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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- A cohort study by resorting to the Medicare population and PM2.5 components data

- Long-term exposure to specific PM2.5 components can accelerate dementia progression

- Black carbon and sulfate showed the most stable associations
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Growing evidence has linked long-term fine particulate matter (PM2.5) expo-
sure to neurological disorders. Less is known about the individual effects of
PM2.5 components. A population-based cohort study investigated the associ-
ation between long-term (1-year average) exposure to PM2.5 components and
dementia incidence among the elderly population (age, R65 years) in the
United States. We used data from the Medicare Chronic Conditions Ware-
house and a high-resolution PM2.5 components dataset of the northeastern
United States (2000–2017). We identified dementia diagnoses from patients’
hospital andmedical insurance records and carried out Cox proportional haz-
ards regression to investigate their association with PM2.5 components.
Among �2 million participants, 15.1% developed dementia. From the sin-
gle-pollutant models, hazard ratios per interquartile range increase were
1.10 (95% confidence interval [CI]: 1.09–1.11) for black carbon, 1.08 (95%
CI: 1.07, 1.10) for inorganic nitrate, 1.03 (95% CI: 1.02, 1.04) for organic mat-
ter, 1.13 (95% CI: 1.11, 1.15) for sulfate, 1.07 (95% CI: 1.06, 1.07) for soil par-
ticles, and 1.04 (95% CI: 1.03, 1.05) for sea salt. Increase in exposure to black
carbon and sulfate per interquartile range had the strongest associations
with dementia incidence. Penalized spline models indicated that dementia
incidence increased linearly with elevated black carbon concentrations,
whereas the incidence of dementia was only elevated significantly following
sulfate concentrations above �2 mg/m3. Our study suggests that long-term
exposure to PM2.5 components is significantly associated with increased de-
mentia incidence and that different components have different neurotoxicity.
Reduction of PM2.5 emissions, especially for main sources of black carbon
and sulfate, may reduce the burden of dementia in the aging United States
population.

INTRODUCTION
Fine particulatematter (PM2.5) is an important air pollutant worldwide and con-

sists of a complexmixture of carbonaceous fractions, water-soluble ions, metals,
crustal elements, and other constituents.1–3 Exposure to PM2.5 has been associ-
atedwith adverse health effects, including cardiovascular disease, respiratory dis-
ease, lung cancer, and premature mortality.4–8 Several studies also suggest that
long-term PM2.5 exposure is a risk factor for neurodegenerative diseases.9–11

Dementia is one of the most prevalent neurodegenerative diseases and a ma-
jor public health concern. It affectsmore than 47million people worldwide, result-
ing in substantial health and financial burdens.12 The prevalence of dementia has
increased significantly in recent years.13 Therefore, identifyingmodifiable risk fac-
tors for dementia that can be addressed by interventions at the population level is
a top research priority. Studies suggest that PM2.5 has the potential to induce de-
mentia through biologicalmechanisms suchas systemic inflammation, oxidative
stress, and neuroinflammation.14–16 In addition, some evidence indicates that
PM2.5 can exacerbate or accelerate existing diseases via these biological
pathways.17

A growing body of epidemiological evidence suggests that particulate air pollu-
tion contributes to dementia, including several longitudinal studies conducted in
the United States and around the world.11,18–28 The majority of these studies
found positive associations between PM2.5 and dementia. A systematic review
and meta-analysis also concluded that exposure to PM2.5 is associated with a
16% higher risk of dementia per 10 mg/m3 increase in PM2.5 concentration.

29 Ex-
isting studies have often relied on inpatient hospitalization records as a measure
of incidence. A recent study by Shi et al.,30 based on nationwide Medicare data in
ll
the United States including doctor visits, also provides evidence that long-term
exposure to PM2.5 may increase the incidence of dementia.
However, previous studies have almost exclusively focused on the effects of

PM2.5 mass concentrations. As a complex mixture, the toxic effects of PM2.5

may be determined primarily by its chemical components. PM2.5 components,
such as organic matter (OM), inorganic nitrate (NO3

�), inorganic sulfate
(SO4

2�), black carbon (BC), soil particles (SOILs), and sea salt (SS), emitted
from specific sources, have different physicochemical and toxicological charac-
teristics, resulting in various health effects.31–33 To date, the individual effects of
PM2.5 components on dementia remain unclear. There is an urgent need to eval-
uate the effect of exposure to various PM2.5 components on dementia to deter-
mine which PM2.5 components are responsible for dementia, the possible biolog-
ical mechanisms, and which emission sources are the most hazardous.32

To fill these knowledge gaps, we build on the study by Shi et al.30 by conducting
a population-based cohort study of the Medicare dataset and a well-validated
high-resolution (1 km 3 1 km) PM2.5 components dataset from 2000–2017.
The latter includes data on OM, NO3

�, SO4
2�, BC, SOILs, and SS in the north-

eastern United States, where better exposure estimates exist. First, we identified
a diagnosis of all-cause dementia using all Medicare claims including doctor
visits, with the requirement of a 5-year “clean” (i.e., dementia-free) period. PM2.5

component exposure was assigned to subjects based on resident ZIP code.
The effects of long-term exposure to six major PM2.5 components (i.e., OM,
NO3

�, SO4
2�, BC, SOILs, and SS) on incident dementia were investigated using

Cox proportional hazards models.

RESULTS
Study population characteristics and air pollution levels
The dementia cohort with a “clean” period of 5 years had about 2 million sub-

jects with amedian follow-up of 7 years. Regarding the demographic data, 73.2%
of the people entered the cohort between ages 65 and 74, 61.6% were female,
92%werewhite, andmore than 90%were above the poverty level. Within the pop-
ulation cohort, 15.1% developed dementia. The descriptive information for the de-
mentia cohort is listed in Table 1.
Between 2000 and 2017, the northeastern United States had an average

PM2.5 mass concentration of 8.8 mg/m3. The average concentrations of
PM2.5 components were 0.7 mg/m3 (BC), 1.0 mg/m3 (NO3

�), 2.9 mg/m3

(OM), 1.8 mg/m3 (SO4
2�), 0.3 mg/m3 (SOILs), and 0.4 mg/m3 (SS). The inter-

quartile ranges (IQRs) of BC, NO3
�, OM, SO4

2�, SOILs, and SS were 0.3 mg/
m3, 0.6 mg/m3, 1.0 mg/m3, 1.1 mg/m3, 0.2 mg/m3, and 0.2 mg/m3, respectively
(Table S3). The Pearson correlations between each PM2.5 component and
PM2.5 mass are listed in Table S4. The spatial distributions of each compo-
nent at the ZIP code level over 2000–2017 are shown in Figure 1. The spatial
distribution of PM2.5 mass is shown in Figure S1. The highest PM2.5 mass
concentrations were distributed in southern areas of the northeast United
States, including western and eastern Pennsylvania, New Jersey, and New
York City. High BC concentrations were found in western Pennsylvania,
New York City, and the border of eastern Pennsylvania and New Jersey,
and the spatial distribution of OM was also similar. Compared with the other
states, western Pennsylvania had higher average SO4

2� and SOIL levels. In
contrast, high levels of NO3

� were concentrated in eastern Pennsylvania.
For SS, high concentrations occurred along the eastern coastline of Massa-
chusetts, Rhode Island, Connecticut, and New York.
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Table 1. Descriptive statistics for the dementia cohorts

Variables Numbers Percentage

Number of events 309,842 15.1

Total population 2,051,550 100

Total person-years 11,404,905 100

Median follow-up years 7

Age at entry (years)

65–74 1,481,574 73.2

75–115 569,976 27.8

Gender

Male 789,610 38.9

Female 1,252,940 61.1

Race

White 1,888,347 92.0

Black 88,327 4.3

Other 74,876 3.6

Medicaid eligibility

Eligible 136,283 6.6

Not eligible 1,915,267 93.4

Air pollutants (mg/m3)a

PM2.5 mass 8.8 (2.4)

Black carbon 0.7 (0.3)

Nitrate 1.0 (0.6)

Organic matter 2.9 (1.0)

Sulfate 1.8 (1.1)

Soil particles 0.3 (0.2)

Sea salt 0.4 (0.2)

Area level variablesb

Smoking rate, % 47.6 (5.3)

Below poverty level, % 7.9 (5.7)

Not graduating from high school, % 20.2 (11.0)

Population density, people/mile2 6,326.5 (17,086.9)

Body mass index, kg/m2 27.2 (0.7)

Median household income, US $1,000 69.8 (27.7)

Owner-occupied housing units, % 70.1 (18.0)

Black population proportion, % 6.7 (12.5)

Number of hospitals 1.9 (4.3)

Number of medical doctors 261.6 (1,135.1)

aPresented as mean concentration (IQR).
bPresented as mean (SD).
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Main analysis
Health effect estimates. In the single-pollutant model, long-term exposure to

PM2.5 mass and all PM2.5 major components had a statistically significant posi-
tive associationwith dementia (Table 2). A per-IQR increase in concentration was
associated with an increase in dementia, with a hazard ratio (HR) of 1.10 (95%
confidence interval [CI]: 1.09, 1.12) for PM2.5 mass, 1.10 (95% CI: 1.09, 1.11) for
BC, 1.08 (95% CI: 1.07, 1.10) for NO3

�, 1.03 (95% CI: 1.02, 1.04) for OM, 1.13
2 The Innovation 3(2): 100208, March 29, 2022
(95% CI: 1.11, 1.15) for SO4
2�, 1.07 (95% CI: 1.06, 1.07) for SOILs, and 1.04

(95% CI: 1.03, 1.05) for SS. In multi-pollutant models, the positive associations
with long-term exposure to BC (HR = 1.05; 95% CI: 1.04, 1.07), NO3

�

(HR = 1.02; 95% CI: 1.00, 1.03), SO4
2� (HR = 1.05, 95% CI: 1.03, 1.07), SOILs

(HR = 1.03; 95% CI: 1.02, 1.04), and SS (HR = 1.04; 95% CI: 1.03, 1.05) remained,
although they were notably reduced except for SO4

2�. However, OM showed a
negative association with dementia (HR = 0.98; 95% CI: 0.96, 0.99). Figure 2
shows the HRs for each subgroup in single-pollutant models. We found that
males had higher HRs for BC, NO3

�, OM, SOILs, and SS, whereas females had
higher HRs for SO4

2�. Additionally, we observed higher HRs for BC, NO3
�,

SO4
2�, SOILs, and SS among those identified as Black than for those identified

as white or other races. Regarding age, those younger than 75 had stronger as-
sociations between dementia and BC, OM, SOILs, and SS than those older than
75, whereas those older than 75 had stronger associations between dementia
and NO3

� and SO4
2�.

Concentration-Response (C-R) relationships. Nextwe evaluated the C-R re-
lationships between each component of PM2.5 and dementia from single-
pollutant models (Figure 3). A strong near-linear relationship was observed
with BC and SOILs, with no sign of threshold. Near-linear relationships were
observed with NO3

� and OM at low concentrations, and then the C-R curves lev-
eled off at 0.5 mg/m3 for NO3

� and 3 mg/m3 for OM. The C-R curves showed null
associations between dementia and SO4

2� at low concentrations; however, the
relationship became significantly positive at high SO4

2� concentrations, with a
steep rise at about 2 mg/m3. The pattern for SS was similar to SO4

2�, with no sig-
nificant relationship at low concentrations followed by a positive, linear relation-
ship at high concentrations.
Sensitivity analysis. The results of the single-pollutant models adjusting for

PM2.5 mass are presented in Table S5. The patterns were similar with multi-
pollutant models, with negative associations for OM and positive associations
for the other components on dementia. The results of the non-mover cohort
are very similar to the results of our main analysis (Table S6), suggesting little
bias from residential mobility. The C-R curves from multi-pollutant models are
shown in Figure S2. The C-R curves from multi-pollutant models for BC, NO3

�,
SOILs, and SS are generally consistent with those from single-pollutant models.
However, for OM, a null association was observed at high concentrations after
adjusting for other PM2.5 components. We found that SO4

2� exposure did not in-
crease the risk of dementia at levels below 2 mg/m3, followed by amonotonically
increasing C-R relationship.
DISCUSSION
Using a large prospective cohort study from the northeastern United States, we

found that long-term exposure to BC, NO3
�, SO4

2�, SOILs, and SS elevated the
risk of dementia among the elderly population (age, R65). OM has been shown
to be associated with dementia only when the single-pollutant model was used,
and a negative association was observed when PM2.5 mass or other major com-
ponents of PM2.5 were adjusted. In single- andmulti-pollutant models, per-IQR in-
creases of BC and SO4

2� were associated with the highest dementia risk.
BC primarily forms from incomplete combustion of fossil fuels, biofuels, and

biomass.34 It is mainly associated with incomplete combustion processes,
including traffic-related pollution and biomass burning.35 We found a positive
association between BC and dementia. Despite limited studies investigating the
associations between BC and neurodegenerative disorders, some researchers
have observed associations between BC and quantifiable impairment of brain
development in children and cognitive decline in the elderly.36,37 A possible expla-
nation for the neurotoxicity of BC is that BC from traffic sources can be very small
(�50 nm) and may get into the bloodstream and reach the blood-brain barrier.38

Moreover, incompletecombustioncanalso co-emit polycyclic aromatichydrocar-
bons (PAHs), which might be coated on BC and contribute to neurotoxicity.38

The OM in the atmosphere is a highly complexmixture of primary and second-
ary organic particles made mostly of organic carbon and trace amounts of hun-
dreds of compounds such as PAH, alkanes, esters, and fatty acids.39 Combus-
tion of biomass and fossil fuels is the major source of primary OM, but
secondary production fromoxidation of organic gases is also considered amajor
source of OM.40 In particular, secondary organic aerosols are generated by reac-
tions of terpenes with nitrogen oxides. Numerous toxicological studies have
implicated OM in cancer and cardiopulmonary illness; however, the effects of
OM on the nervous system are largely unknown.41 There have been some
www.cell.com/the-innovation
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Figure 1. Average concentrations of PM2.5 major components (mg/m3) in the northeastern United States from 2000–2017

Table 2. Hazard Ratio of dementia associated with per-IQR increase in PM2.5 major
components

Components

Hazard Ratio (95% CI)

Single-pollutant model Multi-pollutant model

Black carbon 1.10 (1.09, 1.11) 1.05 (1.04, 1.07)

Nitrate 1.08 (1.07, 1.10) 1.02 (1.00, 1.03)

Organic matter 1.03 (1.02, 1.04) 0.98 (0.96, 0.99)

Sulfate 1.13 (1.11, 1.15) 1.05 (1.03, 1.07)

Soil particles 1.07 (1.06, 1.07) 1.03 (1.02, 1.04)

Sea salt 1.04 (1.03, 1.05) 1.04 (1.03, 1.05)

PM2.5 mass 1.10 (1.09,1.12) –
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studies that link exposure to PAHs to neurodevelopmental disorders in children
as well as neurodegenerative disease-like symptoms in zebrafish.42,43 In our
study, we observed an adverse effect of OM on dementia with the single-
pollutant model, and a modest negative association was observed when PM2.5

mass or other components of PM2.5 were included in the model. According to
the C-R relationships of the multi-pollutant model (Figure S2), for most of the
OM distribution, the association was positive but became protective at high
concentrations. The adjustments for other PM2.5 components somehow reduce
the associations of OM and dementia, likely because of collinearity. Moreover,
the effect sizes for all components in the multi-pollutant models decreased
from their levels in the single-pollutant models. Similarly, Crouse et al.44 also
observed a positive association between OM andmortality in the single-pollutant
model, which reversed after adjusting for PM2.5 mass and other components.
They also attributed it to collinearity among component concentrations. The ef-
fects of OM still need to be explored.

NO3
� is a secondary inorganic aerosol formed in the air; its major precursor

gaseous species are ammonia and nitric acid.45 Agriculture is considered to be
the major source of ammonia and nitric acid globally; however, in urban areas,
traffic is considered to be the main source of nitrogen oxides.46 We found a sig-
nificant positive association between NO3

� and dementia. A linear C-R relation-
ship was observed in low NO3

� concentrations, and the relationships became
stable at concentrations above 0.5 mg/m3. Although the adverse effects of
NO3

� on neurodegenerative disorders have been less explored, NO3
� has been

linked to oxidative stress, which is known to be a major pathological driver in
dementia and neurodegenerative disease.47 In addition, there is some evidence
that traffic-related air pollution increases the risk of neurodegenerative
disorders.18,20,21

SO4
2� is also a secondary inorganic aerosol present in the atmosphere in the

form of a mixture of ammonium sulfate, ammonium bisulfate, or sulfuric acid.
Similar to our findings, van Wijngaarden et al.48 observed a positive association
between SO4

2� and hospitalizations for neurodegenerative disorders with a
relative risk of 1.09 (95% CI: 1.00–1.19) per IQR. In the C-R curves, we only
observed a positive linear relationship between SO4

2� and dementia at high
SO4

2� concentrations; a negative relationshipwas found at low SO4
2� concentra-

tions when adjusting for other major components. This effect could be explained
by sulfate precipitating the toxic compound deep in the lungs by creating an
acidic environment in the microcirculation that promotes absorption of metal el-
ements of particulate matter, but only after a certain threshold of lung accumu-
lation occurs.49,50
ll
SOILs are composed of oxides and carbonates of crustal elements such as Si,
Al, Fe, Ca, and Ti. They are formed throughmechanical processes such as eolian
erosion, transportation, and industrial processes such asmining and cement pro-
duction. We found a positive association between SOILs and dementia. It has
been reported that accumulation of metals in the blood and bones can damage
the nervous system.51

SS derived fromsea spray is primarily composed of sodiumchloride (NaCl) but
also contains other chemical ions that are common in seawater. To date, no other
studies have investigated the relationship between SS and neurodegenerative
disorders. It has been reported that SS is associated with cardiovascular disease,
suchas hypertension.41 The effect of SS ondementia isworthy of attention based
on our results.
Our study has several strengths. To the best of our knowledge, this is the first

population-based, large-scale cohort study characterizing associations between
PM2.5 component exposure and incident dementia. PM2.5 dementia effects are
currently mostly studied from the total mass perspective, and only a few studies
have investigated specific PM2.5 components. Consequently, our study provides
evidence for the association between PM2.5 components and dementia, which
may have implications for PM2.5 component regulation. In addition, previous
studies have almost exclusively focused on hospitalization data; in contrast, we
used more comprehensive Medicare claims, including Medicare inpatient and
outpatient claims, physician visits, skilled nursing facilities, and home health
The Innovation 3(2): 100208, March 29, 2022 3



Figure 2. Hazard Ratio of dementia associated with per-IQR increase in the PM2.5 major components by study subgroups in single-pollutant models
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care. Becausemany dementia casesmight not result in hospitalization, our study
can better capture disease incidence. The requirement of a 5-year “clean” period
also enables us to obtain more representative results. Last, our Cox proportional
hazards models employ a generalized estimating equation (GEE) to account for
potential clustering within ZIP codes and are more robust when adjusting for
numerous covariates at the neighborhoodand individual level, including penalized
splines.

This study also has some limitations. First, for the exposure assessment, we
were unable to obtain residential address information because of limitations of
Medicare data. For each participant, we could only assign the annual average
exposure data based on ZIP-code-level data. Therefore, exposure measurement
error is likely. In addition, residential mobility could introduce some bias. Second,
even with multiple covariates being controlled, we cannot fully rule out the possi-
bility of residual confounding or unmeasured confounding bias, such as alcohol
consumption, exercise frequency, and substance use,whichmayaffect the devel-
opment of dementia. Further studies taking into account thepotential bias andun-
measured/residual confounding are encouraged. In addition, therewere someco-
variates (e.g., education, income, and smoking) that were measured at the ZIP
code or county level, whichmay not accurately reflect the differences between in-
dividuals in the cohort Third, multi-pollutant models and single-pollutant models
withPM2.5massadjustmenthavemulticollinearitybecauseof thehighcorrelation
among some PM2.5 components. To overcome the multicollinearity limitation,
advanced computationally mixture analysis methods are urgently required.52

Fourth, the investigated six PM2.5 components contribute to more than half of
the PM2.5 mass, whereas other trace components, such as metal elements, are
not recorded because of the lack of exposure data for individual metal species.53

Therefore, the effect of other components on dementia cannot be estimated. To
providesome inspiration for further research,wedisplay the results for theseother
unmeasured components as a category called “other components (equal to total
PM2.5 mass minus mass of six measured components)” in Table S7.
CONCLUSIONS
Our study provides epidemiological evidence that long-term exposure to PM2.5

components could potentially accelerate dementia progression; the contributions
4 The Innovation 3(2): 100208, March 29, 2022
of various PM2.5 chemical components to increased dementia incidence may
vary. BC and SO4

2� showed the most stable associations with dementia risk,
whereas OM, the largest component of PM2.5, has the lowest effects. Reducing
PM2.5 pollution potentially has an important public health effect. We recommen-
ded that, besides PM2.5 mass, the effect of specific PM2.5 components on neuro-
degenerative disorders, especially for BC and SO4

2�, also need to be considered
for further analysis, leading to more targeted regulation of PM2.5 components in
the near future.
MATERIALS AND METHODS
Study population

This cohort study began on January 1, 2000 and ended onDecember 31, 2017. TheMedi-

care denominator file and Medicare Chronic Conditions Warehouse (CCW) were used to

construct this study population (age, R65), derived from the Centers for the Medicare and

Medicaid Services (CMS). In the Medicare denominator file, Medicare beneficiaries are

detailed by age, sex, race, date of death (if any), ZIP codeof residence, andMedicaid eligibility

status. Age, ZIP code of residence, and Medicaid eligibility were updated annually.

The outcome variable in this study was time to first diagnosis of all-cause dementia. The

CCW identifies pre-defined indicators of dementia through an algorithm (https://www2.

ccwdata.org/web/guest/condition-categories) that leverages Medicare claims documents

(such as hospital and physician files and health insurance files), including inpatient and

outpatient claims, carrier file (primarily physician visits), skilled nursing facility, and home

healthcare claims. The CCW provides the date of the first occurrence with a dementia

diagnosis code across these Medicare claims (ICD codes are provided in Table S1). The

abovementioned Medicare algorithm for defining dementia is primarily based on previous

studies.54,55 These two Medicare databases enabled us to create a cohort of all Medicare

fee-for-service (FFS) beneficiaries in nine northeastern states (Maine, NewYork, NewJersey,

Vermont, Massachusetts, Rhode Island, Connecticut, New Hampshire, and Pennsylvania).

To better ascertain disease incidence, our cohort required that (1) all subjectswere always

enrolled in theMedicare FFS program and inMedicare Part A (hospital insurance) and Part B

(medical insurance) from 2000–2017 and (2) there was a “clean” period of 5 years after

enrollment during which there was no dementia diagnosis logged. Other authors have

also used a “clean” period while studying dementia or Alzheimer’s disease.30,56 These re-

quirements would increase the possibility that the individual did not have dementia prior
www.cell.com/the-innovation
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Figure 3. Concentration-Response curves from single-pollutant models for black carbon, nitrate, organic matter, sulfate, soil particles, and sea salt. The penalized spline regres-
sion models fit the concentrations of each PM2.5 component from the 0.1th to 99.9th percentiles.
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to Medicare enrollment. Subjects were entered into the cohort on the first day of the year

following the period of “clean” claims, and theywere followed until the first diagnosis or death

of an outcome of interest across all claims in Medicare or the end of follow up. This study is

approved byEmory University’s Institutional ReviewBoard (#STUDY00000316) and theCMS

under the data use agreement (#RSCH-2020-55733). TheMedicare dataset was stored and

analyzed in the Emory Rollins School secure cluster environment (HPC) with Health Insur-

ance Portability and Accountability Act (HIPAA) compliance.

Exposure assessment
The annual average PM2.5 mass concentration and its six major components were esti-

mated using well-validated PM2.5 composition predictionmodels for each year. The detailed

methodology can be found elsewhere.2 Briefly, satellite-derived PM2.5 total mass concentra-

tions were first produced by combining satellite retrievals of aerosol optical depth, chemical

transport modeling (CTM), and ground-based observations made throughout 2000–2017.

These PM2.5 values were then decomposed into individual chemical components according

to CTM output and calibrated using ground-based observations from 2000–2017. Sources

of compositional ground-based observations included the Clean Air Status and Trends

Network, the National Core Network, the Chemical Speciation Network, and the Interagency

Monitoring of Protected Visual Environments network. PM2.5 concentrations predicted by

our model were available from theWashington University Atmospheric Compositional Anal-

ysis Group (https://sites.wustl.edu/acag/) with a series of available versions. Version

V4.NA.03 total PM2.5 was used for total mass PM2.5 concentration. V4.NA.03 modified the

V4.NA.02 geographically weighted regression described by van Donkelaar et al.2 to include

new measurements of mass scattering efficiency and separate topographic and land-type-

based predictor variables according to developments as part of the Mortality-Air Pollution

Associations in Low-Exposure Environments (MAPLE) project. V4.NA.03 additionally utilized

V4.GL.03 to provide its geophysical input.2,57 These modifications improved performance

under low PM2.5 concentrations and enhanced consistency across the entire time series.
ll
The proportions of each component within total PM2.5 mass were then applied to

V4.NA.03 total PM2.5 mass according to V4.NA.02, which demonstrated good spatial

agreement with average cross-validated observations over the time series with an R2 value

of 0.59 for BC, 0.86 for NO3
�, 0.57 for OM, 0.96 for SO4

2�, 0.60 for SOILs, and 0.80 for SS;

cross-validation was represented using a 10-fold holdback of 10% each during the inclusion

of ground-based observations using geographically weighted regression.2 Using these data,

we calculated the average PM2.5 mass and chemical components of each 1 km2 grid within

each ZIP code in nine northeastern states and then averaged them annually between 2000

and 2017 as indicators of long-term exposure. Our exposure estimates were assigned de-

pending on the ZIP code of the individual’s residential address and the calendar year. We

used annual average PM2.5 mass and components during the same year window because

we had observed previously that PM2.5 in the current year could have higher estimate effects

on dementia than alternative exposure windows, implying an acceleration of an existing de-

mentia progression by PM2.5.
30

Covariates
Several individual-level and neighborhood-level covariates were collected to account for

possible confounding. The individual-level covariates, including age at entry, race, sex, and

Medicaid eligibility, were obtained from the Medicare denominator file. Neighborhood-level

covariates included ZIP-code-level SES variables, county-level behavioral risk factors, and

health care capacity variables. The ZIP-code-level variables (percentage of population above

65 years of age living below the poverty line, population density, Black population proportion,

percentage of people older than 65 not graduated from high school, median household in-

come, and percentage of owner-occupied housing units) were derived from the US Census

and American Community Survey (ACS). County-level behavioral risk factors (smoking rate

and body mass index) and health care capacity variables (number of hospitals and active

medical doctors) were obtained from the Behavioral Risk Factor Surveillance System

(BRFSS) and the Area Health Resources Files, respectively.
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Single-pollutant and multi-pollutant (where we entered all six components) Cox propor-

tional hazards models with GEE were used to quantify the association between annual

mean exposure to PM2.5 components and incident dementia among the elderly. Themodels

were adjusted for the abovementioned neighborhood-level status, behavioral risk factors,

and health care capacity variables (Table S2).With GEE, allmodelswere adjusted for residual

autocorrelation within the ZIP code, allowing us to obtain statistically more robust confi-

dence intervals for effect estimates.58 This resulted in our estimates being less likely to be

affected by within-ZIP-code dependence of observations.

The results from models were presented as HRs with 95% CIs per IQR increase in the

annual average concentration of each PM2.5 component. To identify subpopulations that

might be particularly susceptible, we performed subgroup analyses for the single-pollutant

models based on race (white versus Blacks versus others), gender (men versus women),

and age (>75 years versus %75 years). To account for possible nonlinearity between

PM2.5 components and dementia, we fit penalized spline models59 by including a penalized

thin spline term for each component in the computationally scalable stratifiedCox-equivalent

Poisson regressions.11 The spline term was included in the models one at a time; i.e., we fit

single-pollutant models to assess the potential nonlinearity in the C-R relationships for each

component. The models adjusted for the same covariates as our main model.11

Sensitivity analysis
To assess the robustness of our main results, we conducted several sensitivity analyses.

First, we additionally adjusted for the total PM2.5 mass concentration in single-pollutant

models. Second, we conducted a non-mover cohort analysis for subjects who did not

move during the follow-up period to account for a potential bias related to change in residen-

tial address. Third, we fit multi-pollutant penalized spline models and investigated whether

the C-R relationships were consistent.

All computations for the analysiswere conductedon theRollinsHPCCluster at EmoryUni-

versity, with the statistical analysis done with R software, version 4.0.2. Statistical signifi-

cance was determined by two-sided p < 0.05.
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