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Background: Helicobacter pylori (HP) infection is one of the leading causes of
gastric cancer (GC). However, the interaction between HP and the TME, and its
carcinogenic mechanism remains unknown.
Methods: The HP-related prognostic genes were identified based on HP
infection-related gene markers and HP infection sample datasets by risk
method and NMF algorithm. Principal component analysis (PCA) algorithm
was used to constructed the HPscore system. The “limma” R package was
employed to determine differentially expressed genes. In addition, the R
packages, such as “xCell” and “GSVA”, was used to analyze the relationship
between the HPscore and tumor microenvironment. Finally, quantitative
real-time polymerase chain reaction (qRT-PCR) was conducted to verify the
expression levels of 28 HP-related prognostic genes in tissues.
Results: We successfully identified 28 HP-related prognostic genes that
accurately classified the GC population. There are significant differences in
survival between different subgroups (high-, low-risk and cluster_1,2).
Thereafter, the HPscore system was constructed to evaluate the signatures of
the 28 HP-related prognostic genes. The overall survival rate in the high-
HPscore group was poor and immunological surveillance was reduced,
whereas the low-HPscore group had a survival advantage and was related to
the inflammatory response. HPscore was also strongly correlated with the
tumour stage, TME cell infiltration and stemness. The qRT-PCR results showed
Abbreviations

HP, Helicobacter pylori; GC, Gastric cancer; BMDC, bone marrow-derived dendritic cells; CSC, cancer
stem cells; DEGs, Differentially expressed genes; EMT, Epithelial-Mesenchymal Transition; GEO, Gene
Expression Omnibus; TCGA, The Cancer Genome Atlas; GSVA, Gene Set Variation Analysis; HR,
Hazard ratio; TME, Tumor microenvironment; GSEA, Gene Set Enrichment Analysis; ssGSEA, single
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of Genes and Genomes; PCA, Principal component analysis
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that DOCK4 expression level of 28 HP-related prognostic genes was higher in gastric
cancer tissues than in adjacent tissues.
Conclusions: HP signatures play a crucial role in the TME and tumourigenesis. HPscore
evaluation of a single tumour sample can help identify the TME characteristics and the
carcinogenic mechanism of GC patients infected with HP, based on which
personalized treatment can be administered.
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Introduction

Gastric cancer (GC) is the fifth-largest type of malignant

tumor globally, and its high mortality makes it the third

leading cause of cancer-related death (1). It is closely

associated with Helicobacter pylori (HP) infection. The World

Health Organisation has listed HP as the first group of

carcinogens causing gastric adenocarcinoma (2). Because HP

is not an intracellular pathogen, continuous inflammation

does not effectively eliminate HP but leads to epithelial cell

damage. Further, the constant production of reactive oxygen

species continues to cause DNA damage, which initiates the

cascading reactions that lead to cancer development (3). A

study showed that HP eradication therapy reduces the risk of

GC in patients with first-degree relatives who have a family

history of GC (4). Unfortunately, most patients are prone to

drug resistance against HP and the infection cannot be

eradicated. A recent observational study confirmed that HP

infection can be completely eradicated in only 35% of patients

who receive the follow-up treatment for this infection (2). In

addition, the understanding of the carcinogenic mechanism of

HP is still not comprehensive. Increasing evidence has

suggested that the accumulation of bone marrow-derived

dendritic cells (BMDCs) induced by HP is one of the origins

of GC stem cells. Chronic HP infection leads to chronic

inflammation and subsequent gastric epithelial mucosal

damage, leading to the recruitment of BMDCs (5). BMDCs

exhibit the phenotype and characteristics of cancer stem cells

(CSCs) and obtain the ability to differentiate into gastric

epithelial cells possibly through cell fusion (6, 7). This

mechanism involves the secretion of various cytokines by

infected epithelial cells, of which tumour necrosis factor-α

(TNF- α) plays a significant role mainly through the NF-kB-

dependent pathway (8). HP has been known to activate the

typical NF-kB signal in gastric epithelial cells, and its

mechanism depends on the type IV secretory system (T4SS)

encoded by the CagA pathogenicity island of HP (9).

Simultaneously, the inflammatory response caused by HP

makes the tumour microenvironment (TME) more complex.

With the transition from acute inflammation to chronic

inflammation, the virulence factors released by HP prevent

the differentiation of immune killer cells and promote the
02
accumulation of immunosuppressive cells (9). In addition, HP

activates tumour-associated fibroblasts by activating the IL-17

pathway to assist tumour cells in immune escape (10, 11).

Further, the accumulation of a large number of fibroblasts

makes it difficult for immune cells to enter the tumour core

and provides the necessary conditions for angiogenesis.

Therefore, identifying the characteristics of HP-mediated

gastric epithelial cell infiltration can help in strengthening our

understanding of the complex and changeable TME.

In this study, we identified the prognostic gene markers

associated with HP infection in patients with GC. These genes

showed a strong correlation with tumour immune-infiltrating

cells, and to some extent, participated in the signal pathway of

tumour stem cells and then affected tumour progression. We

constructed an HPscore system by using HP-related

prognostic genes to comprehensively evaluate the TME

modification patterns in patients with GC. Elucidation of the

overall mechanism of HP infection can help us understand its

carcinogenic nature and develop effective treatment strategies.
Materials and methods

Collection and preprocessing of datasets

The flowchart (Figure 1) and mechanism diagram were

plotted in the BioRender (https://app.biorender.com). First, we

retrieved HP-related studies published in the past 3 years from

the NCBI and Web of Science to verify the HP-infected related

gene markers (the following unified abbreviated as HP). To

investigate the relationship between HP infection and GC, we

collected relevant datasets from the GEO and TCGA databases.

In summary, 4 HP infection-related datasets (i.e. GSE6143,

GSE5081, GSE27411, and GSE60662), 5 GC datasets (i.e.,

GSE66229, GSE29272, GSE84437, GSE15459, and TCGA-

STAD) with OS data, three drug treatment datasets (i.e., PD-L1/

IMvigor210). The ROC curve and the AUC value were used to

evaluate the diagnostic efficacy of HP-related genes. The

“survival” and “survminer” R packages were used to draw the

survival curve of the GC datasets. To eliminate the batch effects

of different datasets, we used the “combat” algorithm of the

“SVA” R package to merge the datasets (i.e., GSE66229 and
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GSE15459). The “FactoMineR” and “Factoextra” R packages were

used to demonstrate the fit effect of the meta-dataset. The

“Corrplot” R package was used to identify the potential HP

regulatory genes in the meta-datasets. We used the “limma” R

package to determine the differential genes between Hp-positive

and Hp-negative patients in the GEO dataset (i.e. GSE6143 and

GSE60662). The “upsetR” and “VennDiagram” R packages were

employed to identify the overlapping genes. Then, the univariate

Cox regression analysis was performed to identify HP-related

prognostic genes, and the HR values of these genes were

visualised using the “forestplot” R package.
Evaluation of the clinical value of
HP-related prognostic genes

Based on the HP-related prognostic genes, lasso regression

and multivariate Cox regression were used to establish the

prognostic risk model with the “survival” and “glmnet” R

packages. Then, the samples were classified into high- and low-

risk groups according to the median risk score. The “pheatmap”,

“survival”, and “survminer” R packages were employed to

demonstrate the difference in the prognosis between the high-

and low-risk groups. The “scatterplot3d” R package was applied

to investigate the distribution of patients with a different risk score.
Nonnegative matrix factorisation

To evaluate the modification differences among the GC

samples, we used the Nonnegative Matrix Factorisation

(NMF) method to classify 482 GC patients from the meta-

datasets based on the presence of HP-related prognostic

genes. When the decreasing trend of the cophenetic

correlation coefficient was most obvious, the k value was

regarded as the best cluster number. The “NMF” R package

was employed to plot the heatmap, basis components, and the

connectivity matrix of NMF in different clusters.
PPI network and functional pathway
enrichment analysis

The protein–protein interaction network was constructed

using the Search Tool for the Retrieval of Interacting Genes

database (STRING, https://string-db.org/). Cytoscape software

with the MCODE plugin was employed for the optical

network and to identify the most significant module. The GO

function annotation and the KEGG pathway enrichment

analysis were performed using the “clusterProfiler” R package

and DAVID (https://david-d.ncifcrf.gov/). The signal pathway

gene sets were downloaded from MSigDB (https://www.gsea-

msigdb.org/gsea/msigdb). Gene enrichment analysis was also

performed using GSEA software (version 4.0).
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Generation of HP-related prognostic
gene signature

To quantify the HP-related prognostic gene modification

patterns in each sample, we defined the HPscore, a scoring

system for evaluating individual GC patients. The principal

component analysis (PCA) was performed to construct the

HPscore. Similar to that described in previous studies (12,

13), we added PC1 and PC2 as the final gene signature scores.

The HPscore was represented as

HPscore ¼
Xj

i

(PC1iþ PC2i)

The samples were categorised as high- and low-HPscore groups,

with the optimal cutoff value. In addition, the distribution of

patients with the HPscores was visualised using the t-

distributed random neighbour embedding (T-SNE) method

(“Rtsne” R package).
Estimation of TME and stemness feature

The “xCell” R package was used to calculate the

microenvironment score for the meta-dataset. In addition, the

ESTIMATE was used to calculate tumour purity and the

immune infiltration levels (14). Thus, a comprehensive

microenvironment score that reflected tumour purity and

immune cell infiltration in the tumour samples was

constructed. According to the markers of immune cells obtain

from the Charoentong’s research (15), the single-sample gene-

set enrichment analysis (ssGSEA) algorithm was employed to

quantify the relative abundance of each immune cell

infiltration in the GC tumour microenvironment by using the

“GSVA” R package, and each immune cell infiltration score

was standardised for further analyses. We also used the

biological pathways constructed by Mariathasan et al. (16) to

evaluate the association between the HPscore and biological

processes, including (1) immune checkpoint; (2) antigen

processing machinery (APM); (3) epithelial–mesenchymal

transition (EMT) markers such as the EMT1, EMT2, and

EMT3; (4) angiogenesis signature; (5) pan fibroblast TGF-b

response signature (Pan-FTBRS); and (6) CD8+ T-effector

signature. All the gene sets used in the study are listed in the

Supplementary Table S6.
Tissue samples and quantitative real-time
polymerase chain reaction

A total of 24 tumor tissue and 20 normal adjacent tissue

were collected from patients with GC. Following are the
frontiersin.org
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FIGURE 1

The flow chart of the present study (created with BioRender.com).
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inclusion criteria for tissue specimens: (1) Diagnosis of GC from

a pathological perspective; (2) Except for GC without other

malignancies; (3) Surgical procedures are not preceded by

radiotherapy or chemotherapy. The study was approved by

the Ethics Committee and informed written consent was

obtained from all patients. The specific experimental protocol

for qRT-PCR referred to our previous research methods.
Statistical analysis

All the data were processed using R 4.0.1 software. We

obtained mutation data of the GC samples from the TCGA

database. The “maftools” R package was employed to visualise

mutation data. Independent prognostic factors were identified

through the Cox analysis. The “limma” R package was

employed to determine differentially expressed genes (DEGs)

between the subgroups with fold change = 1, and the volcano

map was used for visualisation. Survival curves were generated

using the Kaplan–Meier method, and log-rank tests were

performed to calculate the differences. The Sankey diagram was
Frontiers in Surgery 04
developed using the “networkD3” R package. The “ggplot2”,

“ggpubr”, and “pheatmap” R packages were used to visualise

the results. Pearson correlation coefficient among the data were

calculated through the “Corrplot” R package and visualised

using the “PerformanceAnalytics”, “Hmisc”, and “ggstatsplot” R

packages. All statistical P-values were two-sided, and a P value

of <0.05 was considered to be statistically significant. P-values:

ns, P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
Results

The landscape of HP-related genes in GC

Through systematic literature screening, a total of 39 genes

were considered to be gastric infection HP gene signature

(Supplementary Table S1), termed as HP-related genes. ROC

results from three different datasets (GSE6143, GSE27411, and

GSE60662) suggested that the HP-related gene sets can

effectively diagnose HP infection (Supplementary Figure S1A).

Figure 2A shows the dynamic carcinogenic process induced by
frontiersin.org
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FIGURE 2

The landscape of HP-related prognostic genes in gastric cancer. (A) Pathogenesis of Helicobacter pylori. (B) Venny diagram displaying the overlap of
differential gene expression profiles. (C) Blue and red represented the hazard ratio by the univariate cox regression model. (D) Protein-protein
interaction (PPI) network (Blue nodes represent HP-related genes, Green and red are HP-related prognostic genes. Orange represents the hub
genes identified by the mcode method). (E) Visualization of the correlation analysis results between HP-related prognostic genes and tumor-
infiltrating immune cells in the meta-dataset. (F) GO and KEGG analysis results of 28 HP-related prognostic genes. (G) The mutation information
of 28 HP-related prognostic genes was analyzed in the TCGA-STAD cohort.

Zheng et al. 10.3389/fsurg.2022.964203
HP infection in the stomach. To determine the best cluster

dataset, we first performed the survival analysis to evaluate

prognostic differences between the datasets (Supplementary

Figure S1B). After excluding the datasets with poor data

quality, GSE15459 and GSE66229 were integrated into training

datasets (Supplementary Figures S1C,D), and TCGA-STAD

and GSE84437 were used as testing datasets. Subsequently, the

correlation analysis was performed to determine the correlation

between the HP-related genes and meta-dataset, and a total of
Frontiers in Surgery 05
1,338 genes were identified (Supplementary Table S2). The

Venn plot was used to show the overlapping region between

1,338 genes and the differential genes in GSE6143 and

GSE60662. A total of 217 genes were confirmed for follow-up

analysis (Figure 2B and Supplementary Figure S2A). To

further determine the relationship between HP infection and

GC, the univariate Cox regression model showed that 28 genes

were associated with GC prognosis (Figure 2C), and these

genes were termed as HP-related prognostic genes. A protein
frontiersin.org
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interaction network of 21 HP-related prognostic genes and the

HP-related genes was constructed. The mcode plugin was used

to identify potential hub genes (Figure 2D). The strong

correlation among the HP-related prognostic genes is shown in

Supplementary Figures S2B. In addition, Spearman correlation

analysis showed a robust correlation between HP-related

prognostic genes and tumour immune-infiltrating cells

(Figure 2E). Type 17 helper T cells and CD56 dim natural

killer cells were negatively correlated with poor prognostic

genes but positively correlated with favourable prognostic

genes. Subsequent KEGG and GO enrichment analyses also

confirmed the strong correlation between these prognostic

genes and the immune signal pathway. For example, the

“inflammatory response” and “immune response” signalling

pathways of GO were enriched. In addition, the enrichment of

“positive regulation of angiogenesis” and “focal adhesion” and

“cell migration” signalling pathways indicated the potential

biological function of 28 prognostic genes in GC (Figure 2F).

We studied the mutation incidence in TCGA-STAD patients to

fully describe the characteristics of HP prognostic genes

(Figure 2G). Of the 433 samples, 116 harboured a mutation in

HP-related prognostic genes, with a frequency of 26.79%. C3,

DOCK4 and ELMO1 had the highest mutation rate (6%),

followed by MYO5A (5%). These results suggested that the HP-

related prognostic genes are strongly associated with the

immune microenvironment of GC and tumour progression.
Risk stratification of patients with gastric
cancer based on HP-related prognostic
genes

We performed lasso regression of 28 genes based on meta-

dataset, and the results suggested that LAG3, MAFB, PDLIM7,

DKK3, and CASP1 can be used to establish risk models

(Figure 3A). Multivariate Cox analysis was then used to

calculate the risk score of each sample in the meta-dataset.

The forest plot showed the relationship between the five genes

and cancer prognosis (Figure 3B). Then, GC patients were

divided into high- and low-risk groups, with the median risk

score as the threshold. Survival analysis showed that the

survival time of the high-risk group was significantly lower

than that of the low-risk group (Figure 3C, P < 0.0001). The

heatmap result showed that MAFB, PDLIM7, and DKK3 were

highly expressed in the high-risk group but LAG3 and CASP1

were not expressed. With the increase in the risk score, the

proportion of death in patients increased significantly

(Figure 3D). Principal component analysis showed significant

differences in the high- and low-risk cohorts (Figure 3E). The

area under the curve (AUC) of the meta-datasets at 1, 2, and

3years were 0.68, 0.70, and 0.68 (Figure 3F). The datasets

GSE29272 and GSE84437 were used to evaluate the actual

value of the risk model of the high- and low-risk cohorts,
Frontiers in Surgery 06
respectively. These results suggested that our model can well

stratify the risk of GC, and a significant difference was

observed in the survival of GC patients between the high- and

low-risk groups (Supplementary Figure S3A). As shown in

Figure 3G, the high-risk group had a high levels of regulatory

T cells, T follicular helper cells, type 1 T helper cells, mast

cells, and plasmacytoid dendritic cell infiltration in the

tumour rather than activated CD4 T cells, activated CD8 T

cells, type 17 helper T cells, and CD56 light/dim natural killer

cells. We used GSEA to analyse the enrichment level of the

pathways. The hallmark and GO enrichment pathways,

including Wnt, autophagy, TGF-B, EMT, Angiogenesis,

Hypoxia, Notch, and Hedgehog signalling pathways were of

considerable attention (Figure 3H) because the participation

and imbalance of these pathways might be the reasons for the

poor prognosis in the high-risk group. Significant differences

were found in HP-related gene expression between high- and

low-risk groups (Supplementary Figure S3B).

To summarise, the risk model based on 28 HP-related

prognostic genes can be used as an essential index to evaluate

the prognosis of GC. At the same time, multiple tumour-related

signal pathways were enriched. Significant differences were

found in the expression of HP-related genes and the distribution

of infiltrating immune cells among the two risk groups.
Different modification patterns of
HP-related prognostic genes

The risk stratification of the population was successfully

performed by building the risk model. We then classified the

patients based on meta-dataset by using the NMF method,

calculated the NMF symbiotic correlation coefficient, and

selected k = 2 as the best grouping value (Supplementary

Figures S4A,B). We successfully obtained two different

modification patterns of HP-related prognostic genes in

patients with GC, termed cluster_1 and cluster_2 (Figures 4A,

B). Significant differences were observed in the survival

between cluster_1 and cluster_2 (Figure 4C, P < 0.0001). A

total of 338 DEGs were identified in the two HP-related

prognostic gene modification groups (Figure 4D and

Supplementary Table S3). The clusterProfiler R package was

used to identify the function and signalling pathways of

differential genes. The results showed that bacterial invasion-

and inflammation-related pathways were enriched in cluster_1,

indicating favourable prognosis (Figures 4E,F). The enrichment

pathways of cluster_2 were mainly extracellular matrix- and

membrane protein receptor-related signaling pathways

(Figure 4G). The distribution of infiltrating immune cells in

cluster_1 and cluster_2 was different (Figure 4H). Specifically,

cluster_1 was rich in the infiltrated cells involved in

inflammatory stress, such as activated CD4 T cells, type 17

helper T cells, activated dendritic cells, CD56 dim natural killer
frontiersin.org
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FIGURE 3

The workflow of risk-score model construction. (A) LASSO model coefficients. (B) *P < 0.05 in multivariable Cox proportional hazards model.
(C) Kaplan-Meier survival curve of the OS in the high- and low-risk groups (meta-dataset). (D) From top to bottom are five prognostic signature
RNAs expression heatmap, the risk score, and patients’ survival status distribution between low- and high-risk groups. (E) Principal component
analysis (PCA) shows the difference between the high-risk and low-risk groups based on the risk score. (F) ROC curves for 1-year, 2-year and
3-year overall survival, with AUC= 0.68 , 0.70 and 0.66 respectively. (G) The box plot results suggest that tumor-infiltrating immune cells were
significantly differently distributed in the high-risk and low-risk groups. (H) GSEA results show the relevant signaling pathways involved in the
high-risk group.
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cells, and neutrophils. In contrast, cluster_2 showed infiltration of

adaptive immune cells including regulatory T cells, T follicular

helper cells, type 1 T helper cells, macrophages, mast cells, and

plasmacytoid dendritic cells. Importantly, the epithelial cell

signalling pathway in HP infection was enriched in cluster_1.

Subsequently, we verified the expression of HP-related genes

between cluster_1 and cluster_2 (Supplementary Figure S4C).

These results directly confirm the reliability of the HP-related

prognostic gene. A total of 28 HP-related prognostic genes can

accurately classify the population of GC patients, and a
Frontiers in Surgery 07
significant difference was observed in tumour progression

between cluster_1 and cluster_2.
Generation of a HP-related prognostic
gene signature

To further explore the biological differences in HP-related

prognostic genes among individual GC samples, we

constructed an HPscore system by employing the PCA
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FIGURE 4

NMF for HP-related prognostic genes modification patterns, biological processes, and immune cell infiltration analysis. (A) NMF heatmap of basic
components of HP-related prognostic genes expression in the two clusters. (B) Connectivity matrix for patients with gastric cancer in the meta-
dataset by NMF. (C) Kaplan-Meier curves showing survival differences between two clusters. (D) Volcano plot shows the different genes between
cluster 1 and cluster 2. (E,F) Bubble plot and gene-concerpt network shows up-regulated genes in cluster 1 involved signaling pathways. (G)
Cytoscape and enrichment maps are used to visualize the function enrichment analysis results of up-regulated genes in cluster 2 involved
signaling pathways. (H) Box plot results show differences in the distribution of infiltrating immune cells in different clusters.
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method based on meta-datasets (Figure 5A and Supplementary

Figure S5A). The T-SNE algorithm was used to visualise the

sample HPscore (Figure 5B,C), and the results showed an

apparent distance gradient among the GC samples with the

increase in the HPscore. The meta-dataset was divided into

two groups based on the optimal cutoff value: the high

Hp_Score group (n = 212) and the low Hp_Score group (n =

256). Similar to the risk model, the high Hp_Score group

demonstrated a shorter survival time than the low Hp_Score

group (Figure 5D, P < 0.00001). To assess the stability and

expansibility of the scoring system, the HPscores between the

internal datasets GSE15459 and GSE66229 were compared,

and no significant difference was observed between the two

datasets (Supplementary Figure S5B). External datasets
Frontiers in Surgery 08
GSE29272 (GPL96) and GSE84437 (GPL6947) were used for the

verification of the survival analysis, and the results are shown in

Supplementary Figure S5C (P = 0.004) and S5D (P = 0.009). We

then summarised the clinical information in meta-datasets to

verify the relationship between the HPscore and clinical features

(Supplementary Table S4). The results suggested that the

HPscore increased with the increase in the TNM stage of cancer

(Figure 5E); similar results were obtained through internal

grouping (Figure 5F). We then analysed differences in the

HPscores between the high- and low-risk groups and between

cluster_1 and cluster_2 (Supplementary Figures S5E,F). The

area under the curve (AUC) of the meta-datasets at 1, 2, and

3years were 0.64, 0.67, and 0.64 (Figure 5G), respectively. The

alluvial diagram shows the flow of modified samples with
frontiersin.org
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FIGURE 5

Construction of HPscore system and verification of system stability. (A) Pairs plot showing the results of principal component analysis (PCA) base on
28 HP-related prognostic genes. (B,C) The T-SNE of HPscore and Hp_Score groups for all samples. (D) Overall survival analysis verified HPscore
system in meta-dataset. (E,F) The differences of HPscore in gastric cancer stages were observed in the meta-dataset and internal datasets,
respectively. (G) ROC curves for 1-year, 2-year and 3-year overall survival, with AUC= 0.64, 0.67 and 0.64 respectively. (H) The Sankey map of
samples in HP_score group, risk group, clusters group, stages, and survival outcome. (I) Heatmap of the expression levels of 28 HP-related
prognostic genes in different groups.
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different HPscores in a risk group, cluster group, stage cluster, and

survival cluster (Figure 5H). We performed unsupervised cluster

analysis based on 28 HP-related prognostic genes to determine

the relationship between different GC subgroups (Figure 5I).

The results showed a high degree of consistency between

HPscore, Risk, and Cluster, and significant differences in the

expression of three gene subgroups between the groups.
Relationship between the HPscore and
immune microenvironment

To confirm the relationship between HPscore and immune

infiltration, we scored the samples by using the ssGSEA and

xCell method. Activated CD4 T cells, type 17 T helper cells,
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TNF signalling, and IFNA signalling were mainly enriched in

the low Hp_Score, whereas regulatory T cells and

macrophages were significantly increased in the high

Hp_Score (Figure 6A). The correlation analysis showed that

the HPscore was significantly and positively correlated with

the matrix cell score (r = 0.74, P < 0.0001) (Figure 6B) and

microenvironment score (r = 0.41, P < 0.001) (Figure 6C). The

comprehensive landscape of stromal cells in the high- and

low-Hp score groups is shown in the heatmap (Figure 6D).

The number of epithelial cells in the high Hp_Score group

was found to be significantly lower than that in the low

Hp_Score group, whereas the number of fibroblasts and

endothelial cells increased significantly in the high HP group.

To study the relationship between the HPscore and

inflammation, we first verified the relationship between the
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FIGURE 6

The immune-related characteristics of HPscore. (A) Significant differences of immune cell infiltration between high-HPscore and low-HPscore
groups. (B,C) A scatter plot of the positive relationship between HPscore and Stromastore and Microenvironmentscore. (D) The heatmap shows
the different distribution of stromal cells between both groups. (E,F) The significant differences of HPscore in patients with different levels of HP
infection. (G) Relative distribution of CAF cells in HPscore high vs. low subgroups. (H) Kaplan-Meier curves for high and low HPscore patient
groups receiving anti-PDL1 treatments. (I,J) The fraction of patients with clinical response to anti-PDL1 immunotherapy in low or high HPscore
groups.
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HPscore and Hp infection in the GSE5081 dataset. Regardless of

inflammation, the Hp-positive group had a higher HPscore than

the Hp-negative group (Figure 6E). In the dataset of

inflammation induced by Hp infection (GSE60427), the

HPscore better reflected the level of inflammation (Figure 6F,

P < 0.001). To evaluate the relationship between the HPscore

and cancer-related fibroblasts (CAF), we scored meta-dataset

samples based on CAF cell characteristic genes. The results

showed that the CAF enrichment score in the high Hp_Score

group was significantly higher than that in the low Hp_Score

group (Figure 6G, P < 0.00001).

Immunotherapy is a significant breakthrough in tumour

therapy. We further explored the relationship between the
Frontiers in Surgery 10
HPscore and immunotherapy in the immunotherapy cohorts

IMvigor210 (Supplementary Table S5). We found that the

survival rate of patients with a high Hp_Score was lower than

that of patients with a low Hp_Score, and the response to

treatment was worse in the high Hp_Score group

(Figures 6H–J).
Analysis of the relationship between the
HPscore and tumour stemness of GC

The study of the biological processes of tumor

progression related to the HPscore showed that the HPscore
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FIGURE 7

Clinical features and tumor stemness signature of HPscore. (A) Boxplot for the significant differences of the current immune-related signatures
between two HP_score groups. (B) Prediction of HPscore-related pathways and molecular function by enrichment plots from GO analysis and
hallmark enrichment pathway. (C) Differences enrichment scores of Wnt pathway between two HP_score groups. (D) Boxplot for the significant
differences of BMDC enrichment scores between the two HP_score groups. (E) The landscape of tumor somatic mutation between the two
HP_score groups.
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was positively correlated with EMT2, EMT3, Pan_f_TBRS,

and angiogenesis in GC but negatively correlated with DNA

damage repair, mismatch repair, homologous

recombination, nucleotide excision repair, and cell cycle

regulators (Figure 7A). GSEA functional enrichment

analysis suggested that EMT, Angiogenesis, cell adhesion,

extracellular matrix junction, Wnt, TGF-b, Hedgehog, and

Notch pathway were widely enriched in the high Hp_Score

group (Figure 7B). Subsequently, we compared the

performance of gene sets related to the Wnt pathway in the

HPscore subgroup. The enrichment score of the high

Hp_Score group was higher than that of the low Hp_Score
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group (Figure 7C). Similar results were obtained using

BMDC enrichment scores (Figure 7D). Finally, the somatic

mutation map in the TCGA cohort showed no significant

difference in the mutation rates of TP53, TTN, and other

top 30 genes between the high Hp_Score group and the low

Hp_Score group (Figure 7E).
Validation of HP-related prognostic genes

The TCGA-STAD dataset was used to verify the expression

of 28 HP-related prognostic genes. The results showed that
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FIGURE 8

Expression and validation of 28 HP-related prognostic genes. (A) The expression patterns of 28 HP-related prognostic genes were analyzed in the
TCGA-STAD cohort. (B–M) Analysis of overall survival with HP genes high and low expression groups in TCGA-STAD cohort. (N) qRT-PCR analysis of
the expression of DOCK4 in 29 normal and 24 tumor tissue samples.
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DOCK4, C3, ENG, and CXCL3 were highly expressed in

patients with TCGA-STAD tumours, whereas IFFO1, RASSF2,

CELF2, PLEKHO1, EMP3, S1PR1, RHOB, FBLN5, and

CASP1were highly expressed in healthy individuals

(Figure 8A). Survival analysis in TCGA-STAD cohort show

that the patients with high expression of DOCK4, RASSF,

FBLNF or S1PR1 had poorer overall survival (Figures 8B–M,

P < 0.05). The results of qRT-PCR indicated that the mRNA
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level of DOCK4 was higher in carcinoma tissues than those in

normal tissues (Figure 8N, P = 0.0126).
Discussion

HP infection is the most common risk factor for GC. The

virulence factors produced by HP affect the signal
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transmission between cells, and chronic infection of gastric

mucosa leads to changes in the local microenvironment. Most

people infected with HP do not show symptoms related to

bacterial virulence, host genetic polymorphism, and

environmental factors (1). First, we identified the genetic

markers associated with HP infection in patients with

gastropathy by searching for HP-related literature. Because of

the lack of sample data on large-scale carcinogenesis caused

by HP infection, we used the correlation analysis to identify

the gene modification phenotype of HP-related genes in GC.

By performing systematic analysis, 28 genes were identified

for follow-up research. By constructing a prognostic risk

model and through NMF grouping, we identified two clinical

tags of 28 genes: “prognostic indicators” and “HP infection

associated.” Based on the results, we considered 28 genes as

HP-related prognostic genes in GC. Then, we created an

HPscore system to quantify the modification characteristics of

these 28 HP-related prognostic genes in the samples and

determined the accuracy and stability of the HPscore system

by using external datasets. After stringent verification, we

concluded that the HPscore system can accurately reflect the

status of HP infection and survival outcome in patients with

GC. To confirm our inference, we successfully divided the

patients with GC into two subgroups based on differences in

the HPscore. Differences in the survival outcomes and HP

infection status between subgroups were significant, which

increased our confidence in continuing using HPscore to

explore the detailed mechanisms of HP pathogenesis.

To the best of our knowledge, this study is the first to

determine the relationship between HP infection and the 39

genetic markers identified through the ROC curve analysis.

Our results showed that the areas under the ROC curve of the

three datasets were >0.7, indicating that the 39 gene sets could

accurately reflect the status of HP infection. To further

explore the role of HP infection in GC, we performed

correlation analysis to identify potential regulatory genes of

HP in GC based on the meta-dataset. To improve the

association between these genes and HP, we used HP+ and

HP− differential gene datasets to screen the regulatory gene

sets used in the previous step. Subsequently, the survival data

were introduced into the analysis and by using univariate Cox

analysis, we identified 28 genes for follow-up research. The

results of the protein interaction network suggested that C3,

CSFR, S1PR1, CXCR6, and CXCL3 could be primarily

involved in HP pathogenesis. HP cytotoxin-associated gene A

(CagA) has been reported to relieve the inhibitory effect of

TGF- β on CXCL3 and aggravate the inflammatory response

(17). Studies have reported that S1PR1 is associated with the

differentiation of memory T cells (18–20) and affects the

prognosis of GC by promoting chemotherapy resistance (21,

22). As expected, the 28 genes were strongly associated with

tumour immune-infiltrating cells. In addition, C3 (23), CSFR

(24–26), CXCR6 (27–29), and CXCL3 (30) have been
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identified as immune-related factors, and their misexpression

in GC affects prognosis (24, 29, 31, 32). Our GO and KEGG

analysis results also suggested that these genes are involved in

immunoregulation and tumour progression pathways. Then,

we used the TCGA-STAD dataset to evaluate the expression

of these 28 genes in benign and malignant tissues and their

mutations in tumour samples. However, the results of this

analysis could not provide valuable insights. Therefore, to

further explore the relationship between these 28 genes and

the prognosis of GC, we selected five of them to construct a

prognostic risk model based on multivariate Cox analysis.

Risk prediction models based on polygenic characteristics are

commonly used to predict survival outcomes of patients with

cancer (33–35). Our prognostic model showed that the

expressions of LAG3 and CASP1 were negatively correlated

with poor prognosis in patients with GC. LAG3 inhibits the

growth of GC and promotes the secretion of CD8+ T cells,

IL-12, and IFN- γ (36), and the expression of LAG-3 on T-cell

surface can be used as a reasonable biomarker of anti-PD-1

therapy (37, 38). In addition, CASP1 has been shown to be

activated by HP infection (39, 40). It has both pro-

inflammatory and anti-inflammatory effects because of its

different substrates (41). The expression of the other three

genes, namely MAFB, DKK3, and PDLIM7, was positively

correlated with the poor prognosis of patients with GC. Our

results suggested that the risk model based on 28 genes can

separate the population and exhibits a superior performance

in predicting the prognosis of patients with GC. While

analysing the difference in infiltrating immune cells between

the high- and low-risk groups, our results suggested that the

activated CD4+ T cells and CD8+ T cells, rather than

regulatory T cells, are highly enriched in the low-risk groups,

which is consistent with the molecular function of LAG3 and

CASP1. To understand the underlying mechanism of poor

prognosis in high-risk populations, the GSEA was used to

identify significantly enriched signalling pathways in the high-

risk populations. The results suggested that the high-risk

group were enriched in the angiogenesis, hypoxia,

macrophage autophagy, and tumour stem cell-related

signalling pathway. A report showed that the expression of

MAFB oncoprotein is regulated by the cytolethal distending

toxin of enterohepatic HP (42), and MAFB is specifically

expressed in tumour-associated macrophages to induce

angiogenesis (43). In addition, studies on osteosarcoma have

reported that MAFB increases the expression of stem cell

regulatory factor SOX9 at the transcriptional level (44).

Overall, the activation of carcinogenic pathways induced by

misexpression of 28 genes is the cause of poor prognosis in

the high-risk group. Here, we identified the first clinical tag of

28 genes: prognostic indicators.

To observe differences among the samples with different

modified states of 28 genes, we further divided the patients

with GC into two by using the NMF method, namely
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cluster_1 and cluster_2. The survival analysis suggested a

significant difference in survival between the two groups of patients

with GC. The difference analysis showed that cluster_1 with

favourable prognosis had a higher expression of immune-related

factors, such as CCL20, CXCL2, and CXCL3, and is supported by

the signalling pathway analysis. Cytokines, chemokines, and

inflammatory response-related signalling pathways were widely

enriched in cluster_1. In addition, the enrichment of HP signalling

pathway was observed in cluster_1, suggesting that cluster_1 is

closer to the state of inflammatory response in the early stage of HP

infection. To prove this result, we compared the distribution of

infiltrating immune cells between cluster_1 and cluster_2. The

results were similar to those observed in the case of high- and low-

risk groups. Activated CD4+ T cells, type 17 helper T cells, and

neutrophils were highly enriched in cluster_1. This result supported

that HP-induced diseases are mainly mediated by Th1 cells and

Th1 cytokines (3). In addition, TH17 helper cells fight against the

immune response of extracellular bacteria and moulds, and the

cytokines released by the helper cells mainly activate neutrophils

(45). and are highly consistent with our results. Combined with the

aforementioned results, we identified the second clinical tag of 28

genes: HP infection-related feature. Subsequently, we re-verified the

difference in the expression of HP prognosis-related genes between

cluster_1 and cluster_2, which suggested that HLA-DMA, CASP1,

CXCR6, LAG3, VNN2, and CXCL3 were highly expressed in

cluster_1. VNN2 is a haematopoietic stem cell marker (46, 47), that

participates in inflammation and leukocyte migration (48).

However, the role of VNN2 in GC is unclear. Based on the

aforementioned results, we defined these 28 genes as HP-related

prognostic genes.

To evaluate the modification patterns of HP-related prognostic

genes in a single sample, we established a scoring system based on

28 HP-related prognostic genes and termed it as the HPscore.

Comprehensive analysis showed that the HPscore is related to

tumour progression and affects tumour prognosis. HP infection

leads to the imbalance of DNA methylation in gastric mucosal

epithelial cells of the host (49–52). As a result, some proto-

oncogenes are activated to induce cancer (53). Microsatellite

instability (MSI) in GC also showed specific hypermethylation of

DNA (54). Surprisingly, a negative correlation was observed

between the HPscore and DNA methylation stemness index and

mutation load in TCGA datasets. After optimising the DNA

methylation index, the HPscore became unrelated to the DNA

methylation level (the results are not shown). In terms of clinical

features, MSI was also not related to the HPscore (the results are

not provided). The reason may be that in the TCGA-STAD

dataset, mDNAsi derived from the one-class logistic regression

machine learning algorithm (OCLR) does not sufficiently reflect

the methylation level of GC (the high level of tumour cell

stemness index in this study is a protective factor for GC

prognosis). As reported previously, GC may have multiple stem

cell-like genomic characteristics or non-stem phenotypes

dominated by hypermethylation (55). Excitingly, we compared
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the differences in nucleotide_excision_repair, DNA_damage_

repair, homologous_recombination, mismatch_repair, and

cell_cycle_regulators between the high- and low-score arrays, and

the results confirmed our HPscore system. In the high-score

group, the ability to repair DNA damage was generally low,

suggesting that HP infection impairs the autonomous repair

function of cells (56). In addition, the two HPscore groups

showed different TME permeation characteristics. The low-score

group showed a stronger inflammatory response, whereas the

high-score group was accompanied by a large number of stromal

cells including fibroblasts and endothelial cells. The subsequent

results showed that the enrichment score of CAF markers in the

high-HPscore group was higher than that in the low-HPscore

group. However, no difference was observed in the HPscores

between normal fibroblasts and tumour-associated fibroblasts,

suggesting that the modification of HP-related prognostic genes

in tumour cells induces the transformation of NF to CAF rather

than to fibrous cells. In chronic inflammation and cancer, tissue-

resident fibroblasts become the critical cell types that regulate the

activation or inhibition of the immune response (11). Fibroblasts

assist immune cells to maintain an effective inflammatory

environment in chronic inflammation and promote

immunosuppression in malignant tumours to assist tumour cells

in immune escape (10, 11). In addition, fibroblasts are necessary

for the synthesis and remodelling of the extracellular matrix

during angiogenesis and germination (57). These new blood

vessels bring bone marrow-derived suppressor cells, including

BMDCs, into the TME. Chronic HP infection can lead to BMDC

recruitment to promote the stemness-like characteristics of GC

cells (5, 58). Our results also supported this conclusion. GSEA

results suggested that various tumour stem cell-related signalling

pathways, such as the Notch signal pathway, Wnt pathway, and

Hedgehog pathway, were enriched in the high-score group.

BMDCs associated with HP were also significantly enriched in

the high-score group. In addition, our study suggested that the

Wnt pathway plays a key role in the carcinogenesis induced by

HP infection. Studies have reported that HP promotes tumour

progression by activating the Wnt/β-catenin pathway (59, 60)

and promotes CSC-like characteristics in GC cells (61); these

findings are consistent with those of our study. After optimising

the tumour stem cell index, we found that the HPscore was

positively correlated with the tumour stemness index.

Simultaneously, we also proved the positive correlation between

the HPscore and EMT and F-TGF-B. These results suggested that

HP helps tumour immune escape and angiogenesis by activating

fibroblasts and recruits BMDCs to enhance the characteristics of

GC stem cells and promote cancer development, in which the

Wnt signalling pathway plays a key role.

Combined with the aforementioned evidence, we studied the

role of HPscore in treatment. We first evaluated the relationship

between the HPscore and PD-L1. Unfortunately, the predictive

value of the HPscore in PD1 and anti-PD-L1 immunotherapy is

unstable. To date, no detailed report on the relationship between
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HP infection and PD1/PD-L1 is available. Because of the complexity

of the TME, only a few patients benefit from the treatment of

immune checkpoint block (62). Our HPscore may not perform

well in diseases that are not related to bacterial infections. Hence,

more experiments are needed to verify the interaction between HP

and PD-L1. We then predicted the therapeutic efficacy of

antimicrobials by using the HPscore. Based on the limited data, we

found that the HPscore was positively correlated with the degree of

gastritis, which can help predict the grade of gastritis.

Metronidazole is used to treat various infectious diseases including

HP infection. Studies have reported that the sensitivity to

metronidazole decreases in patients with HP infection (63, 64). In

the vaginitis data set, the HPscore decreased significantly after

three weeks of metronidazole treatment. These results showed that

the HPscore plays a guiding role in clinical diagnosis and efficacy

evaluation. However, our study has many limitations. First,

because of the complexity of HP pathogenesis, the existing HP

metadata could not fully reflect the status of HP infection. Second,

we found a stronger correlation of HP infection with stromal cells

than with the infiltrating immune cells. This result indicated that

more communication might exist between stromal cells and HP.

Finally, the mechanism through which HP recruits BMDCs

remains to elucidated experimentally in detail.
Conclusions

In conclusion, the HPscore can comprehensively evaluate the

permeability characteristics of the individual TME and drug

efficacy in patients with GC. In this study, we used HP-related

gene datasets to derive the characteristics of HP-related prognostic

genes for the first time. Based on the HPscore system, we showed

the comprehensive view of the TME of the sample shaped by HP-

related prognostic gene modification. Clinically, the HPscore can

predict the inflammatory grade of patients with gastritis and reflect

the therapeutic effect of metronidazole. Our findings provide a

basis and framework for better understanding the carcinogenic

mechanism in patients infected with HP and develop an efficient

tool for personalised and effective treatment strategies.
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