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Abstract. Non‑alcoholic fatty liver disease (NAFLD) is one 
of the most common chronic liver diseases and can lead to 
liver cirrhosis or liver cancer in severe cases. In recent years, 
the incidence of NAFLD has increased substantially. The 
trend has continued to increase and has become a key point of 
concern for health systems. NAFLD is often associated with 
metabolic abnormalities caused by increased visceral obesity, 
including insulin resistance, diabetes mellitus, hypertension, 
dyslipidemia, atherosclerosis and systemic microinflam‑
mation. Therefore, the pathophysiological mechanisms of 
NAFLD must be clarified to develop new drug treatment 
strategies. Recently, researchers have conducted numerous 
studies on the pathogenesis of NAFLD and have identified 
various important regulatory factors and potential molecular 
mechanisms, providing new targets and a theoretical basis 
for the treatment of NAFLD. However, the pathogenesis of 
NAFLD is extremely complex and involves the interrelation‑
ship and influence of multiple organs and systems. Therefore, 

the condition must be explored further. In the present review, 
the abnormal metabolic process, including glucose, lipid, 
amino acid, bile acid and iron metabolism are reviewed. It 
was concluded that NAFLD is associated with an imbalanced 
metabolic network that involves glucose, lipids, amino acids, 
bile acids and iron, and lipid metabolism is the core metabolic 
process. The current study aimed to provide evidence and 
hypotheses for research and clinical treatment of NAFLD.
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1. Introduction

Non‑alcoholic fatty liver disease (NAFLD) is caused by excess 
fat deposits in the liver due to non‑alcoholic factors (1), such 
as a high fat diet, a high cholesterol diet and a sedentary 
lifestyle. The condition represents a range of liver diseases 
from non‑alcoholic fatty liver, also known as simple steatosis, 
to non‑alcoholic steatohepatitis (NASH), fibrosis and 
cirrhosis (1,2). NAFLD can be characterized by metabolic 
syndrome (MS) features, including altered glucose and lipid 
metabolism, imbalanced amino acid homeostasis, increased 
bile acid and excess hepatic iron (3). Due to the increased inci‑
dence of obesity and associated MS, NAFLD has become the 
most common liver disease worldwide. The global prevalence 
of NAFLD is currently estimated to be 25.2% (4). Notably, 
with the radical changes in Chinese lifestyle such as sedentary 
behaviour and a hypercaloric diet, the prevalence of NAFLD 
in China increased to 32.9% in 2018 (5). Therefore, clarifica‑
tion of the pathophysiological mechanisms of NAFLD are 
necessary for the development of pharmacological treatment 
strategies.

The pathogenesis of NAFLD remains unclear and it has 
been widely accepted to follow the ‘multiple‑hit’ hypothesis. 
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According to this hypothesis, NAFLD is a complex disease 
and its pathogenesis involves diet, genetic, environment and 
metabolic factors that progress through different stages during 
the occurrence and development of NAFLD (6). Elevated 
levels of circulating free fatty acids (FFAs) combined with 
insulin resistance (IR) and excessive accumulation of triglyc‑
erides in liver cells serve a major role in the development of 
NAFLD (7). Additionally, lipid accumulation also responsible 
for oxidative stress, inflammatory response and lipotoxicity, 
predisposing patients to progressive liver injury (8). IR, 
lipotoxicity, inflammatory response, genetic polymorphisms, 
adipokines and intestinal flora can affect the pathogenesis of 
NAFLD (8). However, the interaction between these mecha‑
nisms and their changes in the occurrence and development of 
NAFLD remain to be determined.

Since NAFLD involves multiple metabolic pathways 
(Fig. 1), more attention should be paid to abnormal metabo‑
lism that may worsen metabolic disorders (9‑13). In the present 
review, the abnormal metabolism in NAFLD, including 
glucose, lipid, amino acids, bile acids and iron metabolism are 
summarized with the aim to provide evidence and hypotheses 
for NAFLD diagnosis and possible therapeutic strategies.

2. Glucose metabolism in NAFLD

An important factor affecting NAFLD is hyperglycemia, 
which stimulates insulin secretion and increases triglyceride 
synthesis by the liver, resulting in an increase in triglycerides 
in the blood and gradual accumulation in the liver to form fatty 
liver. Prolonged and chronic hyperglycemia causes hepatocel‑
lular damage, alters the structure and function of pancreatic 
β cells and causes IR, thereby inducing and accelerating the 
occurrence and progression of NAFLD (14).

Fructose metabolism is similar to glucose metabolism 
and both lead to triglyceride generation. The main difference 
between these processes is that glucose is primarily metabo‑
lized by glucose kinases or hexokinases, while fructose is 
mainly metabolized by fructose kinases (15). Fructose metab‑
olism in the liver contributes to increased hepatic lipogenesis 
and inhibits mitochondrial β‑oxidation of long‑chain fatty 
acids. Numerous patients with NAFLD have insufficient anti‑
oxidant capacities to inhibit fructose metabolism (16). A recent 
study demonstrated that dietary fructose promoted hepatic 
lipogenesis via microbiota‑derived acetate (17).

Insulin is closely associated with carbohydrate metabo‑
lism disorder in NAFLD as it facilitates the formation of 
fat and inhibits lipases, and participates in glucose homeo‑
stasis and hepatic glycogen synthesis (18). IR, an important 
pathophysiological basis for carbohydrate metabolism disor‑
ders, is consistent with NAFLD development. Glucagon‑like 
peptide 1 (GLP‑1) stimulates insulin secretion and suppresses 
glucagon in a strictly glucose‑dependent manner (19). 
Furthermore, GLP‑1 serves a role in coordination with fibro‑
blast growth factor 21 (FGF21) (20). GLP‑1 and FGF21 affect 
insulin function and secretion, respectively (21). Additionally, 
lysyl oxidase‑like 2 (LOXL2) expression is directly propor‑
tional to the severity of IR and LOXL2 inhibitors can prevent 
NASH from progressing to fibrosis (22).

IR is a major feature of NAFLD and can lead to type 2 
diabetes (T2D) and hyperinsulinemia due to glucose 

intolerance, which has additional effects on glucose metabo‑
lism (23). The regulatory mechanisms of IR involve chloride 
ions (Cl‑) and insulin signaling. Cl‑ are common and affluent 
anions in living organisms. Chloride channels (ClCs) func‑
tion as a type of permeable channel or protein, which are 
encoded and regulated by the genes of ClC family, ClC‑2, a 
member of ClCs family. Fatty deposits can be abundant by the 
expression of ClC‑2, which is activated by fatty acids in the 
liver and induces IR (24). The transduction of insulin signaling 
is regulated by insulin receptor substrate 1 (IRS‑1) (25). When 
insulin binds to insulin receptors, IRS‑1 is phosphorylated 
at tyrosine 608/612 to activate the insulin signaling pathway. 
However, the phosphorylation of IRS‑1 at serine 307/312 
suppresses glucose absorption and leads to IR, which inhibits 
insulin signaling. Additionally, dysregulation of protein 
kinase B2 (Akt2) signaling pathways has been reported in 
NAFLD. Akt2 facilitates glucose uptake and suppresses IR. 
Furthermore, Akt2 is inhibited by fetuin‑A, a type of hepato‑
kine synthesized in the liver, which inhibits insulin receptor 
tyrosine phosphorylation in skeletal muscles and the activity 
of Akt2 to reduce glucose uptake (26). Increasing evidence has 
demonstrated that disordered cellular Cl‑ concentrations are 
associated with lipid accumulation, high blood pressure and 
atherosclerosis (27,28). Notably, chloride channel 2 (CIC‑2) 
inhibition alleviates high fat diet‑induced hepatic steatosis, 
inflammation and fibrosis (24).

GLP‑1. GLP‑1 is an antihyperglycemic hormone that induces 
pancreatic β cells to secrete insulin. Trevaskis et al (29) demon‑
strated that GLP‑1 receptor agonists significantly improve 
metabolism and biochemical and histopathological indicators 
in NASH mice. Bernsmeier et al (30) reported that patients 
with NAFLD exhibited IR and insufficient GLP‑1 secretion. 
Furthermore, Chellali et al (31) demonstrated that patients with 
NAFLD, T2D or NAFLD+T2D generally exhibited IR and that 
compared with controls, plasma GLP‑1 levels were obviously 
lower in patients with NAFLD, T2D or NAFLD+T2D. GLP‑1 
receptor agonists have been approved for T2D treatment and 
an increasing number of previous studies have demonstrated 
that they are also effective for NAFLD (32‑35).

FGF21. FGF21 is a member of the fibroblast growth factor 
family and is a hormone‑like endocrine factor secreted by the 
liver and serves a critical role in maintaining the homeostasis 
of glycolipid metabolism (36). Li et al (37) reported that 
serum FGF21 levels, such as the fatty liver index (38), which 
is an already known score associated with steatosis presence, 
have specificity for the early diagnosis of NAFLD. FGF21 is 
primarily produced by the liver and specifically acts on liver, 
fat and islet cells, FGF21 can reduce body weight, whole‑body 
fat mass and liver triglyceride content, increases fat utiliza‑
tion and energy expenditure, and improves glucose tolerance 
and insulin sensitivity in the liver and adipose tissue (39). 
FGF21 is independent of insulin and regulates blood glucose 
and blood lipid (39). FGF21 can reduce glucose levels without 
triggering hypoglycemia, and increase the glucose uptake in 
brown fat, the browning of white fat and the increase in overall 
energy consumption. As a metabolic regulator, FGF21 signifi‑
cantly reduces the expression of key genes involved in lipid 
metabolism, including stearoyl‑coenzyme A desaturase 1 and 
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glucokinase, reduces fat syntheses, upregulates the expression 
of key genes involved in lipolysis, including leptin receptor 
and insulin‑like growth factor binding protein 2 and promotes 
fat decomposition and energy metabolism, thereby reducing 
the accumulation of fat in liver tissue and restoring normal 
liver function (40).

LOXL2. IR is associated with the severity of liver fibrosis, the 
main determinant of NAFLD prognosis (41,42). LOXL2 is an 
enzyme that promotes the network of collagen fibers of the extra‑
cellular matrix (43). LOXL2 expression is strongly correlated 
with the amount of steatosis and severity of fibrosis. Hepatic 
LOXL2 upregulation was specifically detected in patients 
with NAFLD and T2D progressing to advanced fibrosis (22). 
Ikenaga et al (44) reported that LOXL2 expression was virtu‑
ally absent from healthy livers while strongly induced in fibrotic 
livers and that LOXL2 inhibition promoted fibrosis reversal. 
Therefore, LOXL2 antibodies are a potential treatment for liver 
fibrosis. A monoclonal antibody against LOXL2, simtuzumab, 
has been developed and is currently in phase II trials (45).

3. Lipid metabolism in NAFLD

NAFLD is characterized by the significant accumulation of 
lipids, such as triglyceride (TG), FFAs and cholesterol, in 
hepatocytes and serum, indicating that altered lipid metabo‑
lism is crucial in the pathogenesis of NAFLD. Excess TG 
and serum FFAs are common in NAFLD. Excess TG accu‑
mulate from de novo hepatic lipogenesis and the dietary fat 
supply, while FFAs accumulate due to lipolysis in visceral 
adipose tissue (46). FFAs participate in fatty acid β‑oxidation, 
endoplasmic reticulum stress (ERS) response, lysosomal 
dysfunction and cell death via the mitochondrial pathway 
to induce NAFLD (47). Trans fatty acids (TFAs) facilitate 
lipogenic gene expression and hepatic lipid accumulation by 
causing severe steatosis and by regulating Kupffer cells (48).

There are two main pathways for lipid metabolism: 
The β‑oxidation of liver FFAs and the binding of very 
low‑density lipoproteins (VLDLs) in the liver (49,50). 
When lipid synthesis pathways increase, IR develops 
and liver lesions are generated. However, by promoting 
β‑oxidation and inhibiting the synthesis of lipids, IR and 
liver lesions can be alleviated. Additionally, certain lipids 
bind to VLDL and are transported out of the liver. In the 
smooth endoplasmic reticulum (SER), TG‑rich VLDL is 
transfused and secreted and transported from the liver 
in secretory vesicles. Excessive liver lipids induce ERS 
via the SER and increase the production of inflammatory 
cytokines. Therefore, a variety of lipid metabolism‑related 
regulatory factors are closely associated with NAFLD. 
However, whether these regulatory factors are an effective 
target for the treatment of NAFLD remains to be elucidated 
through further research (51,52).

Inflammatory cytokines. Numerous previous studies have 
demonstrated that various inflammatory cytokines serve 
key roles in the progression of steatosis to NASH (53.54). 
Zahran et al (55) reported that tumor necrosis factor (TNF)‑α 
levels were elevated in a patient population with NASH 
compared with controls. Furthermore, Bocsan et al (56) 
demonstrated that plasma interleukin (IL)‑6 and TNF‑α levels 
were significantly higher in patients with NASH compared 
with controls. TNF‑α is produced by hepatocytes and infil‑
trating immune cells. Moreover, it stimulates liver steatosis, 
which in turn increases serum TG levels (57). Additionally, 
TNF‑α activates Kupffer cells, which in turn stimulate liver 
fibrosis during NAFLD progression (58). IL‑6 is primarily 
secreted by adipose tissue and, as an important mediator of 
fatty acid metabolism, serves a paradoxical role in the liver: 
While the hepatic IL‑6 signaling pathway has a protective 
effect against the development of liver steatosis, it may also 
promote liver inflammation (59).

Figure 1. The metabolic network of NAFLD. NAFLD, non‑alcoholic fatty liver disease; GLP‑1, glucagon‑like peptide 1; IR, insulin resistance; LOXL2, lysyl 
oxidase‑like 2; FXR, farnesoid X receptor; LXRs, liver X receptors; PNPLA3, patatin‑like phospholipase domain protein 3; BCAAs, branched chain amino 
acids; NPC1L1, Niemann‑Pick c1‑like 1; ROS, reactive oxygen species; (+), positive regulation; (‑), negative regulation.
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Patatin‑like phospholipase domain containing 3 (PNPLA3). 
PNPLA3 is a secretory adipose factor that is widely expressed 
in human tissues, particularly in liver and adipose tissues (60). 
In 2008, Romeo et al (61) conducted a genome‑wide associa‑
tion analysis to screen for pathogenic genes in NAFLD. A group 
of nonsynonymous sequence variations including Hispanic, 
African‑American and European‑American participants 
(n=9.229) were selected and polymorphic PNPLA3 rs738409 in 
liver tissue was identified in order to identify genetic variants 
contributing to differences in hepatic fat content. Increased 
concentrations of fat and liver inflammation were highly 
associated with Homeostatic Model Assessment of IR and the 
mechanism of liver damage may be associated with intrahepatic 
lipid deposition. Additionally, Wang et al (62) studied 768 patients 
from the Han Chinese population and confirmed the association 
between PNPLA3 rs738409 and an increased risk for NAFLD 
in this population, emphasizing its effects on NAFLD among 
multiple ethnic groups. Several previous studies in a meta‑anal‑
ysis demonstrated that genetic variation in PNPLA3 increases 
the risk of NAFLD in European and Chinese populations (63). 
Numerous previous studies have reported that PNPLA3 gene 
polymorphism is associated with an increase in liver fat content 
and liver inflammation (63‑65). As an enzyme with a bidirec‑
tional ability to regulate fat metabolism, PNPLA3 promotes lipid 
synthesis and may be involved in ectopic lipid deposition and IR, 
the two key factors in the pathogenesis of NAFLD; therefore, 
PNPLA3 leads to the pathogenesis of NAFLD (66).

Peroxisome proliferator‑activated receptors (PPARs). PPAR 
ligand‑activated transcription factors control different aspects 
of lipid catabolism. The PPAR subtype PPAR‑α is highly 
expressed in the liver, where it promotes genes that regulate the 
β‑oxidation of fatty acids. Thus, inducing PPAR‑α‑regulated 
lipid catabolic pathway genes may enhance NAFLD. Another 
subtype, PPAR‑γ, is a nuclear receptor that regulates insulin 
sensitivity and lipid metabolism, and a molecular target for 
insulin sensitizing agents. PPAR‑γ is expressed in hepatic 
stellate cells (HSCs) to influence perilipin expression, which 
regulates lipid droplet metabolism. The activation of HSCs 
largely contributes to the fibrogenesis process (67).

Sterol regulatory element‑binding proteins (SREBPs). 
SREBPs control cholesterol, TGs and fatty acids. SREBP‑1c 
is a subtype predominantly localized in the adult liver and is 
required for simple steatosis during fasting. Overexpressed 
SREBP‑1c leads to excessive TG accumulation in the liver 
and ultimately to NAFLD. Thus, the inhibition of SREBP‑1c 
is a preventive approach (68). PPARα and SREBP‑1 are key 
determinants of NAFLD (69).

SREBP‑2 is an important nuclear transcription factor 
that regulates cellular cholesterol homeostasis. Its activa‑
tion promotes the accumulation of hepatocyte cholesterol by 
facilitating cholesterol synthesis and uptake and suppressing 
reverse cholesterol transport (70). Additionally, SREBP‑2 
predicts NASH and widely impairs pancreatic β cell func‑
tion, tissue insulin sensitivity and adipokine and lipoprotein 
responses to fat uptake. Thus, elevated SREBP‑2 increases the 
prevalence of NAFLD and cardiovascular diseases. Abnormal 
SREBP‑2 activation can be reversed by depleting cholesterol 
in adipocytes (71).

Adiponectin. Adiponectin, an insulin‑sensitizing adipocyto‑
kine, is an adipocyte‑derived anti‑inflammatory mediator that 
acts via two receptors that elicit AMP kinase signaling (72). 
Adipose tissue is a major site of endogenous adiponectin 
production. Previous research has demonstrated that plasma 
levels of adiponectin are significantly diminished in visceral 
obesity and states of IR such as NASH, T2D and athero‑
sclerosis (73,74). Adiponectin and its agonists may represent 
potential alternative therapeutic approaches for NAFLD 
treatment.

Leptin. Leptin is a hormone secreted mainly by the adipocytes 
in white adipose tissue and is a product of the obese gene (75). 
Perfield et al (76) reported that de novo lipogenesis was induced 
and that hepatic mitochondria were reduced and inhibited in 
leptin‑deficient NAFLD mice. Zelber‑Sagi et al (77) demon‑
strated that leptin levels were significantly higher in patients 
with NAFLD compared with patients without NAFLD at 
7 years of follow‑up. Furthermore, Polyzos et al (78) revealed 
that serum leptin levels in patients with NAFLD were higher 
compared with controls and that serum leptin levels were asso‑
ciated with increased severity of NAFLD. However, while a 
lack of leptin may lead to liver steatosis, which can be reversed 
by leptin replacements (79), excessive leptin may cause liver 
inflammation and fibrosis.

Liver X receptors (LXRs). As members of the metabolic 
nuclear receptor superfamily, LXRs influence the regulation 
of cholesterol absorption, conveyance, transportation and 
excretion (80). Research has demonstrated that LXR activation 
regulates cholesterol homeostasis, induces anti‑inflammatory 
effects and increases insulin sensitivity (81). Inhibiting liver 
LXR transcriptional activity in NAFLD effectively reduces 
liver steatosis, inflammation and fibrosis. However, research 
has found that LXR is highly expressed in the livers of patients 
with NAFLD and increases with the severity of NAFLD. LXR 
expression is directly proportional to liver lipid deposition (82). 
However, the uncertainty about whether LXR activation or 
inhibition is beneficial for NAFLD treatment has hindered the 
development of LXR‑related drugs (83).

Plin2. Plin2, also known as adipophilin or adipose 
differentiation‑related protein, is commonly reported on 
the surface of lipid droplets in most tissues and hepatic 
lipids effectively induce Plin2 expression. Plin2 inhibition 
increases insulin sensitivity and reduces fatty liver (84). While 
perilipin 2‑antisense oligonucleotide (Plin2‑ASO) treatment 
decreases steatosis, it also promotes proliferation and fibrosis. 
Furthermore, Plin2‑ASO inhibits the expression of genes that 
participate in TG biosynthesis and utilization, including diac‑
ylglycerol O‑acyltransferase 2, acetyl coenzyme A carboxylase 
and fatty acid oxidation carnitine palmitoyltransferase 1 by 
suppressing transcription factors. Additionally, Plin2‑ASO 
therapy significantly decreases the expression of genes related 
to cholesterol and steroid metabolism, reduces hepatic VLDL 
secretion and increase insulin sensitivity (85).

Choline. Choline is an important phospholipid component 
present in cell membranes and is ingested exogenously and 
synthesized endogenously. Choline is one of the methyl donors 
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for the synthesis of phosphatidylcholine in the liver, which is 
required for the synthesis and secretion of VLDL. Therefore, 
choline serves a vital role in liver lipid transport (86). Choline 
has a negative correlation with NAFLD development by 
affecting intracellular lipid metabolism and muscle membrane 
lipid composition (87). Dietary choline is metabolized by 
intestinal microbiota and converted to trimethylamine, 
resulting in choline deficiency in the liver. Choline deficiency 
hinders the synthesis and secretion of VLDL, leads to the 
accumulation of TG in the liver and promotes the onset of 
NAFLD. High‑fat diets lead to the formation of intestinal 
microbiota that convert dietary choline into methylamines, 
reducing circulating plasma levels of phosphatidylcholine to 
produce similar effects of choline‑deficient diets and causing 
NASH (88). Choline‑deficient diets have been used to establish 
animal models of NASH (89).

4. Amino acid metabolism in NAFLD

Impaired liver function leads to an imbalance in amino acid 
homeostasis. Amino acid metabolism is extensively altered 
in NAFLD, involving branched‑chain amino acids (BCAAs), 
aromatic amino acids (AAAs), methionine, homocysteine and 
arginine. Additionally, fatty liver is associated with deregu‑
lated liver expression of aminotransferases (90). The profiles 
of amino acid metabolism gene sets can be used to evaluate 
hepatic oxidative stress in patients with NAFLD (91).

BCAAs. BCAAs are amino acids with nonlinear aliphatic 
side‑chains and include the essential amino acids leucine, 
valine and isoleucine. Cheng et al (92) reported increased 
serum BCAAs in patients with NAFLD. Lake et al (91) 
demonstrated that during the progression of steatosis to 
NASH, serum leucine, isoleucine and valine levels were 
significantly increased. This increase is associated with 
liver fat accumulation during the early stages of NAFLD. 
BCAAs mediate numerous biological functions in NAFLD. 
Firstly, BCAAs regulate glucose metabolism by inducing 
insulin signaling (93,94). Secondly, they increase lipolysis and 
hyperlipidemia, which cause hepatic lipotoxicity that leads to 
inhibited autophagy in hepatocytes (95). Thirdly, BCAAs are 
beneficial for treating cirrhosis by decreasing portal vein pres‑
sure and increasing mean artery pressure (96). Finally, BCAAs 
induce higher branched‑chain α‑keto acid dehydrogenase E1α 
expression levels in skeletal muscles, which facilitates BCAA 
metabolism in muscle tissue (97).

Leucine supplementation has been demonstrated to acti‑
vate mammalian target of rapamycin, which mediates cellular 
proliferation and protein synthesis, and increases insulin 
sensitivity. However, while leucine alleviates T2D, it also 
exacerbates NAFLD, making it difficult to use in NAFLD 
treatment (98).

AAAs. AAAs are a class of α‑amino acids that have aromatic 
rings and include tryptophan, phenylalanine and tyrosine. 
Celinski et al (99) demonstrated that tryptophan substan‑
tially attenuated the levels of proinflammatory cytokines 
and improved certain parameters (γ‑glutamyl transferase, 
triglyceride and low‑density lipoprotein) of lipid metabolism 
in patients with NAFLD. Chen et al (100) reported that 

serum phenylalanine concentration was two‑fold higher in 
patients with NAFLD compared with controls. Furthermore, 
Jin et al (101) investigated the metabolic pathways that were 
altered in association with hepatic steatosis in adolescents 
and demonstrated that plasma tyrosine levels were positively 
correlated with the severity of liver steatosis. Phenylalanine is 
catalyzed to tyrosine by phenylalanine hydroxylase in the liver, 
where it is further metabolized (102). Presently, the mechanism 
of AAA metabolic disorders in NAFLD remains unclear. A 
possible explanation may be that tyrosine enters the ketogenic 
pathway and is directly degraded to acetyl coenzyme A via 
ketogenic action (101). Therefore, increased phenylalanine and 
tyrosine intake may contribute to fat deposition in the liver.

Methionine and homocysteine. Methionine is an essential 
sulfur‑containing amino acid that is mainly metabolized in the 
liver (103). Homocysteine is a sulfhydryl‑containing amino 
acid produced and catabolized primarily in the liver and 
increased homocysteine concentrations in the event of liver 
injury. Alternatively, elevated homocysteine may conversely 
promote the progression of liver damage (104). Both 
methionine and homocysteine are associated with NAFLD. 
Methionine metabolism impacts the methylation process 
that leads to the production of glutathione and methylargi‑
nines, and regulates homocysteine concentrations. However, 
methionine deficiency leads to impaired methyltransferase 
and antioxidative reactions, and elevated homocysteine (105). 
Increased homocysteine causes hyperhomocysteinemia, 
which alters intracellular lipid metabolism to facilitate fat 
accumulation (106).

Arginine. Arginine has antioxidant effects on NASH by 
inhibiting cytochrome P450 family 2 subfamily E member 1 
activity and by decreasing TNF‑α and antioxidant enzyme 
concentrations (107). Dogru et al (108) reported that increased 
circulating asymmetric dimethylarginine may be used as an 
early marker for NAFLD. Additionally, Voloshin et al (109) 
synthesized a novel chenodeoxycholic acid‑arginine ethyl ester 
conjugate that may be used to treat NAFLD. The conjugate 
reduces liver steatosis by decreasing cholesterol and blood 
glucose.

Aminotransferases. Aminotransferases are barometers of 
liver health as they transport excessive amino acids into the 
circulation to manage liver metabolic derangement associated 
with severe gluconeogenesis and IR (90). Aspartate amino‑
transferase, alanine transaminase and γ‑glutamyltransferase 
are generally elevated in NAFLD and are positively associated 
with CIC‑2 expression in the liver (24,110).

5. Bile acid metabolism in NAFLD

Bile acid is an essential regulator of hepatic fat and glucose 
metabolism. The concentration of certain serum bile acids 
increase during the progression of NAFLD, including hydro‑
phobic and cytotoxic bile acids, such as taurodeoxycholic acid 
and taurocholic acid, respectively (111). Bile acid metabolism 
is obliterated in NAFLD, likely due to increased hepatic 
inflammatory signaling (112). Furthermore, increased bile 
acid levels are associated with altered hepatic transport protein 
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multidrug resistance protein 3 expression in NAFLD (113). The 
increased transcription of bile acid synthesis pathway enzymes 
(including sterol 12α‑hydroxylase, bile acid‑CoA:amino acid 
N‑acyltransferase and 25‑hydroxycholesterol‑7α‑hydroxylase) 
indicates that the liver attempts to ameliorate hepatotoxicity 
during the progression of NAFLD (114).

Farnesoid X receptor (FXR). Nuclear receptors (NRs) are 
transcriptional factors sensitive to environmental or hormonal 
signals (115). The expression of NRs, such as FXR, have a 
negative correlation with NAFLD severity at the transcrip‑
tional level (116). Schiöth et al (117) reported that additional 
NAFLD‑induced modulating effects on type 2 diabetes were 
associated with altered composition and concentrations of 
bile acids, which have a continuous effect on FXR‑dependent 
regulatory pathways.

FXRs are abundantly expressed in the liver and their 
upregulation controls glucose, lipid, cholesterol and bile acid 
homeostasis and inflammation to reduce NAFLD. Firstly, 
FXRs inhibit hepatic gluconeogenesis and peripheral insulin 
sensitivity to reduce plasma glucose concentrations. Secondly, 
FXRs suppress bile acid synthesis by inhibiting cholesterol 7 
α‑hydroxylase (CYP7A1), the rate‑limiting enzyme for the 
synthesis of bile acids from cholesterol (118). The interaction 
between bile acids and FXRs leads to a reduction in triglyc‑
eride concentrations in plasma and, as a consequence, inhibits 
hepatic lipid deposition (119).

Niemann‑pick c1‑like 1 (NPC1L1). NPC1L1, which reabsorbs 
cholesterol from bile and transports it to the liver, is expressed 
on the bile duct membrane and is an aggravating factor of 
NAFLD (120). NAFLD often exhibits oxidative stress, which 
leads to increased free‑radical activity and lipid peroxidation 
by increasing reactive oxygen species (ROS). ROS facilitate 
the peroxidation of lipids, induction of cytokines, chemoattrac‑
tion of inflammatory cells and HSC activation, and ultimately 
cause fibrosis with extracellular matrix deposition (1). NPC1L1 
resists oxidative stress and endoplasmic reticulum stress (ERS) 
by transporting free cholesterol in hepatic cells and modulating 
intracellular cholesterol content, particularly in mitochondria 
and the endoplasmic reticulum (121). Inhibiting NPC1L1 even‑
tually reduces cholesterol uptake and induces the recovery of 
key molecules involved in insulin signaling, including Akt 
phosphorylation and gluconeogenic enzymes (122).

Bile acid transporters. Bile acid transporters are associated 
with the progression of NAFLD (123). Na+‑taurocholate 
cotransporting polypeptide (NTCP), an influx bile acid trans‑
porter, participates in the reabsorption of bile acids (124). As a 
bile salt export pump, NTCP is an effluent bile acid transporter 
that exports bile acids. Thus, the upregulation of NTCP causes 
excessive bile acid concentrations in hepatocytes, which ulti‑
mately leads to cell injury (116). Therefore, blocking apical 
sodium‑dependent bile acid transporter function improves 
NAFLD (125).

Intestinal flora. Intestinal ecological disruption in NAFLD 
has been fully documented (126‑128). Intestinal flora medi‑
ates the detoxification of bile acids and the conversion of 
primary bile acid to secondary bile acid species, including 

lithocholic acid (LCA) and deoxycholic acid. Therefore, 
inhibiting intestinal microbiota increases hepatic binding 
to secondary bile acids, which leads to the increased burden 
of the secondary bile acid system and possible toxic effects. 
Vitamin D attenuates the toxic effects of LCA and may 
be a biomarker for the noninvasive diagnosis of NAFLD 
progression (126‑128).

Trimethylamine‑N‑oxide (TMAO) is a gut‑flora‑depen‑
dent metabolite of choline. Chen et al (129) demonstrated 
that the increased risk of fatty liver disease may be caused 
by TMAO due to its effect of decreasing the total bile acid 
levels via two pathways: By decreasing the synthesis of bile 
acids via the inhibition of key enzyme CYP7A1 or by limiting 
the enterohepatic circulation of bile acids between the liver 
and intestines by decreasing organic anion transporter and 
multidrug resistance protein family protein expression (130). 
Therefore, TMAO may possibly affect hepatic TG levels and 
reverse the direction of cholesterol transport and glucose and 
energy homeostasis by altering the synthesis and transport of 
bile acids, indicating that it is a potential risk factor for fatty 
liver disease (129).

6. Iron metabolism in NAFLD

A total of ~30% of patients with NAFLD exhibit signs of 
iron metabolism disorders (131). Iron metabolism disorders 
in NAFLD are commonly associated with excess hepatic iron 
and deficient serum iron, and NASH livers exhibit decreased 
transferrin and transferrin receptor 2 (132,133). High dietary 
iron intake is a risk factor for NAFLD. Excess dietary iron 
leads to hepatic oxidative stress, inflammation and hepatocel‑
lular ballooning injury, which ultimately causes NASH (134). 
Moreover, hepatic iron accumulation increases hepatic choles‑
terol synthesis, lipid deposition and impaired hepatic cellular 
stress responses, which exacerbate NAFLD (135,136). Iron 
serves a substantial role in the occurrence of oxidative stress 
as it is a catalyst for ROS generation (137). Oxidative stress 
often impairs mitochondrial function, which predisposes indi‑
viduals to impaired fatty acid oxidation and eventually leads 
to steatosis and necrotizing inflammation through various 
cytokines, such as TNF‑α, IL‑6 and IL‑8, malondialdehyde 
and nitric oxide (138). Furthermore, ROS induces trans‑
ferrin to decrease iron absorption and interact with iron to 
induce IR by inhibiting carbohydrate consumption, altering 
the function of adipose tissue and impacting the release of 
adipokines (132,137). In NAFLD, hepatic iron accumulation 
is associated with ferritin, hepcidin and human hemochro‑
matosis protein by impacting iron export and import from 
hepatocytes (131,139).

Ferritin. Ferritin is the primary iron‑storage protein in the 
majority tissues such as in the liver and brain, and increased 
expression of ferritin indicates iron overload in tissues and 
circulation. Patients with high ferritin have more severe NASH 
and advanced fibrosis compared with patients with normal 
ferritin (140,141). Ferritin can be decreased by restricted 
calorie and iron intake (142). Serum ferritin concentrations are 
commonly elevated in patients with NAFLD due to increased 
iron stores, fat content, oxidative stress, ERS, systemic 
inflammation and genetic background (143,144).
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Hepcidin. Hepcidin is the main iron‑regulating peptide (145). 
Decreased hepcidin expression is frequently observed in 
patients with NAFLD and is considered to be a cause of 
hepatic iron overload (146). Furthermore, hepcidin suppresses 
iron influx from diets and efflux from macrophages by inhib‑
iting ferroportin, determining oxidative stress and driving 
transformation of macrophages into foam cells (147).

7. Conclusion

In summary, NAFLD is associated with an imbalanced meta‑
bolic network that involves glucose, lipids, amino acids, bile 
acids and iron. Among the participating mechanisms underlying 
NAFLD, lipid metabolism is the core metabolic process. Lipid 
metabolism disorders directly lead to lipid deposits. Glucose is 
linked to lipids by insulin, which is abundant but inefficiently 
processed in NAFLD. NAFLD often exhibits hyperinsulinemia 
and IR, which lead to excess TG accumulation and T2D, 
respectively. Additionally, amino acids simultaneously regulate 
glucose and lipid metabolism. Bile acid is associated with 
glucose and lipids through FXRs and choline. Furthermore, 
iron metabolism is a unique pathway and iron accumulation 
induces ROS to participate in inflammation and oxidative stress. 
Oxidative stress also increases lipid accumulation by adding 
fatty acids and cholesterol, and is regulated by NPC1L1.

Metabolism during NAFLD pathogenesis is very complex 
and the metabolic processes are not independent; rather, 
they mutually contribute and influence each other. However, 
previous studies mainly focus on the pathogenesis of NAFLD 
from a single perspective, facilitating the separation of 
factors that were originally interrelated. It is challenging to 
conduct systematic, integrated and relevant studies or draw 
corresponding conclusions. Therefore, an investigation and 
exploration of the detailed mechanism of the pathogenesis of 
NAFLD is necessary.

Given the complex pathogenesis of NAFLD, a single treat‑
ment for all patients with NAFLD may not be discovered. In the 
future, personalized treatment may be an effective therapy for 
NAFLD. With additional in‑depth studies on its pathogenesis, 
NAFLD may be effectively prevented and treated in the future.
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