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Abstract 

Background:  Radiomics plays an important role in the field of oncology. Few studies have focused on the identifica-
tion of factors that may influence the classification performance of radiomics models. The goal of this study was to 
use contrast-enhanced mammography (CEM) images to identify factors that may potentially influence the perfor-
mance of radiomics models in diagnosing breast lesions.

Methods:  A total of 157 women with 161 breast lesions were included. Least absolute shrinkage and selection 
operator (LASSO) regression and the random forest (RF) algorithm were employed to construct radiomics models. The 
classification result for each lesion was obtained by using 100 rounds of five-fold cross-validation. The image features 
interpreted by the radiologists were used in the exploratory factor analyses. Univariate and multivariate analyses were 
performed to determine the association between the image features and misclassification. Additional exploratory 
analyses were performed to examine the findings.

Results:  Among the lesions misclassified by both LASSO and RF ≥ 20% of the iterations in the cross-validation and 
those misclassified by both algorithms ≤5% of the iterations, univariate analysis showed that larger lesion size and the 
presence of rim artifacts and/or ripple artifacts were associated with more misclassifications among benign lesions, 
and smaller lesion size was associated with more misclassifications among malignant lesions (all p <  0.050). Multi-
variate analysis showed that smaller lesion size (odds ratio [OR] = 0.699, p = 0.002) and the presence of air trapping 
artifacts (OR = 35.568, p = 0.025) were factors that may lead to misclassification among malignant lesions. Additional 
exploratory analyses showed that benign lesions with rim artifacts and small malignant lesions (< 20 mm) with air 
trapping artifacts were misclassified by approximately 50% more in rate compared with benign and malignant lesions 
without these factors.
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Introduction
It is important to find an accurate and efficient way 
to detect and diagnose breast cancer. In recent years, 
radiomics has played an increasingly important role 
in the field of oncology [1–4]. In radiomics, a high-
throughput computer algorithm extracts large amounts 
of image features and converts medical images into 
quantitative data, showing decent results [5–7]. For 
breast cancer, radiomics has been extensively studied 
in research settings for diagnosis, treatment evaluation, 
and prognosis prediction [1–4, 8].

Contrast-enhanced mammography (CEM) is a tech-
nique that can simultaneously show the morphological 
and angiogenic characteristics of breast lesions [9, 10] 
and has a high spatial resolution comparable to that of 
conventional mammography [11, 12]. Several studies 
have developed and validated radiomics models in an 
attempt to achieve high diagnostic accuracy for breast 
lesions [13–18]. Although the diagnostic performance 
of radiomics models is promising, concerns still per-
sist, as radiomics approaches are often regarded as 
black boxes and are less acceptable for clinical applica-
tion [1, 2, 19, 20]. In other words, improvement in the 
overall diagnostic performance of radiomics models is 
still difficult to convert into practical clinical benefits, 
such as a reduction in unnecessary biopsies. Radiomics 
models are still not sufficiently reliable and interpret-
able to be used in the real-world diagnostic setting. In 
addition, few studies have examined imaging factors 
that may influence the diagnostic performance of the 
models.

The purpose of this study was to examine the perfor-
mance of radiomics analysis in breast cancer diagnosis 
and preliminarily disentangle the black box of radiomics 
by identifying factors that may influence the classifica-
tion results of radiomics models. Our study focused on 
breast lesions that were more likely to be misclassified by 
radiomics analysis and attempted to identify the poten-
tial image features that may influence the classification 
results from an interpretable perspective.

Materials and methods
Study participants
This retrospective study was approved by the Insti-
tutional Review Board and Ethics Committee of the 
research center. The requirement for patient informed 
consent was waived. We collected consecutive CEM 
images between November 2018 and February 2020. 
The indications for CEM in this study included (1) prob-
lem solving for inconclusive findings on mammography 
or ultrasound screening; and (2) evaluation of symp-
tomatic patients. The inclusion criteria were as follows: 
(1) patients with suspected breast lesions after physical 
examination or screening; (2) patients with referral for 
CEM by breast surgeons as part of diagnostic imaging; 
and (3) patients with final diagnoses that were confirmed 
by histopathological results. We excluded patients (1) 
with missing data and (2) with a history of breast surgery, 
breast radiotherapy, chemotherapy, or hormone treat-
ment within 6 months prior to CEM examination. The 
patient inclusion and exclusion workflows are shown in 
Fig. 1. A total of 157 women with 161 breast lesions (47 

Conclusions:  Lesion size and artifacts in CEM images may affect the diagnostic performance of radiomics models. 
The classification results for lesions presenting with certain factors may be less reliable.

Keywords:  Mammography, Breast Cancer, Radiomics, Artifact

Fig. 1  Patient inclusion and exclusion flowchart. CEM = contrast-enhanced mammography
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benign, 29.2%; 114 malignant, 70.8%) were included in 
the study. The median age of the patients was 49 years 
(range, 21–70 years).

CEM examination
All CEM examinations were performed using Senog-
raphe Essential mammography units (GE Healthcare). 
Before the examination, a dose of 1.5 mL/kg body weight 
iodinated contrast material (Iohexol, 300–350 mg I/mL) 
was injected intravenously using an automated power 
injector at a flow rate of 3.0 mL/s, followed by a 10-mL 
bolus of saline. Two minutes after the injection, bilateral 
craniocaudal (CC) views were obtained first, beginning 
with the suspicious breast. Then, bilateral mediolat-
eral oblique (MLO) views were acquired in the same 
order. In a single projection, a pair of low-energy (LE) 
and high-energy (HE) exposures was performed within 
1.5 seconds. The HE and LE images were recombined to 
generate dual-energy subtraction (DES) images. All of the 
HE, LE, and DES images were used to construct the radi-
omics models.

CEM image evaluation
Two radiologists with 5–10 years of experience in breast 
imaging reviewed and interpreted all of the CEM images 
to obtain the image features. The radiologists were 
blinded to the histopathology results. When a discrep-
ancy occurred in image evaluation, the final decision was 
made by consensus. The image features could be divided 
into two main groups: (1) basic image features and (2) 
artifact features. The basic image features included breast 
density, degree of background parenchymal enhance-
ment (BPE), and lesion size. Breast density (a, b, c, or 
d) was evaluated using the LE images according to the 
Breast Imaging Reporting and Data System (BI-RADS) 
mammography lexicon [21]. The degree of BPE (mini-
mal, mild, moderate, or marked) was assessed using the 
DES images referring to the BI-RADS MRI lexicon [22]. 
Lesion size was obtained by calculating the mean value 
of the largest lesion diameters on DES images measured 
by two independent radiologists. The artifact features 
included the presence of rim artifacts, ripple artifacts, 
vascular artifacts, and air trapping artifacts in DES 
images, as these artifacts occurred more often and might 
interfere with image quality [23, 24]. We defined artifacts 
located outside the lesion area as being absent since all 
the radiomics features were extracted from inside the 
lesion area and therefore might not interfere with arti-
facts outside the lesion area.

In addition, we extracted three objective quantitative 
features that might reflect the enhancement degree of the 
lesions. These features include the signal-to-noise ratio 
(SNR), contrast-to-noise ratio (CNR), and background 

contrast ratio (BCR). Since these features are obtained 
through calculation and can also be affected by the 
abovementioned image features, such as artifacts, they 
were excluded in the factor analysis. We only examined 
the distribution pattern of these features among the 
lesions with different classification results. The detailed 
processes and calculation methods of these features are 
provided in the Supplemental Materials (Appendix E1).

Lesion delineation and feature extraction
The lesion contours were manually delineated with ITK-
SNAP (version 3.6; www.​itksn​ap.​org) (25) by two radi-
ologists together. For each lesion, a total of 6 regions of 
interest (ROIs) were delineated on the HE, LE, and DES 
images in the CC and MLO views. For multiple lesions 
within one breast, only the largest lesion was delineated.

Because the voxel was isotropic in-plane, we omitted 
the image resampling step. Gray-level discretization was 
performed to discretize all the images to 256 Gy levels. 
Spectral Mammography Kit (SMK) software (version 
1.2.0, GE Healthcare) was used to extract the radiomics 
features. For each ROI, a total of 680 features, includ-
ing 14 shape features, 18 first-order features, 24 Gy-level 
cooccurrence matrix (GLCM) features, 16 Gy-level run 
length matrix (GLRLM) features, 16 Gy-level size zone 
matrix (GLSZM) features, and 592 wavelet features, were 
extracted (Supplemental Table 1).

Statistical analysis
Feature selection and Radiomics model building
We employed two algorithms, L1-based least absolute 
shrinkage and selection operator (LASSO) regression 
[25] and the random forest (RF) algorithm [26], with all 
the radiomics features (680 features for each ROI), to 
construct the classification models. The “one-standard-
error” rule [27] was used to select the best model when 
implementing LASSO regression. The reference stand-
ard of the classification results was the histopathologi-
cal results. To obtain robust results regarding how the 
radiomics models classified each lesion, we conducted 
100 rounds of five-fold cross-validation. During each 
round of cross-validation, to account for imbalanced 
class numbers between malignant and benign lesions, 
adjusted weights inversely proportional to the frequen-
cies of each class in the training data were calculated and 
incorporated in building RF and LASSO regression [28–
30]. Before analysis, all the extracted radiomics features 
were normalized. We performed the feature normali-
zation using the training data and calculated the mean 
and standard deviation for each feature. Subsequently, 
the values of mean and standard deviation were used to 
normalize the features in the testing data. Besides, the 
dimensions of radiomics features were reduced using the 

http://www.itksnap.org
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training data (80% of the whole data). We removed highly 
correlated redundant radiomics features if the pairwise 
correlations were greater than 0.8. Specifically, if two 
radiomics features had a correlation greater than 0.8, the 
radiomics feature with the largest mean absolute corre-
lation was removed. Then, the models were built on the 
remaining features in the training data and the classifica-
tion results for the testing data determined by using the 
best cutoff value based on the Youden index [31] for both 
the LASSO and RF models were summarized. The area 
under the curve (AUC), accuracy, sensitivity, and speci-
ficity values in the testing dataset were calculated. The 
misclassification probability for each lesion was obtained. 
The details of this statistical procedure are provided in 
the Supplemental Materials (Appendix E2).

Definition of lesion with high/low misclassification 
probability
For both the LASSO and RF method, we defined a lesion 
as having a high misclassification probability if it was 
incorrectly classified for no less than 20.0% of 100 itera-
tions and as having a low misclassification probability if 
it was incorrectly classified for no more than 5.0% of the 
iterations. To combine the results of the LASSO regres-
sion and RF models, we defined a lesion as having a high 
misclassification probability for both algorithms if the 
lesion was defined with a high misclassification prob-
ability by each algorithm at the same time; the equivalent 
definition was used to identify lesions with a low misclas-
sification probability for both algorithms. Unless other-
wise specified, lesions described below as having a high/
low misclassification probability are those with a high/
low misclassification probability as determined by both 
algorithms simultaneously.

Identification of factors influencing the classification 
performance of Radiomics models
Multivariate logistic regression was conducted using the 
type of lesion (high misclassification probability vs. low 
misclassification probability) as a dependent variable and 
the image features as independent variables. A factor that 
showed a statistically significant high or low odds ratio 
(OR) was determined as an influential factor.

Additional exploratory analyses
To directly evaluate how the factors identified in the pre-
vious analysis influence the performances of the radiom-
ics models, we compared the correct classification rates 
between lesions with certain factors and the lesions with-
out these factors based on the results of cross-validation.

In addition, to evaluate the performance of radiom-
ics models on the data with/without influential factors, 
we performed two more sets of 100 rounds of five-fold 

cross-validation with both radiomics algorithms built on 
the data, including the lesions with/without the factors 
identified by the factor analysis. The AUC, accuracy, sen-
sitivity, and specificity values in the testing dataset were 
calculated for comparison.

General statistical analysis
Continuous variables were described as the means ± 
standard deviations, and categorical variables were sum-
marized as proportions (%). Independent t tests, Wil-
coxon rank-sum tests, and Fisher’s exact tests were used 
as appropriate for the univariate analyses and additional 
exploratory analyses. A p value less than 0.050 was con-
sidered statistically significant. All analyses were imple-
mented in R software (version 3.6.3) [32].

Results
Summary of the study cohort and image features
A summary of the study cohort and image features is 
shown in Table  1. The mean age and lesion size in the 
malignant lesion group were significantly greater than 

Table 1  Summary of the study cohort and image features

BPE background parenchymal enhancement, SNR signal-to-noise ratio, CNR 
contrast-to-noise ratio, BCR background contrast ratio
a  Data are shown as the mean values ± standard deviations. Other data are 
shown as proportions with percentages in parentheses

Characteristics Benign lesions
(n = 47)

Malignant lesions
(n = 114)

P value

Age (year) a 46.0 ± 7.9 50.7 ± 9.2 0.002

Lesion size (mm) a 17.1 ± 10.3 28.8 ± 15.6 <  0.001

Breast density 0.004

  a-b 4/47 (8.5) 33/114 (28.9)

  c-d 43/47 (91.5) 81/114 (71.1)

Degree of BPE <  0.001

  Minimal or Mild 20/47 (42.6) 86/114 (75.4)

  Moderate or Marked 27/47 (57.4) 28/114 (24.5)

Rim Artifacts 1.000

  Absent 42/47 (89.3) 100/114 (87.7)

  Present 5/47 (10.7) 14/114 (12.3)

Ripple Artifacts 0.005

  Absent 36/47 (76.6) 60/114 (52.6)

  Present 11/47 (23.4) 54/114 (47.4)

Vascular Artifacts 0.042

  Absent 41/47 (87.2) 82/114 (71.9)

  Present 6/47 (12.8) 32/114 (28.1)

Air Trapping Artifacts 0.104

  Absent 43/47 (87.2) 92/114 (71.9)

  Present 4/47 (12.8) 22/114 (28.1)

SNRa 183.2 ± 134.0 359.7 ± 141.9 <  0.001

CNRa 194.5 ± 153.0 431.7 ± 193.1 <  0.001

BCRa 108.6 ± 84.4 230.2 ± 103.2 <  0.001
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those in the benign lesion group (p <  0.050). The distri-
butions of different types of breast densities and degrees 
of BPE were significantly different between the two 
groups (both p  <   0.050). For the different kinds of arti-
facts, significant differences were observed in the pres-
ence of ripple artifacts (p = 0.005) and vascular artifacts 
(p = 0.042), but no differences were found in the pres-
ence of rim artifacts (p = 1.000) and air trapping artifacts 
(p  = 0.104) between the two groups. For the objective 
quantitative features, the benign lesion group showed 
lower SNR (p <  0.001), CNR (p <  0.001), and BCR values 
(p <  0.001) than the malignant lesion group.

Performance of Radiomics models based 
on cross‑validation results
For the LASSO regression models, the average 
AUC, accuracy, sensitivity, and specificity values 
were 0.926 ± 0.047, 0.895 ± 0.061, 0.891 ± 0.085, and 
0.908 ± 0.096, respectively. For the RF models, the aver-
age AUC, accuracy, sensitivity, and specificity values 
were 0.915 ± 0.055, 0.880 ± 0.068, 0.878 ± 0.097, and 
0.886 ± 0.108, respectively. The statistics of the features 
used ≥20% of the times by LASSO and features with 
the largest permutation importance scores generated by 
RF in the cross-validation are given in the Supplemental 
Tables 2 and 3.

Summary of classification results for the lesions
The lesion classification results are shown in Fig.  2 
(LASSO regression) and Fig.  3 (RF). For the LASSO 
regression models, 20 (12.4%) of the 161 lesions (5 
benign; 15 malignant) were incorrectly classified for no 
less than 20.0% of the 100 iterations, and 116 (72.0%) of 
the 161 lesions (37 benign; 79 malignant) were incor-
rectly classified for no more than 5.0% of the iterations; 
for the RF models, 33 (20.5%) lesions (8 benign; 25 malig-
nant) were misclassified for no less than 20.0% of 100 
iterations, and 116 (72.0%) lesions (35 benign; 81 malig-
nant) were incorrectly classified for no more than 5.0% of 
the iterations. Based on our definition, a total of 16 (9.9%) 
lesions (5 benign; 11 malignant) were defined as having a 
high misclassification probability, and 101 (62.7%) lesions 
(32 benign; 69 malignant) were defined as having a low 
misclassification probability.

Factors identified that may influence the classification 
performance of Radiomics models
A summary of the image features and the objective quan-
titative features in the subgroups of interest is shown in 
Table 2. The univariate analysis showed that larger lesion 
size (p = 0.003), the presence of rim artifacts (p <  0.001), 
and ripple artifacts (p = 0.042) may increase the misclas-
sification rate for benign lesions. Among the malignant 

lesions, a smaller lesion size (p <  0.001) was found to be 
a factor that may be associated with misclassification. 
The distributions of the objective quantitative features 
are shown in Fig. 4. Among the benign lesions, compared 
with lesions with a low misclassification probability, 
lesions with a high misclassification probability showed 
higher values for the SNR, CNR, and BCR. Among the 
malignant lesions, compared with the lesions with low 
misclassification probability, the lesions with high mis-
classification probability showed lower values for the 
SNR, CNR, and BCR. All of the differences between 
the lesions with a high misclassification probability and 
lesions with a low misclassification probability were sta-
tistically significant (p <  0.050).

Multivariate analysis was only performed in the malig-
nant lesion group since the small number of lesions in 
the benign lesion group prevented the logistic regression 
model from converging. In Table 3, the results show that 
a smaller lesion size (odds ratio [OR] = 0.699, p = 0.002) 
and the presence of air trapping artifacts (OR = 36.568, 
p = 0.025) may be factors that may result in the misclas-
sification of malignant lesions.

In addition, both the univariate and multivari-
ate analyses based on the LASSO regression models 
and RF models showed similar results (Supplemental 
Table 4-Table 7).

Results of additional exploratory analyses
Correct classification rates for lesions with/without influential 
factors
A summary of correct classification rates between 
lesions with and without certain influential factor 
is given in Table  4. A smaller lesion size (< 20 mm) 
increased the correct classification rate among benign 
lesions by 0.223 ± 0.098 (mean ± standard deviation) 
and 0.231 ± 0.095, and decreased the correct classifica-
tion rate among malignant lesions by − 0.140 ± 0.049 
and − 0.256 ± 0.069 for LASSO and RF, respectively. 
The present of rim artifacts decreased the correct clas-
sification rate among benign lesions by − 0.613 ± 0.193 
and − 0.624 ± 0.140 for LASSO and RF, respectively. The 
present of ripple artifacts decreased the correct clas-
sification rate among benign lesions by − 0.126 ± 0.075 
and − 0.165 ± 0.106 for LASSO and RF, respectively. 
The present of air trapping artifacts decreased the cor-
rect classification rate among malignant lesions by 
− 0.148 ± 0.056 and − 0.088 ± 0.054 for LASSO and 
RF, respectively. However, the presence of both smaller 
lesion size and air trapping artifacts decreased the cor-
rect classification rate among malignant lesions by 
− 0.458 ± 0.168 and − 0.559 ± 0.145 for LASSO and RF, 
respectively.
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Performance of Radiomics models in the data with/without 
influential factors
We performed two more sets of 100 rounds of cross-val-
idations among the data on the lesions with or without 
rim artifacts, ripple artifacts, and/or air trapping arti-
facts (with: 87 in total, 16 benign and 71 malignant; with-
out: 74 in total, 31 benign and 43 malignant). We only 

considered valid classification results without prediction 
issues due to the small number of prediction categories. 
For the LASSO regression models in lesions with/without 
the abovementioned artifacts, the average AUC, accu-
racy, sensitivity, and specificity values were 0.875 ± 0.078 
vs. 0.970 ± 0.071, 0.858 ± 0.097 vs. 0.965 ± 0.066, 
0.851 ± 0.099 vs. 0.967 ± 0.088, and 0.898 ± 0.123 vs. 

Fig. 2  Least absolute shrinkage and selection operator (LASSO) regression radiomics model classification results for 100 rounds of cross-validation. 
The blue dashed line is the cutoff line for a misclassification probability of 0.05, and the red dashed line is the cutoff line for a misclassification 
probability of 0.20 for benign and malignant lesions. The average AUC, accuracy, sensitivity, and specificity values and the standard deviation are 
0.926 ± 0.047, 0.895 ± 0.061, 0.891 ± 0.085, and 0.908 ± 0.096
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0.967 ± 0.092, respectively. For the RF models in lesions 
with/without the abovementioned artifacts, the aver-
age AUC, accuracy, sensitivity, and specificity val-
ues were 0.852 ± 0.085 vs. 0.961 ± 0.094, 0.830 ± 0.100 
vs. 0.952 ± 0.079, 0.822 ± 0.123 vs. 0.953 ± 0.121, and 
0.907 ± 0.124 vs. 0.968 ± 0.090, respectively.

Discussion
Overall, the performance of the two algorithms (LASSO 
and RF) used in this study was comparable to that of the 
models in the published literature using radiomics fea-
tures of CEM to classify breast lesions (AUC = 0.848–
0.950, accuracy = 78.4–90.0%) [13–16].

Fig. 3  Random forest (RF) radiomics model classification results for 100 rounds of cross-validation. The blue dashed line is the cutoff line for a 
misclassification probability of 0.05, and the red dashed line is the cutoff line for a misclassification probability of 0.20 for benign and malignant 
lesions. The average AUC, accuracy, sensitivity, and specificity values and the standard deviation are 0.915 ± 0.055, 0.880 ± 0.068, 0.878 ± 0.097, and 
0.886 ± 0.108
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The results of factor analyses showed that small 
lesion size and the presence of rim artifacts, ripple 
artifacts, and air trapping artifacts might influence 
classification performances in the LASSO regression 
models and RF radiomics models. To illustrate the find-
ings, we provided a set of CEM images as examples 
in Fig.  5. As shown in Fig.  5A-C, benign lesions with 
larger lesion size and presenting with rim artifacts or 
ripple artifacts were more likely to be misclassified. 
Benign lesions that were less likely to be misclassified 
(Fig.  5D-F) were smaller in size and generally did not 
contain rim or ripple artifacts. In Fig. 5G-H, malignant 
lesions with smaller lesion size and presenting with air 
trapping artifacts were more likely to be misclassified. 
Malignant lesions that were less likely to be misclassi-
fied were generally larger and did not present with air 
trapping artifacts (Fig.  5J-L). The presence of artifacts 
seemed to be an influential factor that resulted in mis-
classification, and the influence could be bidirectional: 
some artifacts, such as rim artifacts and ripple arti-
facts, tended to influence the classification of a lesion 
as malignant, probably because these artifacts increase 
the signal intensity and/or heterogeneity of the lesions, 
while other artifacts, such as air trapping artifacts and 
negative enhancement artifacts, decrease the signal 
intensity of the lesions. Thus, lesions with such artifacts 
might be more likely to be classified as benign.

Our findings were further examined by the results of 
additional exploratory analyses. Based on the cross-vali-
dation results, correct classification rates could obviously 
decrease (approximately 50% on average) for benign 
lesions with rim artifacts and smaller malignant lesions 
(< 20 mm) with air trapping artifacts. Furthermore, 
model accuracy could obviously decrease by an average 
of 10–12% when the analyses were only performed for 
lesions with rim artifacts, ripple artifacts, and/or air trap-
ping artifacts versus lesions without the artifacts.

Our findings could also be potentially explained by 
objective quantitative image features in an interpretable 
way. The SNR, CNR, and BCR values showed signifi-
cantly different distributions between lesions with high 
misclassification probability and lesions with low mis-
classification probability in both the benign and malig-
nant lesion groups. These results were also in line with 
the abovementioned findings and inferences. It is worth 
mentioning that the quantitative features may be associ-
ated with the presence of artifacts as well, so we did not 
include these features in our exploratory analyses. Benign 
lesions with high misclassification probability showed 
higher signal intensity after enhancement (Fig.  5A-C), 
while malignant lesions with high misclassification prob-
ability showed lower signal intensity (Fig. 5G-I). Several 
aspects could contribute to high lesion signal intensity, 
including the inherent characteristics of the lesion itself 

Table 2  Summary of image features and objective quantitative features in subgroups of interest

BPE background parenchymal enhancement, SNR signal-to-noise ratio, CNR contrast-to-noise ratio, BCR background contrast ratio
a  Data are shown as the mean values ± standard deviations. Other data are shown as proportions with percentages in parentheses

Image features Category Benign lesions P value Malignant lesions P value

High 
Misclassification 
Probability
(n = 5)

Low 
Misclassification 
Probability
(n = 32)

High 
Misclassification 
Probability
(n = 11)

Low 
Misclassification 
Probability
(n = 69)

Lesion size a / 31.3 ± 11.8 11.8 ± 9.2 0.003 17.0 ± 6.0 34.4 ± 16.8 <  0.001

Breast density a-b 1/5 (40.0) 2/32 (6.3) 0.362 2/11 (18.2) 23/69 (33.3) 0.488

c-d 4/5 (60.0) 30/32 (93.8) 9/11 (81.8) 46/69 (66.7)

Degree of BPE Minimal or mild 1/5 (20.0) 14/32 (43.8) 0.629 10/11 (90.9) 52/69 (75.4) 0.440

Moderate or marked 4/5 (80.0) 18/32 (56.3) 1/11 (9.1) 17/69 (24.6)

Rim artifact Absent 1/5 (20.0) 31/32 (96.9) <  0.001 10/11 (90.9) 59/69 (85.5) 0.999

Present 4/5 (80.0) 1/32 (3.1) 1/11 (9.1) 10/69 (14.5)

Ripple artifact Absent 3/5 (60.0) 31/32 (96.9) 0.042 6/11 (54.5) 33/69 (47.8) 0.753

Present 2/5 (40.0) 1/32 (3.1) 5/11 (45.5) 36/69 (52.2)

Vascular artifact Absent 4/5 (80.0) 29/32 (90.6) 0.456 9/11 (81.8) 48/69 (69.6) 0.497

Present 1/5 (20.0) 3/32 (9.4) 2/11 (18.2) 21/69 (30.4)

Air trapping artifact Absent 5/5 (100.0) 31/32 (96.9) 0.255 7/11 (63.6) 57/69 (82.6) 0.217

Present 0/5 (0.0) 1/32 (3.1) 4/11 (36.4) 12/69 (17.4)

SNR a / 467.6 ± 100.8 143.9 ± 87.3 <  0.001 224.1 ± 75.9 410.4 ± 130.0 <  0.001

CNR a / 539.7 ± 73.8 149.5 ± 98.4 <  0.001 247.3 ± 92.1 505.2 ± 179.9 <  0.001

BCR a / 299.8 ± 38.4 83.8 ± 53.4 <  0.001 133.6 ± 49.7 265.7 ± 93.8 <  0.001
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and external influential factors, which may further cause 
lesion misclassification by the radiomics models. Sev-
eral quantitative studies of CEM have demonstrated that 
malignant lesions tend to show more obvious enhance-
ment than benign lesions [33–35]. Some studies [36, 

37] have noted that the enhancement intensity depends 
on the size of the tumor and is more obvious for larger 
lesions than for smaller lesions. In other words, larger 
benign lesions can also display strong enhancement, and 
smaller malignant lesions can also display slight enhance-
ment. Furthermore, as reported by Yagil et  al. [38], rim 
and ripple artifacts were the main artifacts commonly 
seen on CEM. Researchers [23, 39, 40] have stated that 
DES images are prone to rim artifacts of increased den-
sity as a result of radiation scattering. Additionally, BPE, 
which refers to the uptake of contrast medium by normal 
fibroglandular breast tissue [41, 42], may also add the 
signal intensity of the lesions. In contrast, air trapping 
artifacts, which represent the presence of air and create 
a dark area due to incomplete contact between the skin 
and the detector or compression paddle [23, 24], may 
result in more neutral signal intensity.

Although some scholars have considered that some 
artifacts in CEM images might not compromise image 
quality [24, 38], we found that some artifacts in CEM 
images might affect the diagnostic performance of radi-
omics models, and other scholars [23, 43, 44] have 

Fig. 4  Distribution of values of quantitative features in the subgroups of interest. SNR = signal-to-noise ratio; CNR = contrast-to-noise ratio; 
BCR = background contrast ratio

Table 3  Multivariate factor analysis results for malignant lesions 
in the subgroups of interest

BPE background parenchymal enhancement, OR odds ratio, CI confidence 
interval
a  OR (95% CI): The effect size is calculated based on each 1 mm change in the 
variable

Image features OR 95% CI P value

Lesion size a 0.699 (0.528, 0.837) 0.002

Breast density (c-d) 12.619 (1.216, 381.215) 0.068

Degree of BPE (moderate or marked) 1.517 (0.036, 50.007) 0.811

Presence of rim artifacts 0.064 (0.006, 17.652) 0.815

Presence of vascular artifacts 0.442 (0.010, 6.336) 0.594

Presence of ripple artifacts 2.795 (0.400, 24.149) 0.310

Presence of air trapping artifacts 36.568 (2.205, 1665.08) 0.025
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Table 4  Summary of additional exploratory analysis for correct classification rates between lesions with and without influential factors

The data are presented as the mean correct classification rate ± standard deviation across the 100 rounds of cross-validation. Values with an absolute difference in the 
correct classification rate equal to or larger than 0.5000 are marked with gray
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proposed that some artifacts may present challenges to 
image interpretation. Therefore, it is still necessary to 
stress the importance of high-quality images. Neppalli 
et  al. reported [45] that the type, incidence, and sever-
ity of CEM-specific artifacts differ between image device 
vendors. To date, several image-processing algorithms 
have been developed to reduce artifacts and improve 
the image quality [46–48]. For example, scatter correc-
tion techniques are becoming commercially available 
[48], and the rim artifacts are not present in the newer 
systems [24]. Furthermore, except for equipment- or 

technique-related factors, CEM-specific artifacts can also 
be alleviated by patient- or technologist-related factors. 
Therefore, it is also important to use standard and appro-
priate protocols during image acquisition and perform 
regular quality control tests [49] to prevent or minimize 
these artifacts.

There are some limitations in our study. First, the rela-
tively small sample size is the main limitation. A larger 
sample may help provide more information with the 
same accuracy. Second, radiomics features derived from 
CEM, in general, could have inherent limitations caused 

Fig. 5  Examples of dual-energy subtraction (DES) images of contrast-enhanced mammography (CEM) classified by the radiomics models. A-C 
Examples of benign lesions with high misclassification probabilities. The lesions are annotated with arrowheads. A A 42-year-old woman with a 
markedly enhanced lesion in the upper quadrant of the right breast. Biopsy revealed a fibroadenoma. The diameter of the lesion is 31.5 mm (mean 
lesion size of all the benign lesions: 17.1 mm). The patient has marked BPE. B A 47-year-old woman with a moderately enhanced lesion in the outer 
quadrant of the right breast. Biopsy revealed adenosis with a fibroadenoma. Rim artifacts are present at the location of the lesion (arrows). The 
patient has marked BPE. C A 35-year-old woman with a moderately enhanced lesion in the lower quadrant of the left breast. Biopsy revealed an 
intraductal papilloma. Ripple artifacts are present at the location of the lesion (arrow). The patient has mild BPE. D-F Examples of benign lesions 
with low misclassification probabilities. D A 50-year-old woman with a moderately enhanced lesion in the outer quadrant of the right breast. Biopsy 
revealed a fibroadenoma. The diameter of the lesion is 10.5 mm. The patient has minimal BPE. E A 55-year-old woman with a mildly enhanced lesion 
in the outer quadrant of the right breast. Biopsy revealed a fibroadenoma. The diameter of the lesion is 8.0 mm. The patient has minimal BPE. F A 
58-year-old woman with a mildly enhanced lesion in the outer quadrant of the left breast. Biopsy revealed a fibroadenoma. The diameter of the 
lesion is 10.3 mm. The patient has minimal BPE. G-I Examples of malignant lesions with high misclassification probabilities. The lesions are annotated 
with arrowheads. G A 60-year-old woman with a mildly enhanced lesion in the central area of the left breast. Biopsy revealed IDC with mucous 
secretion (grade III). The diameter of the lesion is 16.0 mm (mean lesion size of all malignant lesions: 28.8 mm). The patient has minimal BPE. H A 
53-year-old woman with a moderately enhanced lesion in the upper quadrant of the right breast. Biopsy revealed IDC (grade II). The diameter of the 
lesion is 16.3 mm. The patient has minimal BPE with an air trapping artifact in the lesion area (arrow). I A 57-year-old woman with a lesion showing 
negative enhancement in the outer quadrant of the left breast. Biopsy revealed mucous adenocarcinoma. The diameter of the lesion is 27.5 mm. 
The patient has minimal BPE with negative enhancement artifacts (eclipse sign) in the lesion area (arrow). J-L Examples of malignant lesions with 
low misclassification probabilities. J A 58-year-old woman with a markedly enhanced lesion in the upper quadrant of the left breast. Biopsy revealed 
IDC (grade II). The diameter of the lesion is 31.0 mm. The patient has mild BPE. K A 49-year-old woman with a markedly enhanced lesion in the outer 
quadrant of the right breast. Biopsy revealed IDC (grade II). The diameter of the lesion is 39.5 mm. The patient has minimal BPE. L A 60-year-old 
woman with a markedly enhanced lesion in the retro-areola region of the right breast. Biopsy revealed IDC (grade II). The diameter of the lesion is 
48.8 mm. The patient has minimal BPE. BPE = background parenchymal enhancement; IDC = invasive ductal carcinoma
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by the two-dimensional nature of the images and com-
pression. Third, more homogeneous baseline charac-
teristics between benign and malignant lesions may 
potentially help better interpret the results. To avoid 
bias, we used 100 rounds of cross-validation instead of 
a single round to obtain “averaged” classification results. 
Performing factor analysis separately for benign and 
malignant lesions could further limit the impact of unbal-
anced characteristics.

Conclusions
Our study found that large lesion size and the presence 
of rim and/or ripple artifacts were associated with mis-
classification of benign lesions, and small lesion size and 
presence of air trapping artifacts were associated with 
misclassification of malignant lesions. The results imply 
that we should be aware that the results of radiomics 
models could be less reliable when these influential fac-
tors are present. Based on these findings, some methods, 
such as alleviating artifacts by using specific postprocess-
ing algorithms [48], applying adequate compression of 
the breast [24], referring to the image information around 
the lesion [50], and employing an adjusted algorithm that 
considers these influential factors, can potentially help to 
build more accurate and interpretable radiomics classifi-
cation models.
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