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ABSTRACT
Background Immunotherapies may prolong the survival 
of patients with small- cell lung cancer (SCLC) to some 
extent. The role of forkhead box protein P3 (FOXP3) in 
tumor microenvironment (TME) remains controversial. 
We aimed to examine FOXP3- related expression 
characteristics and prognostic values and to develop a 
clinically relevant predictive system for SCLC.
Methods We enrolled 102 patients with 
histologically confirmed SCLC at stages I–III. Through 
immunohistochemistry, we determined the expression 
pattern of FOXP3 and its association with other immune 
biomarkers. By machine learning and statistical analysis, 
we constructed effective immune risk score models. 
Furthermore, we examined FOXP3- related enrichment 
pathways and TME traits in distinct cohorts.
Results In SCLC, FOXP3 level was significantly 
associated with status of programmed death- ligand 1 
(PD- L1), programmed cell death protein 1 (PD-1), CD4, 
CD8, and CD3 (p=0.002, p=0.001, p=0.002, p=0.030, 
and p<0.001). High FOXP3 expression showed longer 
relapse- free survival (RFS) than the low- level group 
(41.200 months, 95% CI 26.937 to 55.463, vs 14.000 
months, 95% CI 8.133 to 19.867; p=0.008). For tumor- 
infiltrating lymphocytes (TILs), subgroup analysis 
demonstrated FOXP3 and PD-1, PD- L1, lymphocyte 
activation gene-3, CD3, CD4, or CD8 double positive 
were significantly correlated with longer RFS. We further 
performed importance evaluation for immune biomarkers, 
constructed an immune risk score incorporating the 
top three important biomarkers, FOXP3, TIL PD- L1, and 
CD8, and found their independently prognostic role to 
predict SCLC relapse. Better predictive performance 
was achieved in this immune risk model compared with 
single- indicator- based or two- indicator- based prediction 
systems (area under the curve 0.715 vs 0.312–0.711). 
Then, relapse prediction system integrating clinical 
staging and immune risk score was established, which 
performed well in different cohorts. High FOXP3- related 
genes were enriched in several immune- related pathways, 
and the close relationships of interleukin-2, CD28, basic 
excision repair genes MUTYH, POLD1, POLD2, and 
oxidative phosphorylation related gene cytochrome c 
oxidase subunit 8A with FOXP3 expression were revealed. 
Moreover, we found low- immune risk score group 
had statistically higher activated CD4+ memory T cells 
(p=0.014) and plasma cells (p=0.049) than the high- risk 

group. The heterogeneity of tumor- infiltrating immune cells 
might represent a promising feature for risk prediction in 
SCLC.
Conclusion FOXP3 interacts closely with immune 
biomarkers on tumor- infiltrating cells in TME. This study 
highlighted the crucial prognostic value and promising 
clinical applications of FOXP3 in SCLC.

INTRODUCTION
Among diverse cancers, lung cancer ranks 
the first in morbidity and mortality, posing 
a growing threat to human health.1 Small- 
cell lung cancer (SCLC), which accounts for 
approximately 10%–15% of cases, is a cancer 
phenotype with high recurrence rate and 
growth fraction, resulting in poor outcomes.2 3 
The programmed cell death protein 1 (PD-1) 
and programmed death- ligand 1 (PD- L1) 
inhibitors have been confirmed effective in 
treating non- small- cell lung cancer (NSCLC). 
They can prolong the survival of patients 
with SCLC in combination with the standard 
first- line chemotherapy to some extent.4 5 In 
IMPOWER-133, clinical survival was longer 
in patients receiving etoposide/carboplatin/
atezolizumab than the control group.4 The 
phase 3 CASPIAN study in SCLC showed 
longer overall survival (OS) when adding 
PD- L1 inhibitors to chemotherapy.5 However, 
compared with patients with NSCLC, patients 
with SCLC did not get great benefit from 
immune- checkpoint inhibitors. CheckMate 
331 indicated that patients after progress did 
not benefit from immunotherapy.6 Although 
the predictive ability of PD- L1 expression 
has been verified in NSCLC, few predictive 
biomarkers are available in SCLC. Thus, it 
is important to explore other targets and 
immune biomarkers for SCLC.

Forkhead box protein P3 (FOXP3), 
belonging to the forkhead/winged- helix 
family, is of great importance in modulating 
the differentiation and development of 
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T- regulatory cells (Tregs).7 8 The numbers of FOXP3+ 
Tregs as well as exhaustive subsets of CD4+ and CD8+ T 
cells have been observed increased in solid tumor tissues 
of patients with colorectal and breast cancers, which 
helps to create an immunosuppressive environment and 
promotes tumor progression.9 10 In addition, checkpoints 
such as lymphocyte activation gene-3 (LAG-3), T- cell 
immunoglobulin and mucin domain- containing protein 3 
(TIM-3), and cytotoxic T lymphocyte- associated antigen-4 
(CTLA-4) were coexpressed mainly by tumor- infiltrating 
FOXP3+Helios+ Tregs, whereas little was detected coex-
pressed by Tregs with negative expression of FOXP3.11 
Tumor- infiltrating lymphocytes (TILs) have important 
prognostic values in solid tumors, reflecting the ability 
of immune response and predicting patients’ response 
to a specific anticancer therapy. The correlation between 
the presence of FOXP3+ Tregs and patients’ survival has 
been extensively studied in many cancer types,12–17 which 
remains conflicting. Therapeutic approaches of targeting 
Tregs could enhance CD8+ TILs and increase antigen 
presenting cell (APC) function, which may become as a 
potential strategy in many cancers.18 19 In this study, we 
determined the expression pattern of FOXP3 on TILs 
and its association with other checkpoints or markers in 
SCLC through immunohistochemistry (IHC) staining. 
We also connected the immune status with patients’ 
survival of SCLC in patients with different FOXP3 levels 
and constructed effective immune risk models to predict 
relapse of SCLC. Furthermore, we examined FOXP3- 
related enrichment pathways, crucial genes, and immune 
microenvironment characteristics using bioinformatics 
analysis.

METHODS
Patient samples
SCLC samples of 102 subjects were collected from January 
2014 to December 2018 in Shanghai Pulmonary Hospital, 
China. We used the eighth edition of tumor, node, metas-
tasis classification for lung cancer for stage identification 
and prognosis evaluation.20

IHC for FOXP3
For all formalin- fixed, and paraffin- embedded slides, 
xylene and alcohol were used for dewaxing, followed 
by aqua destillata for rinsing. Next, we used the target 
retrieval solution (Dako, DM828/DM829) and recovered 
antigens under high pressure and heat. To decrease back-
ground staining, 0.3% hydrogen peroxide was used. We 
applied purified anti- human FOXP3 (1:100, BioLegend 
320101) as primary antibody and goat- anti- rabbit/anti- 
mouse IgG that was conjugated with horseradish perox-
idase as secondary antibody for testing.

Determination of IHC cut-off for FOXP3
Two pathologists (CW and LZ) reviewed and determined 
clinically pathological samples independently. Disagree-
ments were resolved by consensus in these two reviewers. 

The cut- off value of FOXP3 level on TILs was defined as 
≥1% staining. We performed survival analysis for cut- off 
determination.21 22

eXtreme Gradient Boosting (XGBoost) and immune risk 
scoring system
We adapted machine learning algorithm XGBoost for 
importance evaluation and immune risk model construc-
tion.23 In addition to discovering non- linear relationships 
by working with data of the first and second derivatives, 
this machine learning method also controls the overfit-
ting as well as overcomplexity of one predictive model 
by employing regularization item. XGBoost algorithm 
can also score the importance of each attribute as value 
measure.

In this study, we repeated 1000 times for cohort divi-
sion and model construction to make full use of the 
sample information. The whole 102 samples were divided 
into training set and calibration set (7:3) randomly. By 
incorporating all immune biomarkers, the XGBoost- 
based model was constructed and the top three features 
were selected for further survival prediction. Then, we 
used the calibration set to validate the model perfor-
mance and performed receiver operating characteristic 
(ROC) curve analysis for visualizing its predictive value. 
To construct immune risk assessment system for patients 
with SCLC, we combined the importance outcomes that 
ranked the top three of XGBoost model and the coeffi-
cients of multivariate Cox regressions that included these 
immune biomarkers. The final equation was calculated: 
immune risk score=(−0.067×FOXP3)−(0.023×PD- L1 on 
TILs)+(0.002×CD8). Further, we confirmed the prog-
nostic role of immune risk score in SCLC and compared 
its predictive performance with single- indicator- based 
and two- indicator- based immune risk score systems.

Nomogram algorithm and relapse model for outcome 
prediction
The entire set was randomly divided into the training and 
validation set (n=71 and n=31, respectively) by r. Based on 
the independently predictive factors of multivariate Cox 
regression analyses, we adopted nomogram algorithm 
for relapse prediction in SCLC. After establishing the 
nomogram, the calibration plots for relapse- free survival 
(RFS) of 1, 3, and 5 years graphically demonstrated the 
correlation between predicted and observed risks of 
each outcome for appraising the predictive ability of 
this model. To fully test its performance, the nomogram 
was subjected to 100 bootstrap resamples in the training 
cohort for internal verification. We also used C- index 
and ROC curve analyses of 1, 3, and 5 years to assess its 
discriminating ability.

To reveal the clinical value of this prognostic nomo-
gram, we further regrouped all subjects and made low- 
risk, moderate- risk, and high- risk stratifications. Survival 
analyses were conducted for each group and were 
compared by log- rank test.
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Clinical value of the FOXP3 expression and risk model
For further assessing the clinical value of FOXP3 in 
patients with SCLC, the clinical data from cBioportal 
Database were used (https://www. cbioportal. org). We 
screened samples based on the inclusion criteria24: (1) 
mRNA sequencing (mRNA- seq) of SCLC tissues, (2) 
complete data for mRNA expression, and (3) complete 
prognostic information from patients with SCLC.

Verification of the expression of FOXP3, PD-L1, and CD8 in 
SCLC
To figure out the expression of FOXP3, CD274 that 
encodes PD- L1 protein and CD8A that encodes CD8 
protein in SCLC tissues, we used the Gene Expression 
Omnibus (GEO) Database for verification (https://www. 
ncbi. nlm. nih. gov/ geo/). mRNA expression data enrolled 
must follow the inclusion criteria: (1) complete data for 
mRNA expression, (2) mRNA- seq of SCLC tissues, and 
(3) mRNA- seq of normal tissues. The exclusion criteria 
were as follows: (1) insufficient data for comparing gene 
expression, (2) sample from animals, and (3) mRNA- seq 
for SCLC cell lines.

Gene set enrichment analysis (GSEA)
To investigate relevant biological pathways between 
distinct FOXP3 expression status in SCLC, GSEA soft-
ware V.4.1.0 was applied.25 Based on FOXP3 level, mRNA 
expression dataset in the GEO was divided into high and 
low expression groups. The number of gene set permu-
tations was 1000 times, and phenotype label was set as 
‘high expression versus low expression’. GSEA anal-
ysis according to correlation coefficient (CC) was also 
conducted. In our study, the absolute values of a normal-
ized enrichment score (NES) of >1 and a false discovery 
rate (FDR) q value of <0.25 were considered as mean-
ingful GSEA sets.

Tumor-infiltrating immune profiles in patients with SCLC
We used the method of CIBERSORT as a tool to analyze 
the immune landscape of patients with SCLC in the tumor 
microenvironment (TME). On the bases of linear support 
vector regression and deconvolution, CIBERSORT is an 
online database to analyze immune infiltration of tumor 
tissues through 22 immune- cell phenotypes.26 Leukocyte 
signature matrix (LM22), which contains source data 
and gene expression matrix, includes 547 genes distin-
guishing 22 hematopoietic cell types of human: naïve 
and memory B cells, plasma cells, seven T- cell pheno-
types, myeloid subsets, and NK cells. We divided 23 SCLC 
samples into low- immune risk and high- immune risk 
groups, which was on the basis of the expression levels of 
FOXP3, PD- L1, and CD8. After that, we investigated the 
correlations among distinct immune cells and revealed 
the heterogeneity of tumor- infiltrating immune cells in 
theses SCLC samples between two immune risk groups.

Statistical analysis
The correlation between different clinical factors and 
FOXP3 expression level was appraised by Chi- square tests. 

By Spearman rank correlation test, we also investigated 
the correlations of FOXP3 levels with other immune 
biomarkers. Then, considering distinct clinical charac-
teristics, we conducted univariate as well as multivariate 
logistic regression analyses to predict FOXP3 expression 
in patients with SCLC . In order to evaluate prognosis 
condition, we also used Kaplan- Meier and Cox regres-
sion method for survival analysis. Pearson correlation test 
was used for continuous variables. p<0.05 was defined 
as statistical significance. Data analysis and visualization 
were conducted based on statistical tool SPSS V.26.0, 
GraphPad Prism V.7, and R Programming Language (R 
V.3.6.1).

RESULTS
Patients’ characteristics
One hundred and two subjects with SCLC were included 
(online supplemental table 1). The baseline information 
of clinical characteristics among these patients with SCLC 
were summarized (online supplemental table 2). The 
median age was 63.5 years (lower limit:38; upper limit: 
81). Most subjects were male (84, 82.4%) and 18 (17.6%) 
were female. There are slightly more non- smokers (58, 
56.9%) than smokers (44, 43.1%). All patients enrolled 
were in clinical staging I–III, and 98 patients (96.1%) did 
not develop tumor metastasis.

FOXP3 expression on TILs and its relationship with clinical 
data and other markers
We performed IHC and pathological test and revealed 
the expression of biomarkers on both TILs and SCLC 
cells (figure 1). In this study, FOXP3 expression was 
tested positive in 88 samples on TILs (figure 1) (86.3%, 
≥1% staining), while 14 (13.7%) did not. The positive 
expression of PD-1 was 41 (40.2%) on TILs and 0 (0.0%) 
on tumor cells. Two patients (2.0%) tested positive for 
the expression of PD- L1 on SCLC cells and 38 (37.3%) 
tested positive for the expression of PD- L1 on TILs. 
Expression of FOXP3 on TILs was significantly associated 
with clinical staging (p=0.013). We observed no correla-
tion between FOXP3 expression on TILs and clinical 
data including age (p=0.320), gender (p=0.689), smoking 
status (p=0.077), metastasis (p=0.504) and chemotherapy 
(p=0.360, online supplemental table 3).

The connection of FOXP3 levels and immune check-
points or other immune markers was analyzed (online 
supplemental table 4). Interestingly, we found that 
FOXP3 expression on TILs was closely associated with 
checkpoints including PD-1 on TILs (CC=0.327, p=0.001), 
as well as PD- L1 on TILs (CC=0.307, p=0.002). Further-
more, FOXP3 level was also positively correlated with 
CD3 (CC=0.366, p<0.001), CD4 (CC=0.307, p=0.002), 
and CD8 levels (CC=0.215, p=0.030). Regretfully, FOXP3 
levels showed no correlation with PD- L1 on SCLC cells 
(p=0.573). We failed to investigate the correlation 
between FOXP3 expression and PD-1 levels on tumor 
cells for the limited samples.

https://www.cbioportal.org
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Logistic regression for FOXP3 expression
We performed both univariate and multivariate logistic 
analysis for FOXP3 expression. After adjusting relevant 
parameters, the analysis results were summarized in online 
supplemental table 5. The ORs for FOXP3 expression on 
TILs were 4.375 (95% CIs 1.268 to 15.091, p=0.019) for 
patients at stages I and II compared with those at stage 
III, and 0.051 (95% CI 0.006 to 0.406, p=0.005) when 
comparing specimens with positive CD3 on TILs with 
those with negative CD3.

Investigation of the correlation between FOXP3 levels and RFS 
status in SCLC
In all subjects involved, the median RFS of 102 patients 
was 32.000 months (95% CI 12.106 to 51.894), and 
56/102 (54.9%) patients had relapses. For 60 patients 
(60/102, 58.8%) with stage I–II SCLC, 25 (25/102, 
41.7%) relapsed (median RFS: 63.000 months, 95% CI 
26.271 to 99.729). For 42 patients (42/102, 41.2%) with 
stage III SCLC, 31 (73.8%) had the end event (median 
RFS: 14.7000 months, 95% CI 10.360 to 19.040), which 
showed a significantly lower RFS compared with patients 
with stage I–II SCLC (p=0.004, online supplemental 
table 6). We then investigated the correlation between 
FOXP3 levels and RFS status in SCLC. Interestingly, 
FOXP3 level on TILs was significantly correlated with 
RFS status in SCLC, and the positive group showed longer 

RFS compared with the negative group (41.200 months, 
95% CI 26.937 to 55.463, vs 14.000 months, 95% CI 8.133 
to 19.867; p=0.008; figure 2A).

We then combined diverse expression patterns based 
on FOXP3 levels and performed subgroup analysis 
(figure 2B–D and online supplemental figure 1). Impor-
tantly, for immune checkpoints expressed on TILs, FOXP3 
and PD- L1 double positive (vs either FOXP3 or PD- L1 
positive, or FOXP3 and PD- L1 double negative; 41.300 
months, 95% CI 41.076 to 41.524, vs 16.200 months, 
95% CI 0.000 to 38.336, vs 14.000 months, 95% CI 8.133 
to 19.867; p=0.003), FOXP3 and PD-1 double positive 
(vs either FOXP3 or PD-1 positive, or FOXP3 and PD-1 
double negative; 45.000 months, 95% CI undefined, vs 
32.000 months, 95% CI 0.926 to 63.074, vs 14.000 months, 
95% CI 8.133 to 19.867; p=0.017), and FOXP3 and LAG-3 
double positive (vs either FOXP3 or LAG-3 positive, or 
FOXP3 and LAG-3 double negative; 45.000 months, 
95% CI 27.333 to 62.667, vs 18.000 months, 95% CI 0.000 
to 44.807, vs 11.300 months, 95% CI 6.208 to 16.392; 
p=0.021) showed a statistical correlation with longer 
RFS. Besides, for other immune biomarkers, FOXP3 
and CD3 double positive (vs either FOXP3 or CD3 posi-
tive, or FOXP3 and CD3 double negative), FOXP3 and 
CD8 double positive (vs either FOXP3 or CD8 positive, 
or FOXP3 and CD8 double negative), and FOXP3 and 

Figure 1 Expression level of FOXP3 on TILs and other immune biomarkers in SCLC. (A) IHC positive for FOXP3 on TILs. (B) 
IHC negative for FOXP3 on TILs. (C) IHC positive for PD-1 on TILs. (D) IHC negative for PD-1 on TILs. (E) IHC positive for PD- L1 
on tumor cells. (F) IHC negative for PD- L1 on tumor cells. (G) IHC positive for PD- L1 on TILs. (H) IHC positive for PD- L1 on TILs. 
(I) IHC positive for LAG-3 on TILs. (J) IHC negative for LAG-3 on TILs. (K) IHC positive for CD3 on TILs. (L) IHC negative for CD3 
on TILs. (M) IHC positive for CD4 on TILs. (N) IHC positive for CD4 on TILs. (O) IHC positive for CD8 on TILs. (P) IHC positive for 
CD8 on TILs. The process to calculate the cut- off point was completed through survival analysis.21 22 Cut- off values for FOXP3, 
PD-1, PD- L1, LAG-3, CD3, CD4, and CD8 on TILs were defined as 1%, 1%, 5%, 20%, 40%, 30%, and 30%. For tumor cells, 
PD- L1s of <50% were viewed as negative in this study. FOXP3, forkhead box protein P3; IHC, immunohistochemistry; LAG-3, 
lymphocyte activation gene-3; PD-1, programmed cell death protein 1; PD- L1, programmed death- ligand 1; SCLC, small- cell 
lung cancer; TIL, tumor- infiltrating lymphocyte.

https://dx.doi.org/10.1136/jitc-2021-002339
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https://dx.doi.org/10.1136/jitc-2021-002339
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CD4 double positive (vs either FOXP3 or CD4 positive, 
or FOXP3 and CD4 double negative) also showed higher 
survival with statistical significance (p=0.005, p=0.002, 
and p=0.001). For checkpoints expressed on tumor cells, 
the subgroup analysis of combing FOXP3 on TILs as well 
as PD- L1 level on SCLC cells revealed a significant prog-
nostic value as well (p=0.017). However, the sample size 
of checkpoint expression in tumor cells was too limited. 
Further investigations are required.

Cox regression analysis for RFS in SCLC
The univariate analysis suggested that clinical stage 
(p=0.006; HR=0.474, 95% CI 0.279 to 0.804) and FOXP3 

levels on TILs (p=0.011; HR=2.352, 95% CI 1.221 to 
4.531) were predictive factors for RFS in SCLC. By multi-
variate COX regression, we found that clinical stage (I–II 
vs III–IV; p=0.016, HR=0.516, 95% CI 0.301 to 0.886) and 
FOXP3 on TILs (negative vs positive; p=0.041, HR=2.008, 
95% CI 1.027 to 3.927) were considered as independently 
predictive factors (table 1).

Immune risk model construction by XGBoost and its validation
The subgroup analysis revealed great significance 
of FOXP3 levels on TILs in combination with other 
immune markers to prognosis evaluation in SCLC. Thus, 
we hypothesized that FOXP3 levels on TILs connected 

Figure 2 Survival analyses of FOXP3 level on TILs in SCLC. (A) FOXP3 level on TILs was significantly correlated with RFS 
status in SCLC, and the positive group showed a higher survival compared with the negative group. (B–D) Subgroup survival 
analyses of FOXP3 expression in combination with checkpoints PD- L1, PD-1, or LAG-3. FOXP3, forkhead box protein P3; LAG-
3, lymphocyte activation gene-3; PD-1, programmed cell death protein 1; PD- L1, programmed death- ligand 1; RFS, relapse- free 
survival; SCLC, small- cell lung cancer; TIL, tumor- infiltrating lymphocyte.

Table 1 Univariate and multivariate Cox regression analysis of relapse- free survival

Variables

Univariate Multivariate Multivariate

HR 95% CI P value HR 95% CI P value HR 95% CI P value

Age (<65 y vs ≥65 years) 0.608 0.355 to 1.040 0.069

Sex (female vs male) 1.676 0.757 to 3.707 0.203

Smoking status (non- 
smoker vs smoker)

0.591 0.345 to 1.010 0.054

T (1–2 vs 3–4) 0.987 0.480 to 2.031 0.972

N (0 vs 1–3) 0.649 0.372 to 1.134 0.129

M (0 vs 1) 1.140 0.277 to 4.682 0.856

Stage (I–II vs III–IV) 0.474 0.279 to 0.804 0.006 0.516 0.301 to 0.886 0.016 0.478 0.281 to 0.814 0.007

FOXP3 on TILs (negative vs 
positive)

2.352 1.221 to 4.531 0.011 2.008 1.027 to 3.927 0.041

Immune risk score
(low vs high)

0.505 0.293 to 0.872 0.014 0.512 0.296 to 0.884 0.016

Data with statistical significance were highlighted in bold.
FOXP3, forkhead box protein P3; M, metastasis; N, node; T, tumour; TIL, tumor- infiltrating lymphocyte.
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closely with other immune molecules. We used XGBoost 
algorithm for importance assessment and feature selec-
tion to validate this assumption. By repeating 1000 times 
considering all immune parameters, the importance 
feature map demonstrated the first rank of FOXP3 on 
TILs, followed by PD- L1 on TILs and CD8 (figure 3A). 
To validate the model performance, we performed ROC 
curve analysis in the calibration set. The machine learning 
model by XGBoost matched the actual one well, with an 
area under the curve (AUC) of 0.866 (figure 3B). Further, 

integrating the first three biomarkers also showed well- 
predictive ability (AUC=0.655, figure 3B).

Given the importance results of the XGBoost model, 
FOXP3, PD- L1 on TILs, and CD8 were selected as vari-
ables for construction of immune risk model in SCLC. As 
shown in the survival diagram by Kaplan- Meier analysis, 
patients with SCLC with high- risk scores (52/102, 51.0%) 
had poorer prognosis (vs patients with SCLC with low- risk 
scores; 14.700 months, 95% CI 10.107 to 19.293, vs 41.300 
months, 95% CI 35.773 to 46.827; p=0.012; figure 3C). 

Figure 3 Construction and validation of immune risk score system by XGBoost. (A) Considering all immune indicators, the 
importance feature map demonstrated the first rank of FOXP3 on TILs, followed by PD- L1 on TILs and CD8. (B) Validation of 
the model performance by ROC curve analysis in the calibration set. The machine learning model by XGBoost matched the 
actual one well. (C) Survival analysis on the basis of the immune risk score (RFS high- immune risk group vs low- immune risk 
group, 14.700 months, 95% CI 10.107 to 19.293, vs 41.300 months, 95% CI 35.773 to 46.827; p=0.012). (D) Comparison of 
the predictive performance between immune risk score and single indicators using time- dependent ROC curve analysis. (E) 
Comparison of the predictive performance between immune risk score and two- indicator based immune risk systems using 
time- dependent ROC curve analysis. AUC, area under the curve; FOXP3, forkhead box protein P3; PD- L1, programmed death- 
ligand 1; RFS, relapse- free survival; ROC, receiver operating characteristic; TIL, tumor- infiltrating lymphocyte.
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We further conducted univariate Cox regression, and the 
regression result revealed a statistically predictive role of 
immune risk score in RFS of SCLC (HR=0.505, 95% CI 
0.293 to 0.872; p=0.014). Given that FOXP3 on TILs was 
incorporated in the construction of immune risk score, a 
multivariate Cox regression model of RFS was built based 
on SCLC staging and immune risk score. Both SCLC 
staging (HR=0.478, 95% CI 0.281 to 0.814; p=0.007) and 
immune risk score (HR=0.512, 95% CI 0.296 to 0.884; 
p=0.016) were independently and significantly correlated 
with RFS in SCLC (table 1).

To further confirm the prognostic role of immune risk 
score in SCLC, we compared the predictive performance 
between immune risk score and single indicators at first 
(figure 3D). The AUC values of time- dependent ROC 
analyses showed this immune risk score system performed 
better than single biomarkers including FOXP3, PD- L1 
on TILs, and CD8 (figure 3D). Also, considering the 
significant survival differences of subgroup analysis based 
on FOXP3 and TIL PD- L1, TIL PD-1, TIL LAG-3, CD3, 
CD4, CD8, or PD- L1 on tumor cells, we established seven 
unique immune risk scores using multivariate Cox anal-
ysis and compared their performance with XGBoost- 
based risk score. All combined immune systems showed 
good performance (figure 3E). Among distinct combined 
biomarkers, the XGBoost- based immune risk score 
obtained the best AUC value of 0.715, which performed 
better than either biomarkers analyzed previously in 
predicting relapse of SCLC at stages I–III (figure 3E).

Predicted probability of stage I–III SCLC relapse
By integrating immune risk score and SCLC staging, we 
used nomogram algorithm to predict the probability of 
RFS of 1, 3, and 5 years in SCLC using training dataset. 
The nomogram indicated the immune risk score contrib-
uted slightly less to patients’ prognosis compared with 
clinical stage (figure 4A). Calibration plots and C- index 
were conducted for the probability of RFS of 1, 3, and 
5 years, and the C- index was 0.639 (figure 4B–D). Further-
more, we assessed and validated its effectiveness by time- 
dependent ROC analysis. The AUC values for RFS of 1, 3, 
and 5 years were 0.656, 0.737, and 0.698, respectively, in 
the training cohort, and 0.608, 0.608, 0.714, respectively, 
in the validation cohort (figure 4E,F), which highlighted 
that the predictive model performed well in predicting 
relapse of patients with SCLC in stages I–III.

Based on predictive scores, the cut- off values were 
determined by regrouping all subjects in the entire SCLC 
cohort, as well as the training and validation cohorts into 
three subgroups with distinct prognosis. Survival analyses 
showed that in the entire SCLC, training, and validation 
cohorts, the low- risk group had the highest 1- year RFS at 
81.1%, 86.4%, and 67.6%, respectively, followed by the 
moderate- risk group at 67.0%, 75.5%, and 48.6%, respec-
tively. The high- risk group suggested the lowest 1- year RFS 
for the entire, training, and validation cohorts: 44.4%, 
52.4%, and 27.2%, respectively (figure 4G–I). Further, 
the low- risk groups in all cohorts were correlated with 

higher RFS compared with moderate- risk and high- risk 
groups (p<0.001 in the entire SCLC cohort, p=0.002 in 
the training cohort, and p=0.126 in the validation cohort, 
respectively).

Clinical value of FOXP3 expression and risk model in SCLC
We used cBioportal Database27 to retrieve SCLC clin-
ical datasets and downloaded the suitable one with 81 
samples. After screening gene panels, RNA- seq data of 
patients with SCLC were available for nine samples (online 
supplemental table 7). Then, we investigated the coex-
pression correlation between protein FOXP3 and other 
immune biomarkers (online supplemental figure 2A). 
The results showed some similar correlations. Significant 
significance was analyzed in the correlation of FOXP3 
expression with the expression of PD-1, LAG-3, CD3, and 
CD4 (p=0.001, p=0.014, p=0.002, and p=0.015, respec-
tively) (online supplemental table 8). Among them, PD-1 
expression showed the highest relevance (CC=0.894). In 
addition, the results demonstrated no significant correla-
tion of FOXP3 expression with the expression of PD- L1 
(p=0.584) and CD8 (p=0.977). For the relationship 
between FOXP3 and clinical data, the mRNA expression 
of FOXP3 had no statistical association with diagnosis age 
(p=0.206) as well as gender (p=0.379). Further, we iden-
tified the relationship between FOXP3 expression and 
patients’ prognosis in SCLC (online supplemental figure 
2B). The survival analysis showed that the group with high 
FOXP3 expression had longer survival compared with 
the group with low FOXP3 expression (17.000 months, 
95% CI 2.300 to 31.700, vs 10.000 months, 95% CI 1.180 
to 18.820; p=0.076). We also extended the risk model 
to the prognosis evaluation of these patients with SCLC 
(online supplemental figure 2C). The survival results 
indicated that patients with SCLC with high risk showed 
shorter OS compared with the low- risk and moderate- risk 
groups (10.000 months vs 17.000 months, p=0.603).

Corroboration of expression of FOXP3, PD-L1 and CD8 in the 
SCLC cohort
For better understanding of the relative expression of 
mRNA FOXP3, CD274 (PD- L1), and CD8A (CD8) in 
SCLC, we verified their levels, respectively, in an SCLC 
cohort. After retrieving gene expression of SCLC, the 
GSE43346 dataset that included 23 SCLC samples and 
42 normal tissues was chosen available for analysis. For 
FOXP3 expression, significant difference between SCLC 
tissues and normal lung controls (p=0.0061 in GSE43346 
dataset) was calculated (online supplemental figure 3A). 
For PD- L1 (CD274), the GEO cohort also suggested a 
significant difference of expression between SCLC tissues 
and control subjects (p=0.034 in GSE43346 dataset) 
(online supplemental figure 3B). For CD8, there was no 
significant difference shown in GSE43346 dataset (p=0.8; 
online supplemental figure 3C). In particular, the expres-
sion of FOXP3 in SCLC tissues was lower than that of the 
normal group; and PD- L1 expression in SCLC tissues was 
higher than that of the controls.

https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
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To investigate relevant biological pathways and potential 
regulatory genes related to FOXP3 expression in SCLC, 
we further performed GSEA in the GSE43346 dataset to 
excavate putative targets related to FOXP3. The whole 
cohort was divided into high and low FOXP3 expression 
groups according to the median value of FOXP3 expres-
sion. In 174 gene sets that were upregulated or down-
regulated between the FOXP3 high and low expression 
groups, 108 gene sets upregulated in the SCLC group 
with high FOXP3 expression (108/174, 62.1%) were 
analyzed, while 66 gene sets upregulated in the group with 
low FOXP3 expression (66/174, 37.9%) were analyzed. 

High FOXP3 expression- related genes were enriched 
in several immune- related pathways such as intestinal 
immune network for IgA production (|NES|=2.300, FDR 
q value<0.001), primary immunodeficiency pathway 
(|NES|=2.267, FDR q value<0.001), and cytokine–cytokine 
receptor interaction (|NES|=2.158, FDR q value<0.001). 
The top three FOXP3 high expression- related pathways 
were depicted, with the absolute value of NES >1 and 
FDR q value<0.25 (figure 5A). Figure 5B demonstrated 
a high overlapping rate and close correlations among 
the top three high FOXP3 expression correlated path-
ways. Specifically, through leading edge analysis, a total 

Figure 4 Predicted probability of stage I–III SCLC relapse. (A) by integrating immune risk score and SCLC staging, nomogram 
algorithm was used to predict the probability of RFS in SCLC of 1, 3, and 5 years. (B–D) Calibration plots for the probability of 
RFS of 1, 3, and 5 years. (E,F) Time- dependent ROC curves for risk model in the training and validation cohorts. The AUC values 
for RFS of 1, 3, and 5 years were 0.656, 0.737, and 0.698, respectively, in the training cohort, and 0.608, 0.608, and 0.714, 
respectively, in the validation cohort. (G–I) The clinical values of the prognostic nomogram and survival analyses of three distinct 
risk groups in the entire SCLC cohort, training set, and validation set. AUC, area under the curve; RFS, relapse- free survival; 
ROC, receiver operating characteristic.
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of 17 genes were found important in at least two path-
ways (17/53, 32.1%), and CD40LG overlapped in all of 
these pathways. After verifying expression levels of the 
aforementioned overlapped genes, four showed signifi-
cant differences between SCLC tissues and normal spec-
imens (p<0.05) (figure 5C). Further, by Benjamini and 
Hochberg multiple testing to correct p value, inducible 
co- stimulator (ICOS), with the absolute value of log2- fold 
change of >1, was found differentially expressed between 
SCLC and normal tissues. By t- test, overexpression of 
CD28, CD40LG, HLA- DMA, and interleukin (IL)-2 was 

observed in high FOXP3 expression group (all p<0.05, 
figure 5D). In addition, we conducted a correlation anal-
ysis and found that FOXP3 was positively associated with 
IL-2 (p=0.011) and CD28 (p=0.026) (figure 5E). Two 
significantly enriched pathways were observed in the 
low expression cohort. Detailed enrichment profiles and 
related genes were also depicted (online supplemental 
figure 4).

Besides, based on CC for GSEA analysis, genes 
negatively correlated with FOXP3 were also 
significantly enriched in another three pathways 

Figure 5 FOXP3 expression, relevant biological pathways, and putative targets by gene set enrichment analysis in SCLC. (A) 
Top three pathways for high FOXP3 expression group. (B) Overlapping rate and close correlations among the top three high 
FOXP3 expression correlated pathways. (C) After verifying expression levels of the overlapped genes, four showed a significant 
difference between SCLC tissues and normal specimens. (D) Expression of overlapped genes between high and low FOXP3 
expression groups. (E) Relationship between the expression of FOXP3 and overlapped genes. FOXP3, forkhead box protein P3; 
SCLC, small- cell lung cancer.

https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
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‘KEGG_PARKINSONS_DISEASE’, ‘KEGG_HUNTING-
TONS_DISEASE’, and ‘KEGG_OXIDATIVE_PHOS-
PHORYLATION’ (online supplemental figure 5). Among 
all overlapped genes that presented in more than two 
pathways, expression of cytochrome c oxidase subunit 8A 
(COX8A) suggested the highest negative correlation with 
FOXP3 level, indicating it might play an important role 
in the regulation of FOXP3 (CC=−0.648, p=0.001; online 
supplemental figure 5). For genes positively correlated 
with FOXP3, overlapped genes among the top four path-
ways only presented low to moderate correlations with 
FOXP3 (online supplemental figure 6).

Tumor-infiltrating immune profiles in patients with SCLC 
based on immune risk score
To figure out tumor- infiltrating condition of patients with 
SCLC in two immune risk groups, we further performed 
CIBERSORT using LM22.26 In the SCLC GEO dataset, 
two heatmaps were first performed with immune features 

between these two immune risk groups of high or low 
level, which showed the difference in the proportion of 22 
diverse immune cells in different samples (figure 6A,B). 
After analysis, we summarized the correlations among 
these immune cells in TME, respectively, in both groups. 
The interactions vary between different cells. For the 
high- immune risk group, Treg cells indicated a strong 
correlation with monocyte (CC=0.820, p=0.002) and acti-
vated mast cells (CC=0.980, p<0.001), while a relatively 
weak correlation was shown between naïve B cells and 
neutrophils (CC=−0.326, p=0.328; figure 6C). For the low- 
immune risk group, naïve B cells showed an extremely 
high correlation with monocytes (CC=0.942, p<0.001), 
while its relationship with other cell types was quite 
modest (figure 6D). Further, immune- cell proportions 
were explored between high- immune and low- immune 
risk groups (figure 6E–H). By incorporating the expres-
sion levels of the three predictive biomarkers, significant 

Figure 6 Tumor- infiltrating immune profiles in patients with SCLC based on immune risk score. (A,B) Immune features between 
the high- immune risk group and the low- immune risk group. Two heatmaps showed the difference in the proportion of diverse 
22 immune cells in diverse samples. (C,D) The correlations among these immune cells in TME in both high- immune risk and 
low- immune risk groups, respectively, and the interactions vary between different cells. (E–H) Immune- cell proportions between 
high- immune risk and low- immune risk groups. SCLC, small- cell lung cancer; TME, tumor microenvironment.

https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
https://dx.doi.org/10.1136/jitc-2021-002339
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differences were found in activated CD4+ memory T cells 
(p=0.014) and plasma cells (p=0.049), and marginally 
marked differences in gamma delta T cells (γδ T cells) 
(p=0.054) and resting dendritic cells (p=0.053). Specif-
ically, three immune cells including activated CD4+ 
memory T cells, γδ T cells, and plasma cells were higher 
in the low- immune risk group compared with those in the 
high- score group. Conversely, in comparison with low- risk 
group, resting dendritic cell level was suggested higher 
in the high- immune risk group. Therefore, the hetero-
geneity of tumor- infiltrating immune cells might repre-
sent a promising feature for risk prediction in SCLC. In 
return, these meaning findings also validated the crucial 
role of immune risk scores in TME.

DISCUSSION
In this study, we appraised the expression status of FOXP3 
on TILs at first. All clinical factors excluding SCLC clin-
ical staging showed no significant impacts on FOXP3 
expression status on TILs. Then, we found that status of 
FOXP3 expression was closely associated with the expres-
sion of other immune molecules, and relapse time of 
patients with SCLC. More importantly, compared with 
FOXP3- positive group, negative FOXP3 expression on 
TILs predicted earlier recurrence of patients with SCLC. 
Therefore, FOXP3- based immune risk scoring system and 
nomogram model were constructed with good prognostic 
ability. Most results were verified by public database. After 
downloading suitable datasets from GEO, we found the 
statistically different expression of FOXP3, which inspired 
us to further study FOXP3- related biological pathways 
and regulatory genes in SCLC. In addition, we outlined 
the immune landscapes remodeled by the FOXP3- based 
immune risk score system and revealed the heterogeneity 
of tumor- infiltrating immune cells in SCLC samples.

FOXP3 is an important member of the forkhead/
winged- helix family of transcription regulators. However, 
as a transcription factor, FOXP3 may repress transcription 
when activated.28 Human CD8+ and CD4+ T cells may also 
upregulate FOXP3 and obtain inhibited properties after 
activation.29–31 Colombo and Piconese reviewed that local 
Treg number in TME was closely correlated with tumor 
progression and prognosis.32 According to previous 
studies, Tregs could suppress the activation and differen-
tiation of CD8+ cytotoxic T cells as well as CD4+ helper 
T cells, which could induce reactivity against tumor- 
expressed antigens.33–35 Beyond correlating with these 
markers, FOXP3 also has interactions with checkpoints 
in tumors. In glioblastoma, immunosuppression could be 
promoted by upregulating PD- L1 and Tregs, which indi-
cated PD- L1 might expand immunosuppressive Tregs.36 
These studies suggested FOXP3 expression of immuno-
cytes played crucial roles in regulating tumor immunity. 
The expression of FOXP3 protein has been determined 
in various cancer types, such as breast, NSCLC, glioblas-
toma, and colorectal cancers.9 10 36 37 However, few data 
were available for SCLC. Thus, we first focused on FOXP3 

expression level on TILs and its interactions with other 
biomarkers.

In our study, we discovered that FOXP3 status was statis-
tically associated with immune checkpoints, including 
PD-1 and PD- L1 expressed on TILs. We also found the 
coexpression of FOXP3 and immune markers, including 
CD3, CD4, and CD8 in our data. However, the correla-
tions of FOXP3 with PD- L1 or CD8 were not revealed 
from public dataset correspondingly. The following 
reasons might explain this inconsistency. First, only nine 
SCLC cases were available forming the external cohort. 
The sample size was extremely small for analysis. Second, 
variability between study designs may also affect results. 
Methods for expression detection were different. The 
expression profiles were obtained via RNA- seq in the 
public dataset, but not IHC. Thus, prospective studies with 
large populations are urgently required. Bioinformatics 
analysis of the cBioportal dataset also showed the signif-
icant correlation of FOXP3 level with LAG-3 expression 
in SCLC. From the aforementioned analysis, we can find 
the extensive interaction of FOXP3 with other immune 
biomarkers in SCLC. In TME, Tregs were found to upreg-
ulate inhibitory immune checkpoints, which could indi-
rectly suppress the activation of effector T cells through 
influencing APC functions negatively.18 38 In addition 
to these immune biomarkers we analyzed, the relation-
ship of FOXP3 with other proteins, such as CD25, CD39, 
TIM-3, CTLA-4, and TIGIT, was also explored and found 
upregulated in CD4+FOXP3+ Tregs.39–41 Currently, the 
biological significance of the simultaneous overexpres-
sion of immune checkpoints and activation biomarkers 
in tumor- infiltrating Tregs remains unclear, which should 
be further evaluated in the context of immune check-
point inhibitor- based immunotherapy. Full exploration 
of mechanisms of FOXP3 interacting with other immune 
biomarkers in TME is warranted.

By survival analysis, we found that patients with 
SCLC with positive FOXP3 levels had longer RFS when 
compared with the negative group. There are many 
conflicting results on the clinical value of FOXP3 with 
regard to prognostic prediction in certain malignancies. 
Studies found that the increased frequency of FOXP3- 
positive Tregs in tumors had relationship with improved 
prognosis in certain cancer types, such as colorectal carci-
noma13 16 42 as well as head and neck cancer.14 A previous 
study proposed that infiltration of FOXP3- positive 
Tregs helped to suppress inflammatory response of gut 
microbes in colorectal cancer at early stages.43 However, 
meta- analysis including 74 studies that encompassed 
17 cancer types (15 512 patients) indicated that high 
FOXP3- positive Treg infiltration in tumors was correlated 
with poor prognosis in most solid malignancies studied.17 
Many reasons might cause these contradictory results. 
First, the prognostic value of the FOXP3 level on TILs 
on clinical outcomes can vary with tumor types, histolog-
ical grade, as well as molecular subtype. Besides, different 
FOXP3 proteins may have distinct functions, which can 
affect their prognostic effect. Moreover, the sample size, 
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study design, cut- off values, and technology used can 
also contribute to the difference. FOXP3 is considered 
as an important factor through tumor development. By 
in vitro assays and in vivo tumor xenograft method, Yang 
and colleagues found that FOXP3 might act to promote 
the formation of β-catenin–TCF4 complex, which could 
facilitate the activation of epithelial–mesenchymal tran-
sition related molecules, such as slug and snail, leading 
to growth and metastasis in NSCLC.37 By contrast, in 
colorectal cancers, TILs with positive FOXP3 status 
presented heterogeneously in both non- suppressive and 
suppressive forms, whose impacts on prognosis remained 
controversial.16 44 45 When FOXP3+ Tregs emerged as good 
citizens, they may mainly be responsible for inhibiting 
‘tumor promoting inflammation’ in chronic inflamma-
tory infiltrates. Further exploring the potential mech-
anisms of FOXP3 is important to better understand its 
capability in SCLC. We suggested to carefully balance the 
suppressive and non- suppressive roles when considering 
FOXP3 as a target against cancer.

Subgroup analysis showed that on TILs, positive FOXP3 
protein combining with immune checkpoint PD-1, PD- L1, 
or LAG-3 positive was statistically associated with longer 
RFS. The favorable outcomes were also found when posi-
tive FOXP3 protein in combination with CD3, CD4, or 
CD8 positive on TILs. In SCLC, higher CD3 expression 
was considered associated with better prognosis, while no 
or even contrary influence was shown in the condition of 
PD- L1 overexpression.46 47 Conversely, patients with SCLC 
with higher expression of PD- L1 and CD8 were found 
associated with better survival in the study of Sun et al.48 
Additionally, Bonanno and colleagues found that FOXP3 
expression had prognostic value for OS in non- metastatic 
SCLC.49 FOXP3+/CD8+ T cell ratio was supposed as 
a negative prediction for patients’ prognosis in many 
cancers. However, few studies analyzed the clinical signif-
icance and prognostic value when FOXP3 combined with 
other immune markers. Our study might fill the gaps and 
demonstrated the possible prognostic value of FOXP3 in 
combination with checkpoints and immune markers in 
this filed.

Given the extensive interaction and the meaningful 
subgroup analysis results of FOXP3 with other immune 
biomarkers, we put forward the use of XGBoost machine 
learning for the importance evaluation of these markers 
and selected the top three markers for construction 
of a combined biomarker. In comparison with single 
biomarker, this FOXP3- based immune risk score model 
showed better prediction performance. Besides, when 
comparing the prediction performance between this 
XGBoost- based model and risk systems constructed on 
the basis of FOXP3 and TIL PD- L1, TIL PD-1, TIL LAG-3, 
CD3, CD4, CD8, or PD- L1 on tumor cells, we found this 
XGBoost- based model exhibited the best prediction 
performance with the maximal AUC value. Based on 
this, we further constructed a nomogram model which 
provided a personalized system for patients with SCLC to 
predict recurrence. Good performance was determined 

in both training set and validation set. When integrating 
immune risk score and SCLC staging to predict the prob-
ability of RFS of 1, 3, and 5 years, all sets including the 
entire set, training set, and validation set showed that low- 
risk groups were correlated with longer RFS compared 
with moderate- risk and high- risk groups. However, no 
significant difference was obtained in the validation 
cohort (p=0.126). Further pairwise comparison between 
two risk groups was conducted. Marginal significance 
was observed in the comparison between low- risk and 
high- risk groups (p=0.050), while no significant survival 
difference between moderate risk and low or high risk 
groups (p=0.644 and p=0.133, respectively). This result 
might be ascribed to the limited sample size in the vali-
dation cohort (n=31). Besides, the median follow- up time 
was only 39.400 months in our study. Longer follow- up 
time would better evaluate the prognosis of patients with 
SCLC. Given all of these, the clinical value of the FOXP3- 
based nomogram in SCLC remains to be further eluci-
dated in future studies.

Based on public datasets, the clinical values of FOXP3 
expression and immune risk score were verified. However, 
the difference between the low- risk/moderate- risk groups 
and the high- risk group showed no statistical significance, 
which may be caused by several factors. First, the sample 
size of patients with SCLC who met the criteria was only 
nine, so it failed to evaluate predictive ability and clin-
ical applications of FOXP3 in SCLC objectively. Besides, 
diverse clinical end points may also lead to this differ-
ence. Study design and technology used may also affect 
the results. Further studies are needed to elucidate the 
risk model in SCLC.

The results of the GSEA showed that the top three 
high- FOXP3- related enrichment pathways were intes-
tinal immune network for IgA production and immune 
diseases including primary immunodeficiency and 
allograft rejection. CD28, CD40LG, HLA- DMA, and IL-2, 
were significantly higher- expressed in high FOXP3 expres-
sion group when compared with low expression, in which 
CD28 and IL-2 were statistically correlated with FOXP3 
. The important roles of CD28 and IL-2 in the regula-
tion of FOXP3 expression have been well investigated by 
previous studies. CD28, the ligand of B7-1 (CD80) and 
B7-2 (CD86), is the major costimulatory molecule on T 
lymphocytes.50 Tai and colleagues suggested that CD28 
costimulation could directly signal developing thymo-
cytes to express FOXP3.50 IL-2 signaling is a key cytokine 
for the activation, proliferation, and differentiation of T 
cells.51 The expression of IL-2 α‐chain (CD25) is induced 
by CD28 and T- cell receptor (TCR) signals and forms high- 
affinity IL- 2R, together with the common- chain (CD132) 
and IL- 2R β ‐chain (CD122).52 53 In the presence of TCR 
and transforming growth factor‐β signaling, activation of 
FOXP3 transcription is enhanced by IL-2 signaling.54 The 
relative regulation is summarized in online supplemental 
figure 7. Besides, in the low FOXP3 expression- related 
enrichment pathways, we also revealed FOXP3 had signif-
icant correlation with the overlapped genes MUTYH, 

https://dx.doi.org/10.1136/jitc-2021-002339
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POLD1, and POLD2, which belonged to basic excision 
repair (BER) pathway. Regrettably, current research on 
FOXP3 and DNA damage response and repair (DDR) 
mainly involves mismatch repair,55 56 and few research is 
available on BER. At present, DDR deficiency has been 
studied related to high- tumor mutation burden and acti-
vated anti- tumor immunity.57 58 TME alteration may affect 
the regulation of FOXP3 expression. The specific rela-
tionship between these genes and FOXP3 needs to be 
further explored.

Our study revealed that genes negatively correlated 
with FOXP3 were enriched in pathways such as 
neurodegenerative disease- related pathways and 
oxidative phosphorylation pathway. Few reports 
suggested the relationship between FOXP3 expres-
sion with Parkinson and Huntington diseases. As 
for oxidative phosphorylation, there are different 
opinions about its relationship with FOXP3. It was 
indicated that FOXP3 deficiency could cause dysreg-
ulation of metabolic checkpoint kinase mammalian 
target of rapamycin complex 2 signal and enhance 
oxidative phosphorylation.59 Also, recently, Zappa-
sodi and colleagues found that blocking oxidative 
phosphorylation could downregulate FOXP3 expres-
sion.60 Therefore, further studies are required for 
the relationship between FOXP3 and oxidative phos-
phorylation. Besides, among all overlapped genes 
presented in more than two gene sets, we found 
that COX8A, which encoded protein of the terminal 
enzyme of respiratory chain, showed the highest 
negative correlation with FOXP3 level, indicating it 
might play an important role in regulating FOXP3. 
At present, few data showed their relationship. The 
meaningful finding of the relationship between 
COX8A and FOXP3 is worth for further deep explo-
ration. GSEA also revealed that FOXP3 had an exten-
sively positive association with other molecules in 
TME, such as CD44, CR1, IL1R, and CD36. In addi-
tion, epigenetic mechanisms also contribute to the 
transcriptional regulation of FOXP3.61 62 It was found 
that acetyltransferases, deacetylases, and kinases that 
could regulate post- translational modifications of 
FOXP3 were potential targets for regulating FOXP3 
activity.63 For exploration of the TME traits, activated 
CD4+ memory T cells, γδ T cells, and plasma cells 
were analyzed higher in the low- immune risk group 
compared with those in the high- score group. These 
findings illustrated the heterogeneity of tumor- 
infiltrating immune cells in different groups. There-
fore, FOXP3 and its regulators are worth further 
exploring as potential therapeutic targets. The 
correlation of FOXP3 and immune checkpoints may 
inspire the development of combination strategies.

This study had some limitations. First, this was a retro-
spective as well as single- centered study. Besides, our 
hypothesis and results were based on a small sample size. 
Prospective and multicentered studies are required in the 
future.

CONCLUSION
In conclusion, we investigated the expression patterns 
of FOXP3 in SCLC and revealed the close interac-
tion between FOXP3 and other immune biomarkers 
in TME from proteomic and transcriptomic levels. 
Meanwhile, our work highlighted the crucial prog-
nostic value of FOXP3 in predicting relapse of SCLC at 
stages I–III, constructed an immune risk score system, 
and explored FOXP3- based clinical prediction model 
by integrating immune risk score and SCLC staging. 
We also discovered the important effects of CD28 and 
IL-2 signaling in regulating FOXP3 expression and 
proposed that BER and oxidative phosphorylation 
might relate to FOXP3 regulation. The immune land-
scape in each immune risk group was further depicted, 
revealing the heterogeneity of tumor- infiltrating 
immune cells. Further investigation was required for 
investigation and validation of the regulation mecha-
nisms of FOXP3 so as to better understand its effects 
on TME and promote antitumor therapy.
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