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Although epidemiological surveillance of COVID-19 has been gradually downgraded
globally, the transmission of COVID-19 continues. It is critical to quantify the transmission
dynamics of COVID-19 using multiple datasets including wastewater virus concentration
data. Herein, we propose a comprehensive method for estimating the effective repro-
duction number using wastewater data. The wastewater virus concentration data, which
were collected twice a week, were analyzed using daily COVID-19 incidence data obtained
from Takamatsu, Japan between January 2022 and September 2022. We estimated the
shedding load distribution (SLD) as a function of time since the date of infection, using a
model employing the delay distribution, which is assumed to follow a gamma distribution,
multiplied by a scaling factor. We also examined models that accounted for the temporal
smoothness of viral load measurement data. The model that smoothed temporal patterns
of viral load was the best fit model (WAIC ¼ 2795.8), which yielded a mean estimated
distribution of SLD of 3.46 days (95% CrI: 3.01e3.95 days). Using this SLD, we reconstructed
the daily incidence, which enabled computation of the effective reproduction number.
Using the best fit posterior draws of parameters directly, or as a prior distribution for
subsequent analyses, we first used a model that assumed temporal smoothness of viral
load concentrations in wastewater, as well as infection counts by date of infection. In the
subsequent approach, we examined models that also incorporated weekly reported case
counts as a proxy for weekly incidence reporting. Both approaches enabled estimations of
the epidemic curve as well as the effective reproduction number from twice-weekly
wastewater viral load data. Adding weekly case count data reduced the uncertainty of
the effective reproduction number. We conclude that wastewater data are still a valuable
source of information for inferring the transmission dynamics of COVID-19, and that
inferential performance is enhanced when those data are combined with weekly incidence
data.
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Abbreviations

LOD limit of detection
LOOIC Leave One Out Information Criterion
LOQ limit of quantification
MCMC Markov Chain Monte Carlo
PHSM public health and social measures
PMMoV pepper mild mottle virus
SLD shedding load distribution
WAIC Widely Applicable Information Criterion
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1. Introduction

Since the emergence of COVID-19 in Wuhan, China in 2019, the world has continued to suffer from the morbidity and
mortality associated with the disease, even after a series of vaccination campaigns that began in late 2020. Despite the
ongoing impact of COVID-19, efforts to contain it via public health and social measures (PHSM) and close monitoring of the
epidemic dynamics have been downgraded at both regional and national levels. In Japan, universal case reporting of COVID-
19 cases under Infectious Disease Law was ceased on May 8th, 2023. Subsequently, only data from the weekly surveillance of
confirmed cases by sentinel healthcare facilities has been available. The sentinel surveillance system involves a reporting
delay of approximately 10 days, which hampers tracking of the actual size of the epidemic.

With the diminishing effort with regard to COVID-19 tracking by epidemiological surveillance, indicators that facilitate
real-time understanding of the epidemic dynamics have inevitable been deployed since the early stage of the pandemic,
especially for real-time forecasting of the societal and public health burden. In this context, wastewater surveillance could fill
the gap between the public health need for COVID-19 transmission monitoring and the diminishing effort spent on data
collection. Based on the knowledge that SARS-CoV-2 is shed in the gastrointestinal tract (Vaselli et al., 2021; D. Wang et al.,
2020;W.Wang et al., 2020a;Wu et al., 2020; Xu et al., 2020), its usefulness as a leading epidemiological indicator and as a tool
for estimating the actual transmission dynamics of the epidemic have been demonstrated in published studies (Fernandez-
Cassi et al., 2021; Huisman et al., 2022; Kitajima et al., 2022;Mattei et al., 2023; Peccia et al., 2020; Peng et al., 2023). However,
the relationship betweenwastewater viral load and epidemic dynamics is not consistent and can even vary depending on the
epidemiological settings of transmission. Such variability may be attributable to the different systems used to measure viral
load and to the differences in sewage systems. It may also be due to variation in biological characteristics (such as the volume
of gastrointestinal viral shedding or the viral strain) and to meteorological or environmental factors that may induce random
effects, including the dilution or degeneration of viruses in the sewage system (Wade et al., 2022).

In practice, another problemwith wastewater surveillance is the difficulty in establishing routine daily observation owing
to limited financial and human resources (Ando et al., 2022; LaTurner et al., 2021). Therefore, the usefulness of low-frequency
wastewater sampling is a critical issue with regard to epidemiological investigations. Huisman et al. (2022) demonstrated
that a frequency of less than three times aweekmay result in unreliable estimates of the effective reproduction number based
onwastewater surveillance data alone. Whether their finding also holds in other settings is of interest, and any methodology
that enables better quantification of the transmission dynamics with even lower sampling frequency is a critical subject for
exploration.

Motivated by the factors described above, we herein propose a modelling framework for estimating the relationship
between infection counts by date of infection and viral concentrations in wastewater. We also describe the reconstruction of
the epidemic dynamics of COVID-19 using wastewater viral concentration data. The estimations are attained with or without
weekly incidence data. To demonstrate the practical usefulness of our method, we applied our model to COVID-19 case count
data and wastewater viral concentration data from Takamatsu city, Kagawa Prefecture, Japan.

2. Materials and methods

2.1. Epidemiological data

2.1.1. Viral load concentration of SARS-CoV-2 in wastewater
We obtained thewastewater viral load concentration data from Takamatsu City East Sewage Treatment Plant in Takamatsu

city (Kagawa Prefectural Government, 2023). We selected Takamatsu city, which is the capital city of Kagawa Prefecture
because the relationship between its wastewater drainage basin and its residential population is consistent. The wastewater
viral load concentration was continuously reported twice a week on average from October 2021 to September 2022 (Kagawa
Prefectural Government, 2023). Themeasurementswere obtained according to the EPISENS-Smethod (Ando et al., 2022), and
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the viral concentrations of SARS-CoV-2 in the wastewater were publicly reported in units of copies per liter (copies/L), with a
limit for detection of 93 copies/L and a limit for quantification of 463 copies/L. The same viral load concentration data for July
4th to September 26th, 2022, are also partly available from thewebsite of the Cabinet Secretariat of the Japanese Government
(Cabinet Secretariat of the Japanese Government, 2023), which also includes data on the concentration of pepper mild mottle
virus (PMMoV) RNA. However, because the PMMoV datawere only available for approximately 4months, we opted not to use
them.We also limited our analysis onwastewater data from the Kagawa prefectural government's website from January 2022
to September 2022, and excluded data from 2021 to focus on analysis of the time period during which the Omicron variant
(B.1.1.529) was dominant and widespread in the population.

Some viral concentration values were “below the limit of quantification (LOQ)” or “below the limit of detection (LOD).” To
overcome this issue, we used arbitrary values of 463 or 93 copies/L, respectively. (Using either a half or a quarter of these
values did not significantly affect the subsequent estimations. See Supplementary Table 2 for details).

2.1.2. Confirmed COVID-19 incidence data
We used the daily incidence data of confirmed COVID-19 cases registered in the Health Center Real-Time Information-

sharing System on COVID-19 (HER-SYS) (Ministry of Health Labour and Welfare of Japan., 2022). The HER-SYS data were
chosen because of its daily availability, in contrast to the published infection count data and wastewater data announced by
Kagawa Prefecture (Kagawa Prefectural Government, 2023), which were only available for days on which wastewater viral
measurements were obtained.

2.1.3. Data for estimation of the time delay from symptom onset to reporting of COVID-19
The daily COVID-19 incidence data from HER-SYS consists of incidence counts by date of report, but did not include in-

formation on the date of onset. To estimate the delay from symptom onset to the time of reporting, we used the incidence
data provided by the Tokyo Metropolitan government, which are publicly available and include symptom onset dates for
symptomatic COVID-19 cases (Bureau of Social Welfare and Public Health: Tokyo Metropolitan Government, 2023). We
extracted all COVID-19 case records reported in Tokyo from January 1st, 2022 to September 26th, 2022 that included onset
date information. This information enabled us tomake statistical estimations of the time lag from the date of onset to the date
of reporting.

2.1.4. Incubation period and generation interval of COVID-19
We retrieved the incubation period data from a publicized preliminary report on SARS-CoV-2 Omicron subvariants

(National Institute of Infectious Diseases, 2022). We assumed that the generation interval of COVID-19 caused by Omicron
subvariants remained almost unchanged throughout 2022, and follows the report that was originally shared during the early
period of the spread of the Omicron variant (Alex Selby, 2022).

2.2. Models for estimating COVID-19 dynamics using wastewater viral load data

2.2.1. Quantifying the lag from infection to report in COVID-19 incidence data
First, we estimated the time lag from infection to report using the COVID-19 incidence data from Tokyo because actual data

on Takamatsu were unavailable. Let this dataset from Tokyo be Dwith information on date of report, ti;report , and date of onset
ti;onset for case i2D. Let the cumulative distribution function of a reporting delay of up to t days after onset be CDFO/RðtjqÞ,
where q is the set of parameters that define CDFO/R. Then, the likelihood of observing the data on the report and onset dates
for all individuals in the dataset is described as follows:

LðqjDÞ¼
Y
i2D

CDFO/R
�
ti;report � ti;onset þ 1jq�� CDFO/R

�
ti;report � ti;onset jq

�
CDFO/R

�
T � ti;onset jq

� (1)

where T is the final date of data D, which is September 26th, 2022 in our application. We assumed that the cumulative
distribution function CDFO/R followed the Weibull distribution and, employing a maximum likelihood method, we obtained
the point estimate of q, i.e., bq ¼ ðba; bbÞ where ba and bb are the point estimates of the shape and scale parameters, respectively,
that define the Weibull distribution of interest. (See Supplementary Methods for details).

Regarding the incubation period, we used the probability distribution function over time after exposure derived from the
empirical data obtained from the National Institute of Infectious Diseases (2022). Combining the incubation period data with
the estimated delay from onset to reporting, the relationship between the daily reported incidence, YðtÞ, and the incidence by
infection date, CðtÞ, can be described as follows:

YðtÞ¼
X∞
Τ¼0

Cðt � ΤÞ
XΤ
t¼0

pincubationðtÞpreportðΤ� tÞ; (2)
where preport is a discretized probability distribution over time, obtained from CDFO/R as described above:
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preportðΤ� tÞ¼ ½CDFO/RðΤ� tþ1jbqÞ � CDFO/RðΤ� tjbqÞ� (3)
2.2.2. Estimating the relationship between COVID-19 cases by infection date and viral load in wastewater
As a preparation for projecting COVID-19 dynamics from the wastewater results, we first estimated the relationship be-

tween case counts by infection data and the viral load in the wastewater, which is also mentioned as “shedding load dis-
tribution (SLD)” in published studies (Fernandez-Cassi et al., 2021; Huisman et al., 2022). The model that describes the viral
load concentration with the reported case counts in Takamatsu city can be formulated as:

YðtÞ � NegBinðmY ðtÞ;4Þ (4)

log½VLðtÞ� � Normal
�
log½m ðtÞ�; s2

�
; t2t (5)
VL wastewater VL observation

X∞

mY ðtÞ¼

t¼1

grepðtÞmIðt � tÞ (6)

X∞

mVLðtÞ¼ k

t¼1

gVLðtÞmIðt � tÞ (7)

log½m ðtþ1Þ� � Normal
�
log½m ðtÞ�; s2

�
(8)
VL VL VL
Here, in Eq. (4), YðtÞ represents the daily reported case counts in Takamatsu city, which are assumed to follow a negative
binomial distributionwith mean mY ðtÞ and overdispersion parameter 4. In Eq. (5), wemodelled the natural logarithm of VLðtÞ,
log½VLðtÞ�, as a realization of the natural logarithm of the underlying expected values, mVLðtÞ, which follow normal distribu-
tions with observation error swastewater. Eq. (6) links the expected values of infections by date of report, mY ðtÞ, to the expected
infection counts by date of infection, mI , by the convolution of mI and grep, the delay function from infection to reporting as in
Eq. (2). In the samemanner, the expected values of viral loadmeasurements, mVLðtÞ, are linked to mI by an SLD consisting of the
convolution of mI and gVL together with a scaling parameter k. Wemodelled gVL as a probability distribution function following
a Gamma distribution in a time-discretized form that is parameterized by the shape and scale parameters. We also applied
temporal smoothing to the natural logarithm of mVLðtÞ, log½mVLðtÞ�, as in Eq. (8) to account for the sparsity of viral load
measurement data and the inherent volatility of the measurements.

The parameters that govern mY ðtÞ, mIðtÞ, mVLðtÞ, 4, swastewater , sVL, k, and the two parameters that give gVL are estimated by
the Markov Chain Monte Carlo (MCMC) method, using informative priors for some parameters to be estimated (See Sup-
plementary Methods for details.) We excluded the first 14 days of reported case counts for the likelihood calculation because
possible infectors that were infected before the start of our data were not included or considered in our analysis.

Furthermore, we tested models that incorporate

log½mIðtþ1Þ� � Normal
�
log½mIðtÞ�; s2I

�
(9)

which, in the same manner as for mVL, introduces temporal smoothness of expected infections by date of infection, and
selected the best fit model using Widely Applicable Information Criterion (WAIC) and Leave One Out Information Criterion
(LOOIC).

Through the aforementioned estimation process, the effective reproduction number as a function of time t (day), Rt , was
obtained using the renewal equation:

Rt ¼ mIðtÞP∞
t¼1

gGIðtÞmIðt � tÞ
(10)

where gGI is the generation interval as a function of time since the infection date (Fraser, 2007; Nishiura, 2007; Nishiura &
Chowell, 2009).

2.2.3. Reconstruction of the epidemic dynamics from the viral load data
Using parameter sets from the best fit model obtained as previously described, we utilized the resulting SLD to reconstruct

an epidemic curve and the reproduction number using two approaches based on the models described by Eqs. (5) and
(7)e(9).
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2.2.3.1. Approach 1. In the first approach, we used 1000 pairs of posterior draws swastewater , sVL, k, and the shape and scale
parameters of gVL given by Gamma distribution from a single chain of the estimated model, as described in the previous
section. (For computational reasons, we used the 1000 pairs of parameters from the first chain, instead of the whole 4000
pairs of parameters). We estimated the parameter sI in every run. Thus, mI was estimated by the MCMCmethod using each of
the 1000 pairs of parameters, resulting in 1,000,000 trajectories of mI .

We also performed a similar analysis with the addition of once-a-week proxy weekly aggregate data of infection case
counts throughout the period according to the following equation:

YweeklyðtÞ � NegBinðmYðtÞ;4Þ (15)
2.2.3.2. Approach 2. Rather than directly applying posterior draws of parameters from the SLD estimation process as in
Approach 1, in the second approachwe fitted amultivariate normal distribution to the posterior draw of the natural logarithm
of pairs of parameters logðshapeÞ (of Gamma distribution), logðscaleÞ (of Gamma distribution), logðkÞ, logðswastewaterÞ, and
logðsVLÞ using the R package “mclust”. Using this fitted multivariate normal distribution as priors in the following estimation
(See Supplementary Methods), we estimated mI and, consequently, the effective reproduction number, Rt , in the same model
as in Approach 1. Note that, contrary to Approach 1, posterior draws were used not as given data but as priors, which enabled
the re-estimation of the parameters of interest.

For both approaches, we evaluated the scale ratio of expected cases to reported case count throughout the study period as
follows:

r¼
P
t
mY ðtÞP

t
YðtÞ (16)

where a value of r closer to 1 means a closer fit to the observed epidemic scale.

2.3. Software

All analyses were conducted in R (version 4.2.2) and Stan via CmdStan (version 2.31.0). (CmdStanR, 2023; R Core Team,
2023; Stan Development Team, 2023). For all the estimations described above, we obtained 1000 MCMC samples from
each of four chains, with 500 warm-up iterations, which were omitted from the results. We confirmed that all the chains
converged by an R-hat function value of below 1.01, and that there were no divergent chains.

3. Results

3.1. Descriptive analysis of COVID-19 case counts and viral load concentration in wastewater

Fig. 1 shows the time series of daily reported incidence of COVID-19 (gray dots) in Takamatsu City, Kagawa, and the viral
load measurement data (copies/L) that are available twice a week (red). For comparative purposes, we plotted a blue line
representing the estimated case counts by date of infection using the R package “surveillance” function (Salmon et al., 2016).
Note that the surge in reported case counts in January 2022 and June 2022 accord with the surge in viral load concentration in
the wastewater. However, interpreting the correlation between these two different time series is difficult owing to the
sparsity and volatility of the wastewater viral concentration data.
Fig. 1. Time series plot of COVID-19 case counts and wastewater viral load concentration data from Jan to Sept 2022, Takamatsu City, Kagawa, Japan.
Daily reported case counts are represented by gray dots, whereas the blue line shows the estimated case counts by date of infection using the R package
“surveillance” function (Salmon et al., 2016). The red dots represent the viral load concentration time series data from the wastewater samples obtained twice a
week.
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3.2. Estimation of the relationship between wastewater viral concentration and case counts

To quantify and visualize the SLD, which represents the relationship between wastewater viral concentration and COVID-
19 case counts by date of infection, we performed statistical analysis on the models as described by Eqs. (4)e(9). Based on
WAIC and LOOIC (See Supplementary Table 1), we chose the model that accounts for temporal smoothing for expected viral
load concentration values, mVL, as described in Eq. (8). A summary of parameters from the best fit models is shown in Table 1,
and the Gamma distribution characterizing gVL is shown in Fig. 2, with a mean of 3.66 days (95% credible interval (CrI):
3.28e4.05 days).

Fig. 3 presents the time series estimates for COVID-19 case counts by infection date (A), the effective reproduction number
(B), and the expected viral load concentration in thewastewater (C). The first and last 14 days are shaded in light blue because,
owing to the nature of our model, underestimation of either the infector population or the infected population occurs in the
initial or final periods. In panel (A), the expected infection counts by date of infection, mI (with 95% CrIs), are compared with
the reported daily infection counts (red dots). Panel (B) is a plot showing the variation in the effective reproduction number Rt
(with 95% CrIs) over time. It captures the COVID-19 dynamics by date of infection based on the expected infection counts by
date of infection in (A). In panel (C), the expected viral load concentration in the wastewater, mVL, is compared with the
measured SARS-CoV-2 viral concentration in the wastewater (red dots). Although the trends in measured and estimated viral
load concentrations agreed well, there were apparent discrepancies between these two time series when the numbers of
cases were not sharply increasing or decreasing. These discrepancies may be attributable to random effects, including
measurement errors, and the plot of mVL in (C) demonstrates how our model smoothed out these effects.
3.3. Reconstruction of COVID-19 epidemic curve from the wastewater data

Fig. 4 shows the results from the reconstruction of the COVID-19 infection counts by date of infection. In each plot, the red,
green, and blue shading represent 50%, 80%, and 95% credible intervals, respectively. Panel (A) represents the results from
Approach 1 without weekly reported case counts. Panel (B) shows the results with weekly counts. A comparison of the two
reveals that the scale of the epidemic curve is better estimated with weekly case count data, although the overall time trends
are similar. Similarly, the results from Approach 2 (C) without and (D) with weekly case count data are shown side by side in
the second row of Fig. 4. (See also Supplementary Figure on estimates of viral concentration from the same estimation
process, which also reveals scaling issues, as discussed here).

As is visibly suggested by Fig. 4, in both approaches the uncertainty diminishes when proxy weekly case count data are
used in the estimation process. Also, it can be observed that the overestimation of the epidemic scale around the epidemic
peak of Aug 2022 was mitigated by using proxy weekly case counts. This can also be seen in Table 2, which shows the
estimated total infection counts relative to the reported total case counts throughout the study period. The uncertainty of mIðtÞ
was smaller when proxy weekly case data were used, especially when Approach 2 was employed (Fig. 4). Moreover, the scale
ratio shown in Table 2 was smallest when the same model was used.

Fig. 5 shows the effective reproduction numbers. They were estimated using the same process adopted to produce Fig. 4.
The estimated Rt values from the case data alone agreed well with the wastewater-based Rt estimates. In both Approach 1
(first row, panels A and B) and Approach 2 (second row, panels C and D), the trends from the estimation with or without
weekly case counts are generally in line with each other.
4. Discussion

Herein, we propose a general mathematical and statistical framework for the reconstruction of the transmission dynamics
of COVID-19 based on twice-weekly wastewater sampling at a population level. Our framework can be easily applied to
locations where the basin for sampledwastewater and the residential population of interest are clearly linked. This was of key
importance to our study. The first step of this framework enables the estimation of SLD, i.e., the time course of SARS-CoV-2
Table 1
Parameters that describe the relationship between COVID-19 infection and SARS-CoV-2 viral concentration in wastewater.

Parameters Median 95% Credible Interval

Lower Upper

Gamma Mean 3.46 3.01 3.95
Gamma SD 3.00 2.65 3.40
k 18.8 15.2 23.6
4 3.77 3.21 4.38
swastewater 0.935 0.804 1.11
sVL 0.116 0.104 0.130

The parameters of Gamma distribution that give gVL in Eq. (7), as well as the scaling parameter k, the overdispersion
parameter 4, the observation error term swastewater , the standard deviation for gaussian smoothing for the natural logarithm
of viral load concentration, sVL , are shown with 95% credible intervals derived from posterior distribution.
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Fig. 2. Probability density of time from infection to SARS-CoV-2 detection in the wastewater.
The black solid line represents the median of the delay distribution as a probability function of the time since the date of infection; the gray shading indicates the
95% credible interval.
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concentration in wastewater from the date of infection together with scaling factors from infection counts to viral concen-
tration in the wastewater. Using the SLD estimates from the first step, we also demonstrated that the estimated SLD can be
used to reconstruct the COVID-19 dynamics based on twice-weekly wastewater viral concentration measurements. This is
very encouraging because it suggests that the scale of the COVID-19 epidemic can be inferred even without individual-based
surveillance data that stem from universal case reporting.

Our study demonstrated that the SLD can be estimated in a similar manner to that reported by Mattei et al. (2023), in
which several factors such as degradation, dilution, and volume of viral excretion into feces are summarized by a single
scaling factor. This approach differs from that reported by Huisman et al. (2022), which follows a bottom-up approach based
on viral shedding data from previous studies with some assumptions about viral measurements. We chose a comparatively
simple approach that considers the variability and uncertainty of biological, environmental, and technical factors regarding
viral excretion andmeasurement inwastewater, as discussed elsewhere (Ahmed et al., 2020; Cheung et al., 2020; Mattei et al.,
2023; W. Wang et al., 2020b; W€olfel et al., 2020). Those studies that handled such variability and uncertainty were applied to
SARS-CoV-2 variants prior to the emergence of Omicron variant B.1.1.529.

In addition to the issue of SLD, the consideration of measurement errors regarding SARS-CoV-2 concentrations in
wastewater is a key advancement proposed herein. An estimation of SLD cannot avoid the issue of random effects on viral
concentration data due to various factors including measurement errors (Wade et al., 2022). Therefore, we combined the SLD
with equations that account for such random factors, which were partly taken into account by Peccia et al. (2020). We trust
that our framework adds new statistical insight into the use of SLD to a series of published studies that have reconstructed
COVID-19 dynamics from wastewater data using mathematical models (Fernandez-Cassi et al., 2021; Huisman et al., 2022;
Mattei et al., 2023).

Another important finding was that the best fit model for estimating SLD assumed temporal smoothness of viral load
concentration data. Owing to the scarcity of available data, the estimation of missing wastewater measurements is also
necessary, especially when considering the reconstruction of COVID-19 dynamics based solely onwastewater data. Therefore,
we assumed that temporal smoothness poses constraints that may help the estimation of a time series by providing missing
values. In addition, some random factors other than the measurement of wastewater viral load may not be controlled by Eq.
(8). Therefore, these factors may instead be accounted for at least partially by temporal smoothness, which may have
improved our estimates of SLD.

The present study demonstrated that SLD estimates enable reconstruction of both the trend and scale of the COVID-19
epidemic curve, based on twice-weekly wastewater sampling. Despite the need for temporal smoothness assumption for
infection counts by date of infection, possibly owing to data sparseness, our findings indicate that wastewater sampling will
be useful, even when conducted twice weekly. In both approaches, combining the analysis with weekly reported case count
data improved the estimation of the epidemic scale, although adding epidemiological (case) data did not drastically alter the
effective reproduction number estimates.

Comparing the two approaches in the reconstruction step, the first approach, which aggregates the estimates from each
run for all posterior draws from the first step is straightforward but computationally expensive, whereas the second approach
can be computed readily. In addition, in terms of the estimated scale of total infection counts, Approach 2 tends not to
overestimate the total burden compared with Approach 1. Any decision regarding which of these two approaches is best
should be based on future validation. However, considering possible future changes to the virological characteristics of SARS-
CoV-2, the latter approach might be more adaptive to future epidemiological data because parameters that provide SLD are
re-estimated based on the given data using priors obtained from previous steps.

There are several limitations to our study. First, as mentioned in the method section, we did not normalize the wastewater
viral concentration data using environmental viruses such as PMMoV. However, process control methodologies using PMMoV
or other viruses such as bovine coronavirus have yet to be established (LaTurner et al., 2021), and we believe that the error
term for viral concentration measurements in our model plays a similar role in smoothing out random variability in mea-
surements or environmental factors. Our framework can be readily adapted towastewater data normalized by environmental
651



Fig. 3. Estimates of case counts by date of infection, effective reproduction number, and expected viral concentration in wastewater samples obtained between
Jan and Sept 2022 from Takamatsu City, Kagawa, Japan.
(A) Estimates of case counts of COVID-19 by infection date. The yellow line (median) and the shading (95% credible interval) represent the estimated infection
counts by date of infection, mI , which precede the reported daily infection counts (gray dots).
(B) Effective reproduction number Rt values, which were estimated based on Eq. (10), are represented by the yellow line (median) and shading (95% credible
interval).
(C) Expected viral load concentration in wastewater (mI) values are represented by the yellow line (median) and shading (95% credible interval). For comparison,
the measured values of viral load are represented by red dots.
For all panels, the first and last 14 days are represented in light blue because the number of infectors is underestimated in the former period, whereas the number
of infected is underestimated in the latter period owing to the nature of our model.
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viruses, so future validation is warrantedwhen relevant data become available. Another issuewith thewastewater data is that
we filled the missing values for measurements below the limit of quantification or detection. However, the arbitrary values
that we chose to fill missing values did not significantly affect our estimates of shedding delay function. (See Supplementary
Table 2).

The second limitation is the limited statistical power and limited geographical location of the COVID-19 incidence data as
well as the frequency of wastewater data used in our study. As of June 1st, 2023, the population of Takamatsu city is 411,876
(Takamatsu City, 2023), which is relatively small compared with other megacities in Japan or in other countries. With regard
tomeasurement frequency, viral concentration data that weremeasured at different frequencies were examined in a previous
study (Huisman et al., 2022). These data limitations may have limited the statistical power of our analysis. In addition, it
would have been better if we had been able to test our model on data from different geographical locations because
geographical comparisons may lead to the discovery of previously unrecognized technical issues. This is the scope for our
future research, especially after efforts to monitor SARS-CoV-2 in wastewater have continued for a substantial period at
several locations.

Another limitation with regard to data is the presumable weekly reported case counts used in the reconstruction process.
The sentinel surveillance of COVID-19 is not designed to correctly capture the age structure of the epidemic dynamic.
Therefore, owing to the nature of their selection, most sentinel hospitals or clinics tend to focus on pediatric healthcare. Thus,
our results from the examination using the weekly aggregated case count data as a proxy for total infection counts may not be
readily applicable to the current official weekly reports of COVID-19 in Japan.

Another limitation is the assumption that the virological characteristics or biological reactions such as gastrointestinal
shedding did not significantly change throughout the period. It is not clear whether such factors differ among various sub-
variants of Omicron, so our assumption here might have led to incorrect estimates. To take this point into account, further
research on the characteristics of Omicron variants as well as more abundant wastewater data in terms of frequency and
geography are needed.

Technically, the assumptions of temporal smoothness for viral load concentration or infection counts are key limitations to
our study. Smoothing techniques of various forms, such as effective reproduction numbers, are applied to the estimation of
epidemic dynamics indicators (Abbott et al., 2020; Parag, 2021). In the present study, we proposed an approach to control
temporal variation of viral concentration or infection counts by date of infection. This was not only because such assumptions
at least statistically improved the SLD estimation, but also because they were essential for the efficient reconstruction of the
COVID-19 dynamics from our wastewater data. Omission of the smoothness assumption should be considered in the future
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Fig. 4. Reconstruction of the time series of infection counts by date of infection using wastewater viral concentration data.
In each panel, the green line represents the median time series, whereas the red, green, and blue shading indicates 50%, 80%, and 95% credible intervals,
respectively. (Gray line with gray shades in each panel represents estimated infection counts by date of infection that is also shown in panel A of Fig. 3.)
(A) Infection counts estimated from the reconstruction model assuming temporal smoothness for the expected viral load concentrations in the wastewater and
the infection counts by date of infection, using Approach 1.
(B) Infection counts estimated from the same model as in (A) using weekly case count data.
(C) Infection counts estimated from the reconstruction model assuming temporal smoothness for the expected viral load concentrations in the wastewater and
infection counts by date of infection, using Approach 2.
(D) Infection counts estimated from the same model as in (C) using weekly case count data.
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when daily wastewater data for designated residential populations are available. In addition, out-of-sample validation is
warranted to further legitimize our framework, which will be possible when data from subsequent COVID-19 waves are
available.

Even considering the limitations described above, our general framework enhances the usefulness of wastewater sur-
veillance against COVID-19 because it enables estimations of COVID-19 dynamics even in resource-limited scenarios. Our
models demonstrated a framework to estimate SLD with consideration for errors in the measurement of wastewater viral
concentration data. Our framework also enabled the reconstruction of COVID-19 dynamics from twice-weekly wastewater
data with assumptions about temporal smoothness of wastewater viral concentrations and infection counts by date of
infection. Our results may encourage public health agencies to increase monitoring of COVID-19 case counts, and to conduct
more rigorous wastewater surveillance in the future.
Table 2
Ratio of estimated infection counts to the observed case counts by each reconstruction model of COVID-19 dynamics throughout the study period.

Approach Use of Weekly
Case Count Data

Scale ratio (%) 95% Credible interval

Lower Upper

1 No 111.3 82.58 150.4
Yes 109.2 88.27 141.0

2 No 108.0 92.08 128.7
Yes 107.6 94.11 123.7
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Fig. 5. Reconstructing the effective reproduction number over time by date of infection using wastewater viral concentration data.
In each panel, the green line represents the median time series, whereas the red, green, and blue shading indicates 50%, 80%, and 95% credible intervals,
respectively. (Gray line with gray shades in each panel is the same as from panel B in Fig. 3, which is shown for comparison.)
(A) Effective reproduction numbers estimated from the reconstruction model assuming temporal smoothness for the expected viral load concentration in the
wastewater and infection counts by date of infection, using Approach 1.
(B) Effective reproduction numbers estimated from the same model as in (A) using weekly case count data.
(C) Effective reproduction numbers estimated from the reconstruction model assuming temporal smoothness for the expected viral load concentration in the
wastewater and infection counts by date of infection, using Approach 2.
(D) Effective reproduction numbers estimated from the same model as in (C) using weekly case count data.
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