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Controllable Fabrication and 
Optical Properties of Uniform 
Gadolinium Oxysulfate Hollow 
Spheres
Fashen Chen1, Gen Chen1,2, Tao Liu1, Ning Zhang1, Xiaohe Liu1, Hongmei Luo2, Junhui Li3, 
Limiao Chen1, Renzhi Ma1 & Guanzhou Qiu1

Uniform gadolinium oxysulfate (Gd2O2SO4) hollow spheres were successfully fabricated by calcination 
of corresponding Gd-organic precursor obtained via a facile hydrothermal process. The Gd2O2SO4 
hollow spheres have a mean diameter of approximately 550 nm and shell thickness in the range of 
30–70 nm. The sizes and morphologies of as-prepared Gd2O2SO4 hollow spheres could be deliberately 
controlled by adjusting the experimental parameters. Eu-doped Gd2O2SO4 hollow spheres have also 
been prepared for the property modification and practical applications. The structure, morphology, and 
properties of as-prepared products were characterized by XRD, TEM, HRTEM, SEM and fluorescence 
spectrophotometer. Excited with ultraviolet (UV) pump laser, successful downconversion (DC) could be 
achieved for Eu-doped Gd2O2SO4 hollow spheres.

Hollow spheres have been attracting great attention due to their superior properties such as high specific surface 
area, low density, high permeability and therefore show promising potential applications in various fields such as 
lithium batteries, catalysis and sensing, drug controlled release and delivery, and photonic building blocks, etc1–6. 
Plenty of chemical and physicochemical strategies such as Ostwald ripening7, Kirkendall diffusion8, chemically 
induced self-transformation9, template-assisted synthesis10, and spray drying followed by annealing11,12 have been 
applied for the design and controlled fabrication of various micro/nanospheres with hollow interiors. In particular, 
template-assisted synthesis has been demonstrated to be the most effective and versatile synthesis method. The 
templates can be generally divided into hard templates13–15 and soft templates16–18, which have been widely used to 
fabricate hollow spheres. Among them, biomolecules, as attractive templates for the synthesis of metal and inor-
ganic compound nanostructures, have been exploited for the precise control of the size and shape of various micro/
nanomaterials, owing to the well-defined chemical and structural heterogeneity19–22. In spite of these pioneering 
work, it is still challenging and imperative to exploit an efficient but simple way for the synthesis of hollow spheres.

Rare earth oxysulfate (RE2O2SO4) have aroused great interest in recent years due to the unique magnetic23 
and luminescent properties24,25 as well as significant applications in large volume oxygen storage26,27. RE2O2SO4 
is also an important matrix compound for luminescent rare-earth ions to fabricate downconversion (DC) or 
upconversion (UC) phosphors due to the incompletely filled 4f electron shell of rare-earth ions28–30. RE2O2SO4 
could be synthesized by the thermal decomposition of the corresponding hydrous sulfates (RE2(SO4)3∙nH2O), 
layered rare-earth hydroxides intercalated with dodecyl sulfate (DS) ions, and layered rare-earth hydroxylsulfate 
(RE2(OH)4SO4∙nH2O)31–34. Nevertheless, the size and morphology of RE2O2SO4 products prepared by the above 
methods are not well controlled and no particular shape or uniform size can be achieved. Recently, we reported 
a unique synthetic process to prepare Y2O2SO4 hollow structure, which was mainly intended for the use of pho-
toluminescence host materials35.

For Gd2O2SO4, due to its unique half-filled outer electron shell in rare-earth elements, it is promising in 
combining magnetic and luminescent properties. A peculiar hollow structure further endows Gd2O2SO4 to be 
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a multifunctional nanomaterial for biomedical applications, such as magnetic resonance imaging, drug delivery 
host carriers and diagnostic analysis. This brings far-reaching impact than the availability of Y2O2SO4 hollow 
structure. Herein, we present a facile biomolecule-assisted route to prepare uniform Gd2O2SO4 hollow spheres via 
the calcination of corresponding spherical Gd-organic precursor obtained by using L-cysteine (Cys) as a biomol-
ecule template. The size and morphology of as-prepared Gd2O2SO4 hollow spheres can be deliberately controlled 
by adding different surfactants with varied amount. The formation process of the hollow spheres is elucidated by 
monitoring the species change and crystal structure evolution with elevated annealing temperature. Eu-doped 
Gd2O2SO4 hollow spheres have also been successfully synthesized and the luminescence properties of as-prepared 
products were studied in detail.

Results
X-ray diffraction (XRD) was carried out to illuminate the change and evolution of chemical composition and 
crystal structures. Figure 1A shows the XRD patterns of the Gd-organic precursor and corresponding Gd2O2SO4 
obtained by calcination at 600 °C for 2 h. No diffraction peaks were verified, indicating the initial precursor with 
broad featureless peaks was amorphous or non-crystalline. After annealing at 600 °C for 2 h, the precursor was 
converted into a single phase of Gd2O2SO4, and no other impurity phases can be observed. All the reflections can 
be indexed to the literature values (JCPDS 29–0613). The crystal structure of Gd2O2SO4 can commonly be depicted 
as an alternative stacking of Gd2O2

2+ and anion groups of sulfate (SO4
2−) layers along the a-axis, as shown in the 

inset of Figure 1A. The Gd2O2
2+ layer consists of [GdO4] tetrahedra linked together by shared of edges. Every [SO4] 

tetrahedra unit is coordinated with two Gd atoms36. The thermal decomposition behaviors of Gd-organic precursor 
was investigated in the temperature range of 25–650 °C at a heating rate of 10 °C min−1 in air. As shown in Figure 1B, 
the weight loss in the temperature range from 25 to 200 °C was about 5.9% by mass, which can be associated with 
evaporation of physically absorbed water and organic residues on the Gd-organic precursor surfaces. The subse-
quent weight loss took place rapidly at a much higher temperature range. The continuous stages of weight loss in 
the range of 200 to 600 °C were 18.2% and 14.1% by mass. The tremendous decrease of weight can be attributed 
to the oxidation or combustion of the initial precursor and crystallization into Gd2O2SO4. Corresponding to the 
two remarkable mass loss, the DSC curve of the sample displayed three major exothermal peaks in the gravimetric 
gain region centered at 274 °C, 516 °C and 535 °C respectively. As shown in the TG curve, little weight change can 
be observed at temperatures higher than 600 °C, suggesting that the relatively stable compound was obtained. 
Therefore, the hydrothermal products were annealed at 600 °C for the crystallization of Gd2O2SO4 hollow spheres.

Fourier transform infrared (FT-IR) spectroscopy was employed to investigate the structural and functional 
group information of the Gd-organic precursors and powders calcined at different temperatures. As shown in the 
Figure 2A, the FT-IR spectra reveal the existence of absorbed water, crystal water, hydroxyl groups (~3410 cm−1 
and 1640 cm−1), carbonates anions (~1580 cm−1 and 1415 cm−1) and sulfates anions (~680 cm−1) in the Gd-organic 
precursors37. The weak peaks at 2965 cm−1 and 2927 cm−1 are assigned to the -C-H vibration mode of -CH2

38. As 
the temperature of calcination increasing to 200 °C and 400 °C, the broaden band at 3410 cm−1 becomes weaker and 
weaker while the small peak at 1640 cm−1 disappears at 400 °C, which can be attributed to the removal of absorbed 
water and crystal water from the Gd-organic precursors. A similar behavior of carbonates absorption bands at 
1580 cm−1 and 1415 cm−1 can be observed, suggesting that the carbonate anions in the precursors decomposed 
or vaporized with increasing the temperature. These results are in good agreement with the results of TG-DSC 
analysis. Both the broaden band at 3410 cm−1 and carbonates absorption bands are significantly reduced at a higher 
calcination temperature of 600 °C; while a broaden sulfates absorption band at 1130 cm−1 appears at 400 °C and 
splits into three narrow and sharp peaks at 1198 cm−1, 1121 cm−1 and 1063 cm−1 at 600 °C. The broaden sulfates 
absorption band at 680 cm−1 in the precursors becomes weaker and splits into three narrow and sharp peaks at 
663 cm−1, 621 cm−1 and 603 cm−1 in the final products. These two group of narrow and sharp sulfates absorption 
bands are assigned to the deformation vibrations and the asymmetric stretching of SO4

2− anions, respectively39. 

Figure 1.  (A) XRD patterns of as-prepared Gd-organic precursor and corresponding Gd2O2SO4. The inset 
depicts the corresponding crystal structure of Gd2O2SO4. The Gd, O, and S species are represented by violet, red, 
and yellow balls, respectively. (B) TG and DSC curves of as-prepared Gd-organic precursor annealing from 25 
to 650 °C at a heating rate of 10 °C min−1 in air.
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These results are in accordance with those obtained from TG-DSC, XRD patterns in Figure S1 and ICP analysis in 
Table S1, illustrating the composition and structural evolution of the Gd2O2SO4 products.

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to charac-
terize the sizes and morphologies of as-prepared products. Figure 3A,B show the spherical Gd-organic precursors 
with a smooth surface and an average size of approximately 650 nm. After calcinating the Gd-organic precursors 
at 600 °C for 2 h, as shown in Figure 3C,D, Gd2O2SO4 hollow spheres with relatively rough surfaces were obtained. 
The average diameter of the hollow spheres was estimated to be approximately 550 nm, as shown in Figure S2, 
with a slightly decreasing in comparison with that of the precursor, implying the tendency to shrink after calcina-
tion. The strongly contrast between the dark periphery and greyish center of Gd2O2SO4 spheres reveals that these 
spheres were of hollow structures, and the shell thickness was about 60 nm. The inset in Figure 3D represents a 

Figure 2.  FT-IR spectras of the Gd-organic precursors (A) and the powders after calcinating at 200 °C (B), 
400 °C (C) and 600 °C (D) for 2 h.

Figure 3.  (A) SEM and (B) TEM images of spherical Gd-organic precursors. (C) SEM and (D) TEM images of 
Gd2O2SO4 hollow spheres. The inset in (D) is corresponding SAED pattern; (E) HRTEM image of Gd2O2SO4 
hollow sphere.
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typical selected area electron diffraction (SAED) pattern, which can be indexed to the monoclinic structure of 
Gd2O2SO4, consistent with the XRD result presented above. Figure 3E displays the corresponding high-resolution 
TEM (HRTEM) image, in which the lattice fringes were measured to be about 0.27 and 0.30 nm, corresponding 
to the interplanar spacings between (112) and (013) crystallographic planes, respectively. The current synthetic 
route could be adopted as a general strategy for the preparation of a series of rare-earth oxysulfate hollow spheres.

L-Cys, as a biomolecule template, possesses abundant functional groups, such as -SH, -NH2, and -COOH, which 
can coordinate to Gd3+ and form homogeneous Gd-organic coordination compound on the basis of metal-ligand 
interaction in the solution3,4,35, leading to the formation of spherical precursors through aggregation and coagula-
tion. Calcination temperature-depended formation mechanism of hollow spheres was investigated in detail as shown 
in Figure S3. After calcinating the solid spherical Gd-organic precursors at 200 °C for 2 h shown in Figure S3A,  
dark periphery and slightly greyish center of the spheres could be observed in the product. As the temperature of 
calcination increasing to 400 °C, the area of the greyish center of the spheres increased. Finally, the spheres with 
apparent hollow structure were obtained at the calcination temperature of 600 °C. We consider that the formation 
mechanism of the hollow spheres may involve two steps: First, a dense rigid shell formed in the surface of the 
solid spheres as the existence of the a large temperature gradient (∆T) along the radial direction at initial stage 
of calcination40. Then in the subsequent calcination, as the adhesion force (Fa) surpasses the contraction force 
(Fc), the inner part shrinks outward, a hollow cavity in the center of the spheres were obtained41. The organic 
substances were all burnt out at 600 °C and the Gd-organic precursors were gradually crystallized into Gd2O2SO4 
at the peripheries, meanwhile, the hollow structure was formed.

It was generally believed that surfactants played an important role in the control of morphologies and sizes of 
nanomaterials. Xia et al. studied the metal crystal growth kinetic process by using the different surfactants, such as 
cetyltrimethyl ammonium bromide (CTAB), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and so on, to 
maneuver the surface energies and growth rates for different facets42,43. The ratio between growth rates of different 
facets determined the growth habit of a nanocrystal, leading to the formation of different sizes and morphologies 
of nanomaterial. PVP had been widely introduced into the shape controlled synthesis of nanomaterials, such as 
and nanowires, nanosheets, nanospheres and so forth44,45. In this paper, we have studied the effect of surfactants 
on the synthesis of Gd2O2SO4 hollow spheres. Figure 4A shows the SEM image of as-prepared Gd2O2SO4 without 
using any surfactants. Although Gd2O2SO4 hollow spheres with broken shell could be observed in the absence 
of surfactant, the products had a tendency to agglomerate into block, and the size also reached the micrometer 
range. As shown in Figure 4B, when 0.15 g PVP was introduced into the synthesis of Gd2O2SO4 hollow spheres. 
The resulting product was mainly uniform spherical particles with smooth surfaces. However, with increasing the 
amount of PVP to 0.6 g (Figure 4C), the surface of hollow spheres became relatively rough. Thus, 0.3 g PVP was 
chosen as an optimal amount in the typical synthetic procedure of Gd2O2SO4 hollow spheres. The exact mechanism 
of the function of PVP on the morphology and size of Gd2O2SO4 hollow spheres is yet to be fully understood, it is 
believed that the strong interaction between the surfaces of Gd-organic precursors and PVP through coordination 
bonding with the O and N atoms of the pyrrolidone ring played a major role in determining the product mor-
phology and size45. We also found that the CTAB as surfactant has similar functions in the synthesis of Gd2O2SO4 

Figure 4.   SEM images of as-prepared Gd2O2SO4 hollow spheres obtained by using different surfactants: 
(A) without any surfactants; (B) 0.15 g PVP; (C) 0.6 g PVP; (D) 1 mmol CTAB.
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hollow spheres, as shown in Figure 4D. CTAB was used instead of PVP while other synthetic parameters were 
kept unchanged. The resulting product was mainly uniform Gd2O2SO4 spheres with rough surface and the average 
size decreased to approximately 350 nm. These results further proved the indispensable role of surfactants in the 
formation of Gd2O2SO4 hollow spheres.

The introduction of other rare-earth ions such as Eu3+ ions into Gd2O2SO4 host lattice caused little change both 
on morphology and crystal phase. As shown in Figure 5, when 5% Eu3+ was added into the Gd2O2SO4 host lattice, 
the morphology of final products, as well as the organic precursor shown in Figure S4, remained unchanged com-
pared with the pure Gd2O2SO4. The crystalline nature of Gd2O2SO4:Eu hollow spheres was confirmed by HRTEM. 
Figure 5C clearly shows the lattice fringes were measured to be about 0.18 nm, corresponding to the interplanar 
spacing of (024) crystallographic plane, which fairly well agree with the standard interplanar spacing. The result of 
X-ray diffraction analyses further proved that the introduction of 5% Eu3+ ions into the Gd2O2SO4 host lattice has 
no significant change on the crystal structure, as show in Figure S5, owing to the same trivalent state and similar 
ionic radius of Gd3+ ions (r(Gd3+) =  0.0938nm) and Eu3+ ions (r(Eu3+) =  0.095 nm). The elemental maps of the 5% 
Eu-doped Gd2O2SO4 hollow spheres obtained on TEM were displayed in Figure 5D, which clearly demonstrates 
a homogeneous distribution of Gd, Eu, S and O elements. The energy dispersive spectrometer (EDS) spectrum in 
Figure S6 reveals that the as-obtained product mainly contains Gd, Eu, S and O elements (Au signals were come 
from the spray-gold treatment to enhance the electrical conductivity of the material). The molar ratio of Eu:Gd 
was about 3.23:96.77, which was consistent with the ratio of used reagents in synthetic process. The above results 
confirm that successful doping could be achieved through current synthetic strategy.

Discussion
The excitation spectra of the 5% Eu-doped Gd2O2SO4 phosphors was recorded in the wavelength range of 200–500 nm  
at room temperature, as shown in Figure 6A, one can see that a broad absorption band with a maximum at around 
270 nm exists, which is resulted from the typical 8S7/2 →  6I7/2 transition of the Gd3+ ions46. Furthermore, other two 
comparatively weak peaks centered at 394 nm and 465 nm can be respectively assigned to the typical f-f transition 
of Eu3+ ions, corresponding to the 7F0 →  5L6 and 7F0 →  5D2 transitions37. Excitation spectra of the 5% Eu-doped 
Gd2O2SO4 phosphors was taken by monitoring the wavelength of 617 nm.

The emission spectrums of 5% Eu-doped Gd2O2SO4 under 270 nm light excitation (Figure 6B) demonstrate 
the characteristic 5D0 →  7FJ (J =  1, 2, 3, 4) and 5D1 →  7FJ (J =  3, 4) transitions of Eu3+ ions, indicating the effective 
cooperative luminescence between Gd3+ and Eu3+. The strongest emission which splits into two peaks centered at 
613 nm and 617 nm can be attributed to the forced electric dipole 5D0 →  7F2 transition of Eu3+ ions. All the other 
emission peaks are easily assigned to the 5D1 →  7F3 (579, 586 nm), 5D0 →  7F1 (594, 596 nm), 5D1 →  7F4 (627 nm), 

Figure 5.  (A) SEM and (B) TEM images of as-prepared 5% Eu-doped Gd2O2SO4 hollow spheres. Inset is 
the corresponding SAED pattern. (C) HRTEM image of 5% Eu-doped Gd2O2SO4 hollow spheres; (D) STEM 
HAADF and elemental maps of Gd, Eu, O and S of 5% Eu-doped Gd2O2SO4 hollow spheres.
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5D0 →  7F3 (649 nm), 5D0 →  7F4 (693, 701 nm) transition of Eu3+ ions, respectively47–50. In this process, trivalent 
Gd3+ ions, as sensitizer, absorb ultraviolet excitation light and subsequently transfer energy to the neighboring 
Eu3+ ions act as activator, resulting in the overall red emission of Eu3+. The detailed energy level and transfer 
scheme was shown in inset of Figure 6B. Upon excitation by 270 nm, Gd3+ ions will be excited into 6I7/2 state 
from ground state in the first step and then fast relax from this high excitation state to the 6PJ state. Secondly, the 
Gd3+ ions in the 6PJ state can easily transfer the excitation energy to the Eu3+ ions (5HJ) because of the energy 
level match between 6PJ state and 5HJ state50. Fast non-radiative relaxation from 5HJ state to the 5D1 or 5D0 state 
occurs. The electron on high excitation 5D1 and 5D0 states further relaxes radiatively to the ground-state to 
generate different wavelength visible emissions. Furthermore, as shown in Figure S7, the emission intensity of 
the Gd-organic precursors with poor crystallinity can be negligible comparing to the final products with high 
crystallinity.

Conclusions
In summary, uniform gadolinium oxysulfate hollow spheres have been successfully achieved by a facile hydrother-
mal process combining with a calcination of Gd-organic precursors. Based on the experimental results, we found 
both the amount and the type of surfactants play an important role for the formation of Gd2O2SO4 hollow spheres. 
Eu-doped Gd2O2SO4 hollow spheres have also been successfully synthesized with little change both on size and 
crystal phase. Optical properties reveal that the Eu-doped Gd2O2SO4 hollow spheres can be used to down-convert 
UV light to visible light under the UV excitation. It is expected that the uniform Gd2O2SO4 hollow spheres have 
potential applications in various research field, such as large volume oxygen storage, drug delivery host carriers, 
optical/display devices and luminescence probes.

Methods
All the reagents are of analytical grade and used as starting materials without further purification.

Preparation of gadolinium oxysulfate hollow spheres.  In a typical synthetic procedure of Gd2O2SO4 
hollow spheres, 1 mmol of hydrated gadolinium nitrate (Gd(NO3)3·6H2O), 2.0 mmol of L-Cys (L-cysteine) and 0.3 g 
of PVP (polyvinylpyrrolidone) were dissolved in 20 ml deionized water under vigorous magnetic stirring. Then the 
resulting solution was transferred into Teflon-lined stainless steel autoclave of 50 ml capacity and maintained at 
140 °C for 24 h. After cooling to room temperature naturally, the resulting precipitates were washed with distilled 
water and anhydrous alcohol for several times, and dried at 50 °C for 4 h. Finally, the precursors can be transformed 
into Gd2O2SO4 hollow spheres by calcination the Gd-organic precursor at 600 °C for 2 h. Furthermore, the 5% 
Eu-doped Gd2O2SO4 hollow spheres were also obtained by similar process.

Characterization.  X-ray diffraction patterns were recorded by a D/max2550 VB+  diffractometer with Cu 
Kα  radiation (λ  =  0.15405 nm) in the 2θ  range of 10°–70°. The morphology of the as-prepared products was 
examined by a field emission scanning electron microscopy (FE-SEM, Sirion 200) with an accelerating voltage 
of 15 kV. The energy dispersive spectrometer (EDS) was taken on the SEM. Transmission electron microscopy 
(TEM) images, selected area electron diffraction (SAED), high-resolution TEM (HRTEM) and the elemental map-
ping were recorded on a Tecnai G2 F20 transmission electron microscope with an accelerating voltage of 200 kV. 
Thermogravimetric and differential scanning calorimetry (TG-DSC) were carried out using a simultaneous thermal 
analysis (STA, NETZSCH STA 449C) in a temperature range of 25–650 °C at a heating rate of 10 °C min−1 under 
an air flow. Fourier transform infrared (FT-IR) spectroscopy were obtained on a Nicolet Nexus 6700 instrument. 
Baird PS-6 Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) were used to evaluate the 
element content. The photoluminescence (PL) excitation and emission spectras were obtained on a fluorescence 
spectrophotometer (Hitachi F-4500) at room temperature.

Figure 6.  (A) Excitation spectrum of 5% Eu-doped Gd2O2SO4 hollow spheres. (B) Emission spectrum of 5% 
Eu-doped Gd2O2SO4 hollow spheres. Inset is corresponding scheme of the energy level and energy transition of 
5% Eu-doped Gd2O2SO4 hollow spheres.
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