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Purpose: The purpose of this study was to establish and validate machine learning-based models for predicting the risk of venous 
thromboembolism (VTE) in intensive care unit (ICU) patients.
Patients and Methods: The clinical data of 1494 ICU patients who underwent Doppler ultrasonography or venography between 
December 2020 and March 2023 were extracted from three tertiary hospitals. The Boruta algorithm was used to screen the essential 
variables associated with VTE. Five machine learning algorithms were employed: Random Forest (RF), eXtreme Gradient Boosting 
(XGBoost), Support Vector Machine (SVM), Gradient Boosting Decision Tree (GBDT), and Logistic Regression (LR). 
Hyperparameter optimization was conducted on the predictive model of the training dataset. The performance in the validation dataset 
was measured using indicators, including the area under curve (AUC) of the receiver operating characteristic (ROC) curve, specificity, 
and F1 score. Finally, the optimal model was interpreted using the SHapley Additive exPlanation (SHAP) package.
Results: The incidence of VTE among the ICU patients in this study was 26.04%. We screened 19 crucial features for the risk 
prediction model development. Among the five models, the RF model performed best, with an AUC of 0.788 (95% CI: 0.738–0.838), 
an accuracy of 0.759 (95% CI: 0.709–0.809), a sensitivity of 0.633, and a Brier score of 0.166.
Conclusion: A machine learning-based model for prediction of VTE in ICU patients were successfully developed, which could assist 
clinical medical staff in identifying high-risk populations for VTE in the early stages so that prevention measures can be implemented 
to reduce the burden on the ICU patients.
Keywords: venous thromboembolism, machine learning, algorithm, prediction model, intensive care unit

Introduction
Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and pulmonary embolism (PE), is a group of 
thromboembolic diseases and the third most prevalent cardiovascular disease after myocardial infarction and stroke.1 Patients 
in the intensive care unit (ICU) are at a high risk of VTE, and the incidence of VTE is very high if sufficient preventive measures 
are implemented.2,3 Several adverse outcomes are associated with VTE, including increased mortality, prolonged hospitalization, 
higher healthcare expenditures, decreased quality of life, and a greater risk of recurrent DVT and PE.4,5 In the United States, deaths 
from VTE reach 900,000–1,000,000 per year.6 According to a meta-analysis, patients with VTE had an average ICU stay 
extension of 3.92 days and an increase in mechanical ventilation of 4.85 days.7 In a cross-sectional survey involving 907 patients 
with VTE, Feehan et al discovered that 40.6% of them were concerned about VTE recurrence, and 36.2% experienced severe 
anxiety or depression after VTE.8 Therefore, preventing and treating VTE in the clinical setting is crucial. As a preventable illness, 
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if patients with a high VTE risk can be identified early and accurately through risk assessment models and provided with timely 
intervention, it can reduce healthcare expenses and potentially enhance patient survival rates.

Recently, several models for assessing VTE risk have been developed for general inpatient, including the Padua, Caprini, and 
Khorana scores, which can assist clinicians in assessing the objective risk of VTE.9–11 However, these assessment methods were 
not specifically designed for ICU patients and do not accurately predict VTE in critically ill patients due to the lack of specific 
predictive factors, including the use of particular medicines, central venous catheterization, and mechanical ventilation. 
Furthermore, most of the established VTE risk prediction models for ICU patients have been established using multivariate 
logistic regression analyses;12–14 however, logistic regression is generally a less ideal approach when dealing with more intricate 
data interactions.15 Due to the complexity and variety of severe illnesses and the volume of data generated by monitoring systems, 
particularly in the ICU, there is an immediate need for more data science methods and data-driven research.16

With the rapid development of the internet and the big data industry, machine learning algorithms are increasingly 
being implemented as new data analysis tools for the risk prediction of illnesses and their associated complications due to 
their robust computational capacity for learning. Machine learning is the science of enabling computers to learn and act 
like humans, improving their autonomous learning by providing them with data and information in the form of 
observations and real-world interactions.17 Numerous studies have revealed the superior predictive potential of machine- 
learning models.18–20 Nevertheless, these models are frequently accompanied by more intricate computation-intensive 
procedures with stronger predictive ability, which enhances the model’s accuracy while introducing the “black box” 
prediction issue.21 The future direction of artificial intelligence development must be reliable. Consequently, improving 
the transparency and interpretability of these models is also crucial.22

Thus, the purpose of this study was to establish and validate machine learning-based models that can assist in 
detecting and diagnosing ICU patients with a high VTE risk. Additionally, we employed an interpretable algorithm for 
the model to provide an intuitive elucidation of the risk associated with patient predictions, further strengthening the 
selected model’s reliability.

Materials and Methods
Data Source
This study was designed as a retrospective study. Patient data were retrieved from the electronic medical records system (EMRS) 
of three tertiary hospitals: Binzhou Medical University Hospital (in Binzhou, Shandong), Yantai Affiliated Hospital of Binzhou 
Medical University (in Yantai, Shandong), and Binzhou People’s Hospital (in Binzhou, Shandong). Critically ill patients who 
required ICU admission between December 2020 and March 2023 were included. In the case of multiple admissions, only the 
initial admission was considered. The patients who underwent color Doppler ultrasonography or venography were enrolled after 
applying the following inclusion criteria: i) ICU stays ≥ 48 h; ii) patients aged ≥ 18 years; and iii) possessing at least one color 
Doppler ultrasonography or venography screening result to identify VTE. The exclusion criteria were as follows: i) VTE (DVT or 
PE) occurring before or within 48 h of ICU admission; ii) more than 30% of patient data missing; and iii) diagnosis of acute 
leukemia. Ethics approval was obtained from the Ethics Committee of the Binzhou Medical University (No.2023383), and our 
study complies with the Declaration of Helsinki. Since this was only observational research and all patient data were anonymized, 
patient consent was waived by our institutional ethic committee. The study protocol flowchart is shown in Figure 1.

Candidate Features and Outcomes
Candidate variables were selected from the literature using the following search terms: (“venous thrombosis” or “deep vein 
thrombosis” or “VTE” or “DVT”) and (“influence factors” or “risk factors” or “risk factor score”) and (“intensive care unit” or 
“critically ill patients” or “critical care unit” or “ICU”) across eight electronic databases: PubMed, Web of Science, Cochrane 
Library, Embase, CNKI, VIP, WanFang, and CBM. The retrieved literature was imported into EndNote 20 for bibliographic 
review. Two researchers independently screened the literature to extract risk factors and cross-checked them, guided by inclusion 
and exclusion criteria. Afterward, the research team deliberated on a proposal containing previous candidate variables, and 
candidate variables were incorporated into the final list through consensus based on their easy availability in the clinical setting and 
their frequency of mention in the references. Finally, 56 candidate VTE variables were determined: (1) Demographic variables: 
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Figure 1 Flowchart of the study procedure. 
Abbreviations: SMOTE, Synthetic Minority Over-sampling Technique; RF, Random Forest; XGBoost, eXtreme Gradient Boosting; SVM, Support Vector Machine; GBDT, 
Gradient Boosting Decision Tree; LR, Logistic Regression; SHAP, SHapley Additive exPlanation.
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including age, sex, blood type, length of braking time, Glasgow Coma Scale (GCS), Acute Physiology and Chronic Health 
Evaluation II score (APACHE II score), disease type, muscle strength of lower limb, swelling of lower limb. (2) Personal history: 
including history of smoking, history of drinking, VTE history, history of coronary heart disease, history of atrial fibrillation, 
history of inflammatory bowel, recent surgical history, history of varicose veins in lower extremities. (3) Comorbidities: including 
infection, polytrauma, diabetes, hypertension, stroke, hyperlipemia, sepsis, heart failure, respiratory failure, cancer, severe acute 
pancreatitis, hepatic failure, rheumatic, acute myocardial infarction, end stage renal disease, serious lung disease. (4) Therapeutic 
measures: including sedative, vasoactive agent, transfusion of red blood cells, transfusion of platelet, central venous catheter 
(CVC), peripherally inserted central catheter (PICC), mechanical ventilation, mechanical ventilation time, continuous renal 
replacement therapy (CRRT), extracorporeal membrane oxygenation (ECMO). (5) Laboratory indicators: including c-reactive 
protein, red blood cell (RBC), white blood cell (WBC), platelet (PLT), hematocrit (HCT), mean platelet volume (MPV), 
hemoglobin (HGB), D-dimer (DD), fibrinogen (FIB), prothrombin time (PT), thrombin time (TT), activated partial thrombo-
plastin time (APTT), international normalized ratio (INR).

The outcome was VTE, including DVT, PE, or both, which was objectively confirmed using color Doppler 
ultrasonography or venography during ICU hospitalization. These data were manually collected and double-checked 
from the EMRS of three tertiary hospitals using Epidata software version 3.1 by two seasoned researchers.

Data Preprocessing
Before model development, the data were preprocessed. To reduce bias due to missing data, variables with a missing rate above 
30% were deleted, and missing values were imputed using multiple imputation. Multiple imputation is a highly effective and 
commonly employed technique for dealing with missing values, which uses correlation between variables to fill in missing data 
and enhances accuracy through iterative processes.23 Continuous variables were scaled to unit variance and zero-centered to make 
the training process less sensitive to the scale of the variables. A computer-generated random number sequence was used to 
partition the entire cohort randomly into two datasets: a training dataset (80%) and a validation dataset (20%). In order to solve the 
problem of class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was used.24

Feature Selection
Feature selection is a crucial step in model construction, which can eliminate irrelevant or redundant variables to improve 
the model’s performance and reduce computational time. This study utilizes the Boruta algorithm for feature selection 
within the training dataset. The Boruta algorithm is a sort wrapper algorithm based on random forest classifier that filters 
out all variable sets uncorrelated with the dependent variable, rather than selecting only non-redundant variables. The 
principle is to generate a “shadow feature” for each variable, calculate the Z-value of each variable several times using 
the random forest model, and then identify the importance by comparing the Z-value of each feature with the Z-value of 
its corresponding “shadow feature”. If the Z-value of a real feature is significantly higher than the maximum Z-value of 
the applied shadow feature in multiple tests, the feature is labelled as important (green area), also known as an acceptable 
variable. Otherwise, it is labelled as “unimportant” (red area), also known as an unacceptable variable.25

Model Development and Validation
In this study, five machine learning algorithms, including Random Forest (RF), eXtreme Gradient Boosting (XGBoost), 
Support Vector Machine (SVM), Gradient Boosting Decision Tree (GBDT), and Logistic Regression (LR) were 
employed to construct models for predicting the risk of VTE in ICU patients. The model’s hyperparameters were 
identified using a ten-fold cross-validation method based on grid search. Ten-fold cross-validation involves dividing the 
dataset into ten distinct subsets, with each subset acting as a fold. In each round of cross-validation, nine of these folds 
are used as the training set, while the remaining fold serves as the test set. This process is repeated ten times, ensuring 
that each fold serves as the test set exactly once. Cross-validation helps mitigate model overfitting and enhances its 
robustness. The area under curve (AUC) of the receiver operating characteristic (ROC) curve, accuracy, specificity, 
sensitivity, positive predictive value (PPV), negative predictive value (NPV), F1-score, and Brier score were used to 
evaluate the models’ performance in the training and validation datasets. After selecting the optimal model, we visualized 
the importance of the feature using the SHapley Additive exPlanation (SHAP) package.
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Statistical Analysis
The samples were examined for fit to a normal distribution using the Kolmogorov–Smirnov test. Continuous variables 
were described using median and interquartile range (IQR), whereas categorical variables were represented by frequency 
and percentage. The chi-square test was used for categorical data, and the Mann–Whitney U-test was employed for 
continuous variables to assess the differences between the patient groups with and without VTE. A two-sided p-value < 
0.05 was considered statistically significant. Statistical Package for the Social Sciences (SPSS, version 27.0), R (version 
4.3.1), and Python (version 3.9) were used for statistical analysis.

Results
Baseline Characteristics
In this research involving 1494 patients, the incidence of VTE was 26.04% (389/1494), with 933 (52.40%) being male. All 
patients were Chinese, with a median age of 69 years, a median length of braking time of 9 days, and a median APACHE II 
score of 17 points. The patients were divided into VTE and non-VTE groups to determine whether they developed VTE during 
their ICU stay. Table 1 presents a comparison of candidate variables between the non-VTE and VTE groups.

Table 1 Demographic and Clinical Variables Between Non-VTE Group and VTE Group

Variables Total (n=1494) Non-VTE Group (n=1105) VTE group (n=389) p-value

Age (years) 69.0 (55.0, 78.0) 69.0 (53.0, 78.0) 69.0 (58.0, 78.0) 0.048

Sex (male) 933 (62.4) 677 (61.3) 256 (65.8) 0.112
Length of braking time (days) 9.0 (5.0, 16.0) 7.0 (4.0, 13.0) 17.0 (10.0, 27.0) <0.001

GCS (points) 14.0 (6.0, 15.0) 15.0 (6.5, 15.0) 11.0 (5.0, 15.0) <0.001

APACHE II score (points) 17.0 (12.0, 23.0) 17.0 (12.0, 23.0) 19.0 (13.0, 25.0) 0.002
Disease type

Respiratory system 519 (34.7) 387 (35.0) 132 (33.9) 0.003

Circulatory system 215 (14.4) 166 (15.0) 49 (12.6)
Digestive system 186 (12.4) 142 (12.9) 44 (11.3)

Nervous system 170 (11.4) 113 (10.2) 57 (14.7)

Urinary system 37 (2.5) 35 (3.2) 2 (0.5)
Endocrine system 33 (2.2) 28 (2.5) 5 (1.3)

Else 334 (22.4) 234 (21.2) 100 (25.7)

Muscle strength of lower limb
0 26 (1.70) 20 (1.8) 6 (1.5) 0.277

1 9 (0.60) 4 (0.4) 5 (1.3)

2 24 (1.60) 17 (1.5) 7 (1.8)
3 49 (3.3) 38 (3.4) 11 (2.8)

4 38 (2.5) 24 (2.2) 14 (3.6)

5 1348 (90.2) 1002 (90.7) 346 (88.9)
Swelling of lower limb 222 (14.9) 165 (14.9) 57 (14.7) 0.894

History of smoking 569 (38.1) 427 (38.6) 142 (36.5) 0.455

History of drinking 267 (17.9) 198 (17.9) 69 (17.7) 0.936
VTE history 24 (1.6) 9 (0.8) 15 (3.9) <0.001

History of coronary heart disease 309 (20.7) 231 (20.9) 78 (20.1) 0.721

History of atrial fibrillation 177 (11.8) 123 (11.1) 54 (13.9) 0.149
History of inflammatory bowel 3 (0.2) 3 (0.3) 0.0 (0.0) 0.572

Recent surgical history 244 (16.3) 148 (13.4) 96 (24.7) <0.001

History of varicose veins in lower 
extremities

21 (1.4) 11 (1.0) 10 (2.6) 0.023

Infection 1022 (68.4) 737 (66.7) 285 (73.3) 0.017

Polytrauma 72 (4.8) 30 (2.7) 42 (10.8) <0.001

(Continued)
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Model Input Features
The result of feature screening based on the Boruta algorithm is shown in Figure 2. Sorted according to the Z-values, the 
green boxes represent variables considered important, while the red boxes indicate variables deemed unimportant. Variables 
shown in yellow box plots are those for which the Boruta technique could not decisively determine relevance. Ultimately, 
19 essential variables were identified to build a VTE prediction model for ICU patients: length of braking time, DD, VTE 
history, mechanical ventilation time, APTT, recent surgical history, history of varicose veins in lower extremities, poly-
trauma, INR, mechanical ventilation, GCS, sedative, APACHE II score, PT, TT, HGB, RBC, HCT, and age.

Table 1 (Continued). 

Variables Total (n=1494) Non-VTE Group (n=1105) VTE group (n=389) p-value

Diabetes 397 (26.6) 297 (26.9) 100 (25.7) 0.653

Hypertension 771 (51.6) 550 (49.8) 221 (56.8) 0.017
Stroke 551 (36.9) 400 (36.2) 151 (38.8) 0.357

Hyperlipemia 863 (57.8) 626 (56.7) 237 (60.9) 0.142

Sepsis 128 (8.6) 93 (8.4) 35 (9.0) 0.725
Heart failure 374 (25.0) 276 (25.0) 98 (25.2) 0.933

Respiratory failure 718 (48.1) 521 (47.1) 197 (50.6) 0.236

Cancer 252 (16.9) 192 (17.4) 60 (15.4) 0.377
Severe acute pancreatitis 28 (1.9) 20 (1.8) 8 (2.1) 0.758

Hepatic failure 105 (7.0) 77 (7.0) 28 (7.2) 0.879

Rheumatic 32 (2.1) 27 (2.4) 5 (1.3) 0.175
Acute myocardial infarction 109 (7.3) 86 (7.8) 23 (5.9) 0.223

End stage renal disease 208 (13.9) 159 (14.4) 49 (12.6) 0.380

Serious lung diseases 550 (36.8) 394 (35.7) 156 (40.1) 0.118
Sedative 1092 (73.1) 772 (69.9) 320 (82.3) <0.001

Vaso active agent 943 (63.1) 664 (60.1) 279 (71.7) <0.001

Transfusion of red blood cells 817 (54.7) 570 (51.6) 247 (63.5) <0.001
Transfusion of platelet 152 (10.2) 93 (8.4) 59 (15.2) <0.001

CVC 892 (59.7) 646 (58.5) 246 (63.2) 0.099
PICC 40 (2.7) 30 (2.7) 10 (2.6) 0.880

Mechanical ventilation 738 (49.4) 495 (44.8) 243 (62.5) <0.001

Mechanical ventilation time (h)
0 754 (50.5) 611 (55.3) 143 (36.8) <0.001

0<t<96 322 (21.6) 247 (22.4) 171 (44.0)

t≥96 418 (28.0) 247 (22.4) 75 (19.3)
Continuous renal replacement therapy 107 (7.2) 82 (7.4) 25 (6.4) 0.513

ECMO treatment 14 (0.9) 9 (0.8) 5 (1.3) 0.601

RBC (1012/L) 3.70 (3.0, 4.3) 3.7 (3.0, 4.3) 3.7 (3.0, 4.2) 0.594
WBC (109/L) 10.3 (7.1, 14.7) 10.2 (6.9, 14.8) 10.5 (7.3, 14.5) 0.327

PLT (109/L) 183.0 (120.0, 253.3) 183.0 (120.5, 255.0) 182.00 (119.0, 251.5) 0.656

HCT (%) 33.0 (27.0, 39.0) 33.0 (27.0, 39.0) 33.0 (27.0, 38.0) 0.756
MPV (fL) 10.4 (9.7, 11.4) 10.4 (9.7, 11.3) 10.5 (9.7, 11.5) 0.264

HGB (g/L) 110.5 (89.0, 130.0) 110.0 (89.5, 130.5) 111.0 (88.0, 129.0) 0.919

DD (mg/L) 2.4 (1.0, 6.0) 2.3 (1.0, 5.4) 3.3 (1.3, 8.9) <0.001
FIB (g/L) 3.6 (2.5,4.7) 3.6 (2.6, 4.7) 3.7 (2.4, 4.7) 0.596

TT (s) 16.9 (15.7, 18.4) 16.9 (15.9, 18.4) 16.8 (15.5, 18.4) 0.083

PT (s) 13.4 (12.3, 15.0) 13.4 (12.2, 15.1) 13.5 (12.3, 14.8) 0.972
APTT (s) 33.6 (28.6, 41.5) 34.1 (29.1, 42.0) 31.8 (27.7, 39.6) 0.001

INR 1.2 (1.1, 1.3) 1.2 (1.1, 1.3) 1.2 (1.1, 1.3) 0.989

Abbreviations: GCS, Glasgow Coma Scale; APACHE II, Acute Physiology and Chronic Health Evaluation II score; VTE, venous thromboembolism; CVC, 
central venous catheter; PICC, peripherally inserted central catheter; ECMO, extracorporeal membrane oxygenation; RBC, red blood cell; WBC, white 
blood cell; PLT, platelet; HCT, hematocrit; MPV, mean platelet volume; HGB, hemoglobin; DD, D-dimer; FIB, fibrinogen; TT, thrombin time; PT, prothrombin 
time; APTT, activated partial thromboplastin time; INR, international normalized ratio.
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Model Performance
After identifying these 19 variables, five machine-learning methods were used to construct models for predicting VTE in 
ICU patients. To ensure optimal predictive performance for each model, we conducted thorough hyperparameter 
optimization in this study. The optimization of the RF parameters mainly includes the values of n_estimators (number 
of trees), max_depth (maximum depth per tree), max_features (maximum features considered per split), min_sample-
s_leaf (minimum samples per leaf node), and min_samples_split (minimum samples to split an internal node). These 
parameters collectively influence model behavior, balancing complexity and overfitting. For SVM, we evaluated several 
kernels including linear, poly, sigmoid, and rbf. Ultimately, we found that the rbf kernel performed the best, as it had the 
lowest error. For XGBoost, optimization focused on adjusting key parameters: gamma determines the minimum loss 
reduction needed to split a leaf node, acting as a regularization factor; subsample controls the fraction of samples used 
per tree; learning_rate scales the contribution of each tree, with lower values enhancing model robustness. GBDT 
parameters were tuned similarly to RF. LR optimizes performance through key parameters: the penalty parameter selects 
the type of regularization to apply; the C parameter controls the strength of regularization, with smaller values promoting 
better generalization to new data; and the solver selects the optimization method for the objective function. The best- 
tuned hyperparameters for all models are listed in Table 2. In the training set, the predictive value of the model was 
assessed using ten-fold cross-validation, as shown in Figure 3. RF exhibited the highest clinical predictive value, 
achieving an AUC of 1.000 (95% CI: 0.9777–1.023), followed by GBDT, with an AUC of 0.998 (95% CI 0.975–1.021).

Figure 2 Feature selection based on Boruta algorithm. 
Abbreviations: DD, D-dimer; VTE, venous thromboembolism; APTT, activated partial thromboplastin time; INR, international normalized ratio; GCS, Glasgow Coma 
Scale; APACHE II score, Acute Physiology and Chronic Health Evaluation II score; PT, prothrombin time; TT, thrombin time; HGB, hemoglobin; RBC, red blood cell; HCT, 
hematocrit; FIB, fibrinogen; PLT, platelet; MPV, mean platelet volume; CVC, central venous catheter; WBC, white blood cell; ECMO, extracorporeal membrane oxygenation; 
PICC, peripherally inserted central catheter.
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Furthermore, we verified the five predictive models in the validation dataset for stability and generalizability. Table 3 
provides an overview of each model’s performance. The ROC curves are displayed in Figure 4A, with AUCs varying 
from 0.709 (95% CI: 0.659–0.759) to 0.789 (95% CI: 0.738–0.838). The calibration plots of the five models are 
presented in Figure 4B. Among the five models, the RF model outperformed the other models in terms of accuracy, 
PPV, and F1 value. The Brier score of the RF model for predicting VTE was 0.166, demonstrating the model’s reliability. 
The GBDT model had a slightly higher AUC than RF, but its lower sensitivity indicates difficulty in correctly identifying 
positive cases. Although the LR model had higher sensitivity than the RF model, its low specificity resulted in too many 
non-VTE patients being incorrectly predicted as VTE patients. Additionally, its relatively high Brier score of 0.217 
suggests that the LR model’s probabilistic predictions might be biased compared to actual outcomes. Therefore, the RF 
model was ultimately selected as the optimal model for this study.

Explanation of the RF Model
To visually illustrate the importance of selected variables, we utilized SHAP package to analyze their contributions to the 
output results of the RF model. Figure 5A depicts the ranking of importance among the 19 variables in the predictive 
model, ordered from top to bottom based on decreasing levels of importance. The top five predictor variables that 
contributed most to the prediction of outcome were the length of braking time, DD, APTT, mechanical ventilation time 
and age. Figure 5B illustrates the positive and negative effects of features on the predicted value of the model. Each dot 
in the graph represents a sample, with each row representing a variable. Points with higher red saturation indicate larger 
values for that variable in relation to a specific patient, while points with higher blue saturation denote smaller values. 
The horizontal axis represents the SHAP value itself: the greater its absolute value, the more influential the variable is. 
Dots positioned towards the right side indicate that higher values of the feature positively contribute more to the 

Table 2 The Best-Tuned Hyperparameters for Each Model

Models Hyperparameters

RF max_depth=15, max_features=4, min_samples_split=2, min_samples_leaf=1, n_estimators=67
XGBoost max_depth=4, n_estimators=94, gamma=0, subsample=1, learning_rate=0.2

SVM C=1.4, gamma=0.4, kernel=’rbf’, probability=True

GBDT max_depth=4, max_features=’sqrt’, min_samples_split=2, n_estimators=90, learning_rate=0.2, subsample=1
LR C=0.001, penalty=’l2’, solver=liblinear

Abbreviations: RF, Random Forest; XGBoost, eXtreme Gradient Boosting; SVM, Support Vector Machine; GBDT, Gradient Boosting Decision 
Tree; LR, Logistic Regression.

GBDT SVM RF XGBoost LR

0.95

A
U

C
-t

en
-f

ol
d 

cr
os

s 
va

lid
at

io
n(

tr
ai

ni
ng

 d
at

as
et

)

0.90

0.85

0.80

0.75

Figure 3 Clinical predictive value of five machine learning models (ten-fold cross-validation) in the training dataset. 
Abbreviations: AUC, area under the curve; GBDT, Gradient Boosting Decision Tree; SVM, Support Vector Machine; RF, Random Forest; XGBoost, eXtreme Gradient 
Boosting; LR, Logistic Regression.
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assessment of VTE, whereas dots towards the left side suggest that lower values contribute more negatively to this 
assessment. Regarding age, most red (aged patients) sample points were located on the right half of the vertical axis, and 
the corresponding SHAP value was positive, positively affecting the model’s prediction of the occurrence of VTE. 
Therefore, it may be demonstrated that among ICU patients, older age may correspond to a higher risk of VTE. In 
addition, we randomly selected two patients for personalized analysis based on the model’s predictions of VTE and non- 
VTE cases, respectively. In Figure 5C and D, the red line indicates that the feature positively contributes to the 
prediction, while the blue line indicates negative contribution, with longer lines indicating greater influence. The base 
value, represented by the average of predictions across all samples, serves as the baseline prediction of VTE for each 
sample. The value outputted by f(x) represents the predicted value of each sample when individual features are taken into 
account. For each individual patient, the model predicts the occurrence or non-occurrence of VTE based on different 

Table 3 Model Performance in Predicting VTE in the Training and Validation Datasets

AUC (95% CI) Accuracy (95% CI) Sensitivity Specificity PPV NPV F1 Brier

Training dataset
RF 1.000 (0.977, 1.023) 0.999 (0.976, 1.023) 1.000 0.999 0.999 1.000 0.999 0.021

XGBoost 0.997 (0.973, 1.020) 0.974 (0.951, 0.997) 0.985 0.963 0.964 0.985 0.974 0.037

SVM 0.994 (0.971, 1.018) 0.971 (0.948, 0.994) 0.975 0.967 0.967 0.975 0.971 0.023
GBDT 0.998 (0.975, 1.021) 0.979 (0.956, 1.002) 0.985 0.973 0.973 0.985 0.979 0.030

LR 0.768 (0.745, 0.791) 0.680 (0.656, 0.703) 0.599 0.760 0.714 0.655 0.652 0.219

Validation dataset
RF 0.788 (0.738, 0.838) 0.759 (0.709, 0.809) 0.633 0.805 0.538 0.859 0.581 0.166

XGBoost 0.786 (0.736, 0.837) 0.722 (0.672, 0.772) 0.608 0.764 0.480 0.844 0.536 0.176
SVM 0.709 (0.659, 0.759) 0.742 (0.692, 0.793) 0.367 0.877 0.518 0.794 0.430 0.186

GBDT 0.789 (0.739, 0.840) 0.736 (0.686, 0.786) 0.582 0.791 0.500 0.841 0.538 0.172

LR 0.787 (0.737, 0.837) 0.726 (0.676, 0.776) 0.709 0.732 0.487 0.875 0.577 0.217

Abbreviations: AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; RF, Random Forest; XGBoost, eXtreme 
Gradient Boosting; SVM, Support Vector Machine; GBDT, Gradient Boosting Decision Tree; LR, Logistic Regression.

A B

Figure 4 (A) ROC curves of five machine learning models in validation dataset. (B) Calibration curves of five machine learning models in validation dataset. 
Abbreviations: RF, Random Forest; XGBoost, eXtreme Gradient Boosting; SVM, Support Vector Machine; GBDT, Gradient Boosting Decision Tree; LR, Logistic 
Regression.
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reasons, and the final result is a combination of several variables that each patient possesses as a unique individual. As 
depicted in Figure 5C, the predicted base value for this sample is 0.5. When considering the combined effect of each 
feature, the predicted value for this sample is 0.68. Consequently, the model predicts that this patient is at risk of VTE, 
which aligns with the actual occurrence of VTE in this case.

Discussion
In addition to the common risk factors observed in the general inpatient population, ICU patients are susceptible to ICU- 
specific risk factors, such as invasive manipulations (central venous catheter implantation), mechanical ventilation, and 
the use of sedative.26–28 These factors significantly elevate the risk of VTE in ICU patients, a condition associated with 

Varicose veins in lower extremities

Length of braking time

DD

APTT

Mechanical ventilation time

Age

GCS

PT

APACHE II score

INR

TT

Mechanical ventilation

HGB

RBC

HCT

Sedative

Recent surgical history

Polytrauma

VTE history

A B

Figure 5 (A) Feature importance ranking as indicated by SHAP. (B) Attributes of features in SHAP. (C) The SHAP value force plot of a VTE patient was used to individually 
predict the characteristic variables. (D) The value force plot of a non-VTE patient was used to individually predict the characteristic variables. 
Abbreviations: DD, D-dimer; APTT, activated partial thromboplastin time; GCS, Glasgow Coma Scale; APACHE II score, Acute Physiology and Chronic Health Evaluation 
II score; INR, international normalized ratio; TT, thrombin time; HGB, hemoglobin; RBC, red blood cell; HCT, hematocrit; VTE, venous thromboembolism.
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higher patient mortality rates and increased economic burden. Early identification and management are crucial in 
preventing VTE in ICU patients. Currently, there are no specific VTE risk assessment tools validated specifically for 
ICU patients. Clinicians often rely on more generalized risk assessment tools like the Caprini and Padua scores. 
However, there are limitations in the sensitivity and specificity of these tools. Based on the study design and applicability 
to the study population, the clinical generalizability of each assessment model to ICU patients is yet to be demonstrated. 
Original studies frequently employed univariate filtering to screen for significant factors, followed by multiple logistic 
regression to identify independent risk factors for VTE to construct simple prediction models.29,30 The development of 
the internet and the big data industry, particularly in the ICU, has reduced the accuracy of conventional statistical 
methods due to the intricate nature of patient conditions. This study proposes the use of machine learning algorithms to 
predict VTE risk in ICU patients, providing personalized predictions to guide clinical grading management.

Our study comprised four main steps: data preprocessing, feature selection, model construction and validation, and 
visualization and analysis of the model. We utilized a grid search method for automated hyperparameter optimization and 
performed ten-fold cross-validation to determine the best-performing configuration for each algorithm. After evaluating 
the performance of all constructed prediction models, we concluded that the RF model exhibited the highest perfor-
mance, with 0.788 AUC, 0.805 specificity, 0.633 sensitivity, and 0.166 Brier score.

RF, GBDT, and XGBoost are all ensemble learning algorithms based on decision trees. They excel in handling 
classification and regression tasks, demonstrating strong predictive performance in various studies, but there are some 
significant differences in the way they work. RF achieves ensemble integration by training multiple decision trees 
independently. Each tree is built on a randomly selected subset of the dataset, and at each node of the tree, a random 
subset of features is considered for splitting.31 GBDT integrates by sequentially training decision trees, where each 
subsequent tree is constructed based on the predictions of the ensemble from previous trees. The main goal is to 
minimize the gradient of a specified loss function. This iterative process continuously enhances the predictive power of 
the model.32 XGBoost represents a significant enhancement and optimization of GBDT. Compared to GBDT, XGBoost 
introduces several key improvements. The most notable change is in its approach to the loss function: while GBDT 
primarily minimizes the negative gradient of the loss function, XGBoost leverages the second-order Taylor expansion. 
Additionally, XGBoost enhances model robustness through the incorporation of a regularization term in its objective 
function.33 This regularization helps manage the complexity of the model by penalizing overly complex trees, thereby 
mitigating overfitting and improving generalization performance. SVM make use of the geometric relationships of 
variables to separate different classes of data points for outcome prediction by finding an optimal hyperplane in the 
feature space. It performs well in binary classification problems and provides flexibility for both nonlinear and linear 
problems.34 However, as the dataset grows larger, SVM experience a notable increase in training time. Moreover, SVM 
has poor interpretability.35 LR typically performs well in probabilistic prediction tasks. It predetermines the association 
between the predictor variables in a linear fashion, which gives it the ability to explain each variable causally.36 However, 
if there is a non-linear relationship between the variables in the dataset, LR may not be the optimal choice.37

While the RF model demonstrates superior performance, its inherent black-box nature could restrict its application. 
To increase the interpretability and transparency of the model, we conducted a SHAP analysis on the best-performing RF 
model, which helps improve patients’ and physicians’ understanding of the decision-making process. Previous studies 
have established that age and some comorbidities are significant factors for VTE in ICU patients. Our results align with 
those of earlier research. Patients with prolonged braking time possess a higher chance of VTE because of an increased 
probability of encountering medical complications and functional impairments.38 Aging is correlated with an increased 
risk of VTE. Potential causes of venous stasis include the cumulative impact of risk factors on the venous wall, less 
frequent activity, increased immobility, and high blood thrombin levels.39,40 Similar to prior findings, our results 
demonstrated that recent surgery or polytrauma may increase the risk of VTE.41,42 Body trauma may lead to the 
development of hypoxemia, and hypoxia after oxygenation may induce tissue damage.43 Additionally, our findings 
indicated that patients were more susceptible to VTE if they had higher APACHE II scores and lower GCS scores. The 
GCS score is frequently used to determine coma level; higher coma severity corresponds with lower score. The higher 
the APACHE II score, the greater the disease severity and decrease in organ function. Furthermore, individuals with VTE 
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history stood a strong chance of getting VTE once more, indicating that the possibility of VTE events in these patients 
remains existent.

Therapeutic interventions, including sedative and mechanical ventilation, are linked to an increased risk of VTE. 
Mechanical ventilation is a common form of supportive therapy for ICU patients that involves replacing or controlling 
a patient’s respiratory movements with a mechanical device. Prior research have confirmed that mechanical ventilation is 
an independent risk factor for VTE development.44 Mechanical ventilation and positive end-expiratory pressure increase 
the right ventricular load, decrease the left ventricular load and total output, and increase the incidence of venous 
hemosiderosis, while mechanical ventilation also alters pulmonary fibrin conversion and increases the incidence of 
coagulation.45 Simultaneously, our study showed that the risk of VTE increases with length of ventilation. Sedative leads 
to a decrease in venous blood flow velocity, which aggravates blood stasis and increases VTE incidence.

Our findings also indicated higher D-dimer and lower APTT, TT, and PT, similarly increasing the VTE risk. D-dimer, 
a specific hydrolysis product of cross-linked fibrin generated by fibrinolytic enzymes, can serve as a marker for 
secondary hyperfibrinolysis and the hypercoagulable condition of blood.46,47 Many investigations have established 
a correlation between elevated D-dimer and an increased chance of thrombosis. APTT is a coagulation test commonly 
used to evaluate the blood coagulation system’s functional status. A shortened APTT signifies that the blood is in 
a hypercoagulability state, which predisposes VTE development.48 Lower PT levels are associated with an increased risk 
of VTE, possibly as a result of coagulation factors II, V, VII, and X becoming more active.49 Along with its derived 
measures of INR, these assays evaluate the extrinsic pathway of coagulation.

In this study, we constructed prediction models using multiple machine-learning algorithms. By examining the AUC, 
sensitivity, specificity, and calibration curves, we discovered that the RF model outperformed the other models. The optimal 
model can facilitate clinicians to identify high-risk groups of VTE early, implement preventative therapies in time to lower 
the incidence of VTE and improve patient prognosis. Simultaneously, this approach helped alleviate the economic strain on 
patients, particularly those with less favorable financial circumstances. The most effective use of the model was to integrate 
it into an electronic health record system. The patient’s medical data are gradually uploaded to the system without human 
resources, enabling automated, real-time monitoring to facilitate intelligent early warnings of VTE in clinical practice. Our 
machine learning models were derived from a dataset of 1494 individuals from three tertiary hospitals, giving our model 
some reliability and generalizability. Furthermore, we applied the SHAP method to the RF model to achieve better 
interpretability and to assist healthcare professionals and patients in better understanding the model’s decision-making 
process.

However, there are some limitations. First, clinical data collection is not sufficiently comprehensive, and potential 
predictors may be overlooked. Second, this study just utilized data from the patient’s initial admission to the ICU and 
failed to reflect the time series characteristics of the ICU, which may provide more accurate information. Third, our study 
lacks an independent dataset for external validation; therefore, the model’s performance when applied to an additional 
dataset is unknown. In the future, we plan to collect sufficient data to test the model’s performance in real-world 
scenarios. To further optimize the model’s accuracy, we will pursue its ongoing testing and improvement in clinical 
practice.

Conclusion
In summary, we constructed and validated several predictive models for VTE in ICU patients using machine-learning 
algorithms, and the RF model showed better performance. This effective computer-aided approach can potentially help 
predict the occurrence of VTE in ICU and enhance the patient’s survival rate. Furthermore, this research explains the 
significance of key risk factors in forecasting outcomes through SHAP analysis, thereby helping physicians identify 
predictors and improve the reliability of the projected results.
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