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ABSTRACT
Crush injury is a disease that is commonly found in victims of earthquakes, debris flows, mine
disasters, explosions, terrorist attacks, local wars, and other accidents. The complications that
arise due to the crush injury inflicted on victims give rise to crush syndrome (CS). If not treated
in time, the mortality rate of CS is very high. The most important measure that can be taken to
reduce mortality in such situations is to immediately start treatment. However, the traditional
treatment methods such as fluid resuscitation, diuresis, and hemodialysis are not feasible enough
to be carried out at the disaster scene. So there is a need for developing new treatments that
are efficient and convenient. Because it is difficult to diagnose in the disaster area and reach the
treatment equipment and treat on time. It has become a new research needs to be directed into
identifying new medical treatment targets and methods using the etiology and pathophysio-
logical mechanisms of CS. In recent years, a large number of new anti-oxidant and anti-inflam-
matory drug therapies have been shown to be highly efficacious in CS rat/mouse models. Some
of them are expected to become specific drugs for the emergency treatment of a large number
of patients who may develop CS in the aftermath of earthquakes, wars, and other disasters in
the future. Hence, we have reviewed the latest research on the medical therapy of CS as a
source for anyone wishing to pursue research in this direction.
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Introduction

Crush syndrome (CS) was first observed during the
Messina earthquake in Italy in 1909 [1]. However, CS
was not recognized as a clinical entity until a report by
Bywaters and Beall during the World War II in 1941 [2]
when victims from affected buildings appeared to be in
good condition upon rescue, but died of kidney failure
a few days later [3]. Since then, CS has been reported in
a variety of disasters [4,5], and its clinical and patho-
logical characteristics have become increasingly clear
over the years.

CS is also known as traumatic rhabdomyolysis or
Bywaters’ syndrome. It is mainly caused by direct or
indirect trauma, which causes long-term crushing of
muscle-rich parts such as limbs or torso, resulting in the
compression and destruction of striated muscle cells.
After release and restoration of the blood supply, the
cell contents including nephrotoxicity myoglobin (Mb),
urate, phosphate, potassium, etc. are released into the

blood circulation [6], which eventually lead to myoglo-
binuria, acute kidney injury (AKI), electrolyte metabolic
disorders, hypovolemic shock, multiple organ dysfunc-
tion syndrome (MODS), and so on [7].

Most medical therapies highlight the symptoms of
circulatory shock, kidney failure, and arrhythmias in
patients [8–10], and focus on early fluid resuscitation,
forced diuresis and renal replacement therapy (RRT)
which includes dialysis (hemodialysis or peritoneal dia-
lysis), haemofiltration, haemodiafiltration and kidney
transplantation [10–12]. For renal replacement therapy,
continuous venovenous haemofiltration (CVVHF) is pri-
marily used to remove myoglobin until the patient’s
kidney function returns or hemodialysis can be initiated
[13]. However, most of the patients undergoing these
medical therapies still suffer from systemic inflamma-
tory response syndrome (SIRS) that frequently develops
into multiple organ failure (MOF), eventually leading to
death [14,15]. Therefore, CS is a life-threatening disease
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for which new medical therapies are promptly needed.
Because it is difficult to diagnose in the disaster area
and reach the treatment equipment and treat on time,
there is an urgent need for safe and effective medical
procedures to reduce the on-site mortality rate of CS
[16], in addition to the aggressive fluid resuscitation in
clinical practice. The current research on medical ther-
apy for CS is particularly important. We need to con-
stantly summarize valuable pre-clinical and emerging
data to explore possible treatment approaches in the
future. In this review, we have provided current
research progress in the new medical therapies of CS in
animal models (rat or mouse), to help explore
future avenues.

Chemical drugs

Mitochondria-targeted anti-oxidants (SkQR1)

Koyner et al. [17] found that oxidative stress is critical
for inducing acute kidney injury by rhabdomyolysis and
ischemia/reperfusion, and that mitochondria are the
source and target of excessive production of reactive
oxygen species (ROS). Plotnikov et al. [18] found a mito-
chondria-targeted compound which is a combination
of positively charged rhodamine and plastoquinone
(SkQR1) that can reduce acute kidney injury in the rat
model. The mitochondria-targeted anti-oxidant SkQR1
can induce some components of the renal protective
pathway; it can increase the expression of erythropoi-
etin and phosphorylate glycogen synthase kinase 3b in
the kidney, which has direct anti-oxidant effects and
can induce activation of the ischemic pre-processing
signal pathway. Plotnikov et al. [19] also found that in
addition to the direct anti-oxidant effects, SkQR1 also
up-regulates protective signaling mechanisms. In other
words, it not only protects the kidneys in the rat model
of rhabdomyolysis, but also provides protection to the
heart and brain. Therefore, the antioxidant treatment of
CS patients is a very valuable research direction.

Dexamethasone

The glucocorticoid dexamethasone (DXM) is a cortico-
steroid that can act as an anti-inflammatory, anti-toxic,
anti-allergic and anti-rheumatic drug [20–23]. It is
widely used in clinical practice and is easily absorbed
through the digestive tract. Since the CS involves exces-
sive inflammation in the body, researchers have tried to
use DXM to treat CS rat models. Murata et al. [24–26]
found that high-dose DXM injections exerted anti-
inflammatory effects and reduced ischemia/reperfusion
injury (IRI) through the PI3K-Akt-eNOS signaling

pathway. This significantly improved the early survival
rate of CS rat model. The authors also found that the
intramuscular injection of DXM was not significantly dif-
ferent from intravenous treatment. However, in the
actual application it is still necessary to evaluate the
condition, transport, and treatment strategy of CS
patients to determine the status of muscle injury and
whether DXM is needed. The authors also showed that
DXM therapy could prevent SIRS and the death caused
by CS, and may help to develop new treatment strat-
egies for CS. However, related cases reported that the
use of steroids may cause rhabdomyolysis, which needs
to be considered as a potential adverse effect and a
limitation of dexamethasone [27–29].

Allopurinol

Xanthine oxidase (XO) and xanthine dehydrogenase
(XDH) are interconvertible forms of the same enzyme,
xanthine oxidoreductase [30,31]. This is a key enzyme in
the purine decomposition pathway that catalyzes the
conversion of xanthine and hypoxanthine to uric acid
(UA) [32,33]. During muscle contraction, the irreversible
conversion of xanthine dehydrogenase (XDH) to its xan-
thine oxidase (XO) [34,35] plays an important role in
producing ROS in ischemic conditions [36,37].
Allopurinol is an XO inhibitor and a UA-lowering agent
commonly used in the treatment of gout [38,39]. Some
animal studies have reported that glycerol-induced AKI
can be effectively alleviated by inhibiting oxidative
stress and apoptosis [40,41]. Studies by Gois et al. [42]
showed that allopurinol treatment can reduce renal
dysfunction by reducing oxidative stress (systemic, kid-
ney and muscle), inhibiting apoptosis, reducing inflam-
matory cell infiltration, and increasing cell proliferation
in rhabdomyolysis-related AKI rat model. If clinical
research obtains positive results in the future, allopur-
inol treatment may become a new method for prevent-
ing and treating rhabdomyolysis-related AKI.

Nitrite

Nitrite acts as a nitric oxide (NO) donor and nitrosating
agent, which can be used as a signal molecule and
gene regulator [43,44]. IRI is protected clinically by
ischemic pre- and post-conditioning. Intravenous injec-
tion of nitrite inhibits IRI through related mechanisms
mediated by NO [45,46]. Since the onset of CS is unpre-
dictable, it is impractical to perform pharmacological
pretreatment of CS-induced IRI with NO. However, it
may be used as an on-site post-treatment agent imme-
diately before reperfusion injury. With this in mind,
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Murata et al. [47–49] conducted research using a CS rat
model. The results show that in addition to an expan-
sion in conventional extracellular fluid volume and
acid-base controlled infusion therapy, nitrite infusion is
a promising drug intervention therapy that can treat CS
by interfering with NO-mediated protective mecha-
nisms. Therefore, the authors suggest that low-cost
nitrite infusion therapy should be implemented clinic-
ally to prevent IRI and serve as a potential therapeutic
agent for CS.

Anisodamine

Anisodamine is a belladonna alkaloid, which is isolated
from the traditional Chinese medicinal herb Salvia mil-
tiorrhiza belonging to the Solanaceae family [50,51]. It
is mainly used to relieve circulatory diseases in clinical
conditions such as disseminated intravascular coagula-
tion (DIC) and skeptic shock [52,53]. The research of Yu
et al. [54] showed that anisodamine activated a 7 nico-
tinic acetylcholine receptor (a7nAChR) to increase the
level of serum estradiol. This further enhanced insulin
sensitivity in reducing serum potassium, which in turn
helped to reduce the on-site mortality of the CS mouse
model. These findings also encourage further research
on anisodamine for the treatment of CS at the disaster
site. Fan et al. [55] found that anisodamine treatment
inhibited the increase of high mobility group box 1 pro-
tein (HMGB1) in CS rat and mouse models. However,
the effect of anisodamine on proinflammatory cyto-
kines in CS and its relationship with mortality needs fur-
ther study [56].

Astragaloside-IV

Astragaloside-IV is a biologically active astragaloside
saponin isolated from astragalus [57,58]. It has been
reported that astragaloside-IV has anti-inflammatory
[59,60] and anti-oxidant [61,62] effects through anti-
mitochondrial damage, and can prevent acute kidney
[63] and tubular injury [64]. The therapeutic effect of
astragaloside-IV on acute renal failure is consistent with
the benefits of NO generation via endothelial nitric
oxide synthase (eNOS) [65,66]. Therefore, the effect of
astragaloside-IV is thought to be related to NO. In the
early stage, the production of IRI is prevented through
the protective effects of NO by inhibiting the systemic
inflammatory response [48]. Murata et al. [67] showed
that the direct and indirect anti-oxidant effect of astra-
galoside-IV on the kidney and the preventive effect on
mitochondrial dysfunction and inflammatory response
can significantly improve the survival rate of CS rat

model by the rehydration treatment. This provides new
insight into the prevention of CS-related renal failure by
rehydration and resuscitation, or for the prognosis of
CS by inhibiting the inflammatory response.

Hydrogen sulfide (H2S)

Hydrogen sulfide (H2S) is a newly discovered gas signal
molecule which is generated in the human body [68].
Low concentration of H2S plays a role in relaxing blood
vessels, controlling blood pressure and maintaining
homeostasis [69,70]. It also participates in regulating
apoptosis, oxidative stress and inflammatory responses
[71,72]. Teksen et al. [73] found that applying exogen-
ous H2S (NaHS) to treat the CS rat model could effect-
ively reduce the expression of kidney injury molecule-1
(KIM-1), neutrophil gelatinase-related lipoprotein
(NGAL), TNF-a, TGF-b, and total oxidant, therefore
improving kidney anti-oxidant levels. Meanwhile, the
levels of blood urea nitrogen (BUN), creatinine (Cre),
and creatine kinase (CK) also decreased with the appli-
cation of NaHS. The results of this study indicated that
the application of exogenous H2S (NaHS) can effectively
alleviate acute renal failure in CS rat model through
anti-inflammatory, anti-oxidant, and anti-apoptotic
effects. This study lays the foundation for the future
application of H2S in the clinical treatment of CS.
However, further pathological and pharmacological
studies are needed to confirm the safety, safe dosage
range, and the efficacy of CS of using H2S.

Bardoxolone methyl (BM)

Bardoxolone methyl (BM) is a semi-synthetic oleanane
triterpenoid derivative. Clinical studies have shown that
BM can achieve anti-inflammatory and anti-oxidant
effects by activating nuclear factor erythroid 2-related
factor 2 (Nrf2) and inhibiting nuclear factor-jB (NF-jB)
[74] by effectively improving glomerular filtration rate
in patients with chronic kidney disease (CKD) [75].
Kadioglu et al. [76] showed that BM treatment can
improve AKI in the CS rat model. These results also sug-
gested that BM may reduce crush kidney injury by
reducing the expression of TNF-a and TGF-b. In add-
ition, the role of BM is not limited to the kidney. It has
systemic anti-oxidant, anti-inflammatory, and anti-apop-
totic effects and can also reduce other complications
related to CS. However, given that Vaziri et al. [77]
reported that BM analogues have a dose-dependent
toxic effect on the progression of CKD, the use of BM in
large doses may cause serious side effects. In the future,
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further experiments are needed to explore the safety of
BM treatment in CS patients.

N-(2-hydroxyphenyl) acetamide

N- (2-hydroxyphenyl) acetamide (NA-2), also known as
2-acetaminophenol, is a synthetic compound and a
derivative of salicylic acid [78]. It is an effective anti-
inflammatory drug in rat arthritis model in vivo [79,80].
Siddiqui et al. [81] found that NA-2 and its gold nano-
particle conjugation (NA-2-AuNPs) attenuates the
inflammation and kidney injury in glycerol-induced AKI
mouse model through anti-oxidant and anti-inflamma-
tory mechanisms. NA-2 prevents kidney injury caused
by rhabdomyolysis by reducing BUN and Cre levels.
Compared with NA-2 alone, NA-2-AuNPs protect renal
structure at low doses. This study also found that both
NA-2 and NA-2-AuNPs can retain the renal tubule brush
border and actin cytoskeleton. The kidney protection
mechanisms of these compounds seem to downregu-
late the expression of cyclooxygenase-2 (COX-2), NF-jB
and iNOS, and upregulate the expression of HO-1 and
KIM-1, thereby protecting the kidney from inflammation
and oxidants.

Ulinastatin

Ulinastatin is an acidic glycoprotein purified from the
urine and blood of healthy people [82]. It is a multifunc-
tional serine protease inhibitor that inhibits a variety of
serine proteases, such as trypsin, thrombin, chymotryp-
sin, kallikrein and plasmin [83,84]. Yang et al. [85] found
that the early administration of ulinastatin to CS rat
model can reduce CS-induced AKI and reduce inflam-
mation. Ulinastatin can also significantly reduce the lev-
els of BUN, CK, Cre, Mb, and Kþ in the serum of CS rat
model. It also inhibits the infiltration of inflammatory
cells, reduces sarcomere rupture in compressed muscle
tissues, reduces glomerular hyperemia and edema, and
reduces the amount of Mb in kidney tissue. At the
same time, the ratio of regulatory T (Treg) cells in CD4þ

T cells after treatment with ulinastatin was significantly
higher than that of the crush injury group, while the
expression of IL-17 decreased. Therefore, the authors
believe that Ulinastatin may play a renal protective role
by regulating the balance between Th17 and Treg cells.

Biological agents

Recombinant human erythropoietin (rhEPO)

Erythropoietin (EPO) is a pleiotropic cytokine and a
glycoprotein of about 34 kDa. It was originally thought

to play a role in erythropoiesis [86,87] and has been
used in the treatment of chronic kidney disease with
anemia and cancer chemotherapy for 20 yrs [88].
Recently, studies have found that EPO and its receptor
(EPO-R) interact in a variety of non-hematopoietic tis-
sues to induce cytoprotective responses [89,90]. Yang
et al. [91] found that recombinant human erythropoi-
etin (rhEPO) could inhibit the activity of NF-jB and
iNOS, reduce the expression of BUN, Cre, GOT, GPT, and
CPK which are kidney injury markers after rhabdo-
myolysis, and relieve AKI induced by rhabdomyolysis in
rats. Wang et al. [92] showed that EPO could alleviate
kidney injury by reducing the recruitment of macro-
phages in vivo and promoting the transformation of M2
macrophage phenotypes. They also confirmed that EPO
could directly inhibit the pro-inflammatory response of
M1 macrophages in vitro and promote the expression
of M2 markers. These findings may optimize the treat-
ment of sterile kidney injury with EPO. Zhou et al. [93]
further proved that rhEPO has immunomodulatory abil-
ities, and confirmed that it plays a therapeutic role in
CS by regulating the TLR4/NF-jB signaling pathway in
macrophages.

Macrophage surface molecule mac-1 inhibitor:
Lactoferrin (Lf)

In recent years, many studies have confirmed that mac-
rophages are involved in the pathogenesis of rhabdo-
myolysis syndrome, but the exact molecular
mechanism is still unclear [94–96]. Okubo et al. [97]
found that macrophages released extracellular traps
(ETs) containing DNA fibers and granular proteins in a
mouse model of rhabdomyolysis syndrome. Heme-acti-
vated platelets released by necrotic muscle cells during
rhabdomyolysis syndrome interact with Mac-1 on mac-
rophages, promoting the production of macrophage
extracellular traps (METs) by increasing intracellular ROS
production and histone citrullination. The authors
speculated that these METs may cause kidney damage
through the binding of Toll-like receptors to kidney
cells. The results of this study suggested that the use of
Mac-1 inhibitor (Lactoferrin) or direct inhibitor of METs
can prevent platelet-mediated MET formation and
related renal tubular injury in rhabdomyolysis-induced
AKI. This method may develop into a new treatment
strategy for CS.

Antibody treatment: anti-HMGB1 antibody

High mobility group box 1 protein (HMGB1) is a ubiqui-
tous non-histone chromosomal protein that can be
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passively released by necrotic cells and be actively
secreted by inflammatory cells [98,99]. It is considered to
be an important extracellular medium for systemic
inflammation and plays a key role in the pathogenesis of
systemic acute inflammation [100,101]. Shimazaki et al.
[15] showed that HMGB1 is released immediately after
crush injury and plays a pro-inflammatory effect.
Administration of the anti-HMGB1 antibody can reduce
the inflammatory response by blocking the action of
extracellular HMGB1, thereby reducing organ damage
and improving survival rate [15]. Therefore, HMGB1
seems to be a new therapeutic target. In addition, previ-
ous studies have shown that HMGB1 can indirectly
increase the production of TNF-a [102] and upregulate
the level of c-Jun N-terminal kinase (JNK) which is a
stress-activated protein kinase [103]. Zhang et al. [104]
also found that the administration of anti-HMGB1 anti-
body, anti-TNF-a antibody and JNK inhibitor SP600125
can reduce renal cortical cell apoptosis. This suggests
that JNK and TNF-a may collectively participate in the
positive feedback cycle of CS, leading to the increase of
renal cortical cell apoptosis and further kidney damage.
HMGB1 in the muscle may also act as a potential trigger.

Antibody treatment: anti-RAGE antibody

Receptor for advanced glycation end products (RAGE) is
a newly discovered pattern recognition receptor in vivo
that regulates inflammation [105]. Studies have found
that RAGE is widely involved in the pathological proc-
esses of many diseases and the pathogenesis of acute
inflammatory diseases, and is closely related to
Alzheimer’s disease, pneumonia, tumors and diabetes
[105]. It is reported that HMGB1 can promote the sig-
naling process of RAGE. Therefore, it is reasonable to
believe that RAGE is closely related to the body’s
inflammatory response after crush injury [15].
Matsumoto et al. [106] investigated the role of anti-
RAGE antibodies in the CS rat model. They found that
intravenous injection of anti-RAGE antibodies in rats,
before releasing compression, can reduce the degree of
inflammatory response, prevent the development of
MOF and facilitate the prognosis of CS.

Cell therapy: mesenchymal stem cells treatment

Mesenchymal stem cells (MSCs) are pluripotent stem
cells that have the ability to self-renew and differentiate
into lineages of mesenchymal cells [107,108]. MSCs can
be isolated from various tissues and are easy to culture
in vitro [109]. Almeida et al. [110] showed that MSCs
could protect the kidney injury induced by

rhabdomyolysis in mice. Although some researchers
have observed that migration and trans-differentiation
into functional parenchymal cells of MSCs play a repair-
ing role, its beneficial effects are mainly due to its para-
crine properties. Duffy et al. [111] believe that the
presence of MSCs can promote the accumulation of
protective M2 macrophages in the kidney, increase the
production of anti-inflammatory IL-10, and reduce the
expression of IL-6 and TNF-a. Geng et al. [112] showed
that MSC can improve rhabdomyolysis-induced AKI by
activating macrophages to the M2 phenotype, thereby
promoting the transition of renal tubules from injury to
repair and accelerating the recovery period of rhabdo-
myolysis mouse model. This finding provides new clues
in exploring the beneficial mechanisms of MSCs on AKI.
These characteristics of MSCs can provide effective and
innovative therapies for the treatment of acute and
chronic kidney disease. However, more research is
needed on MSCs-related therapies to ensure their clin-
ical application for CS patients in the future.

Cell therapy: carbon monoxide-enriched red blood
cell (CO-RBC)

To improve the expression level and activity of cyto-
chrome P450 during major bleeding, Ogaki et al. [113]
developed a carbon monoxide (CO) delivery system. CO
is bound to hemoglobin molecules in RBCs by putting
CO gas through the preparation of RBC to create CO-
enriched red blood cells (CO-RBC). It may become a
novel form of cell therapy. Subsequently, Taguchi et al.
[114] also indicated that CO-RBC has potential as a
practical therapeutic agent for CS-related catastrophic
kidney disease. The CO-RBC therapy can reduce the oxi-
dation of myoglobin in the kidneys and the degrad-
ation of cytochrome P450, which can inhibit the
production of free heme and hemoglobin and have
protective effects for the kidneys. At the same time,
researchers have discovered that CO-RBC can also func-
tion as a primitive O2-RBC after releasing CO. Most
patients suffering from compression by heavy objects
also have traumatic hemorrhage caused by falling
stones and other reasons. Therefore, CO-RBC treatment
is expected to be a very practical therapy in major dis-
asters against CS and massive hemorrhage.

Other treatment

Icing treatment-liquid infusion therapy combined
with icing

In recent years, there has been a controversy over the
potential benefits of muscle healing after various
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trauma-induced damages. However, research has
shown that lower tissue temperature is the most
powerful intervention for limiting local IRI, which may
prevent mitochondrial damage and reduce the severity
of IRI. Murata et al. [115] indicate that icing treatment
can inhibit the effect of vasoconstriction on potassium
concentrations, have anti-inflammatory effects in the
affected cardiomyocytes, and improve mitochondrial
function. This study demonstrated that icing treatment
after crush injury in rats can extend survival by inhibit-
ing the increase of blood potassium concentration in
the emergency. However, because CS involves multiple
symptoms and rapid deterioration at the same time,
this treatment cannot significantly improve the overall
results. The icing treatment could suppress the acute
inflammation reaction effectively, which can be
improved by combining it with other fluid infu-
sion therapies.

Conclusions and perspectives

In recent years, various disasters and accidents have
been occurring frequently. The CS caused by disaster
ruins has caused widespread concern. With the occur-
rence and high mortality rate of patients with CS, trad-
itional treatments have not yet met the clinical needs. It
is necessary to develop new treatments that are effi-
cient and convenient. Due to the pathophysiological
mechanisms of CS, the efficacy of new anti-oxidant and
anti-inflammatory treatments have been shown in the
animal model of CS. Although the potential CS medical
treatments in clinical application are few and need to
be studied further to ensure their security in the future
clinical application, the animal research on drug treat-
ments of CS to the early efficient treatment at the scene
for patients with CS in the future is of considerable sig-
nificance. We have summarized the research on medical
therapy for CS (Table 1). More importantly, after the in-
depth study of the above medical therapy, it is
expected to be used in emergency situations, before or
during decompression of injured patients at the disas-
ter site. This can make up for the inadequacy of profes-
sional medical equipment (such as CVVHF) on
the scene.

In the current investigation of the pathogenesis of
CS and potential therapeutic targets at the cellular,
organelle and molecular level have become a new
research direction. The recent trend is that the medical
treatment of CS is gradually changing from the current
supportive and symptomatic treatment to prevention
and etiological treatment. We recommend adopting
individualized and precise medical treatment methods.
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