatory response and induces a direct contractile response of this tissue by ac-
tivating its receptors located on the muscle. For 5-HT2A, 5-HT1B / D and 5-HT3 receptors, the mechanisms of 
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action activated are those traditionally described for each of these receptor subtypes. However, 5-HT7 recep-
tors would participate in the direct contractile response through an alternative pathway, which is mediated by 
Rho-Kinase. Additionally, our model also represents the ability of 5-HT to indirectly contract this muscle by 
promoting the release of Ach from its neuronal and epithelial stores. Together, both paths allow us to appreciate 
the key role of serotonin in the contractile response of the airways. Of course, future validation of the signal-

Fig. 6.	 Proposed model of receptors that participate in the direct contractile response of 
5-HT on ASM.

Fig. 7.	 Proposed model for the mechanisms of action of 5-HT on ASM.
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ling pathways associated with the contraction of the ASM by 5-HT must be performed, in special those related 
with 5-HT7 receptors, G12, RhoA and Rho Kinase, as well as the possible formation of heterodimers between 
5-HT7 and other subtypes of serotonergic receptors, in special the 5-HT2A receptors.
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