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Abstract

Islet enumeration in impure preparations by conventional dithizone staining and visual counting is 

inaccurate and operator dependent. We examined nuclei counting for measuring the total number 

of cells in islet preparations, and we combined it with morphological analysis by light microscopy 

(LM) for estimating the volume fraction of islets in impure preparations. Cells and islets were 

disrupted with lysis solution and shear, and accuracy of counting successively diluted nuclei 

suspensions was verified with: (1) visual counting in a hemacytometer after staining with crystal 

violet, and automatic counting by (2) aperture electrical resistance measurement and (3) flow 

cytometer measurement after staining with 7-aminoactinomycin-D. DNA content averaged 6.5 

and 6.9 pg DNA/cell for rat and human islets, respectively, in agreement with literature estimates. 

With pure rat islet preparations, precision improved with increasing counts, and samples with 

about 160 or more islets provided a coefficient of variation of about 6%. Aliquots of human islet 

preparations were processed for LM analysis by stereological point counting. Total nuclei counts 

and islet volume fraction from LM analysis were combined to obtain the number of islet 

equivalents (IE). Total number of IE by the standard method of dithizone staining/manual 

counting was overestimated by about 90% compared to LM/nuclei counting for 12 freshly isolated 

human islet research preparations. Nuclei counting combined with islet volume fraction 

measurements from light microscopy is a novel method for achieving accurate islet enumeration.
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Transplantation of islets of Langerhans is an alternative to whole pancreas transplantation 

for a subpopulation of patients with type I diabetes (1–3). Improvements in pancreas 

procurement, preservation, islet isolation, culture, and transplantation are being pursued (2, 
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4–6), but progress is hindered by the absence of meaningful measures of islet dose and 

quality (7–10), the most fundamental of which is the amount of islet tissue in a preparation. 

Estimation of islet volume in a pure preparation is challenging and is even more difficult 

with human islet preparations that typically consist of about 50% non-islet components (11–

14).

Early measurements of islet properties reported on a per islet basis were scattered (10). The 

concept of an islet equivalent (IE), the volume of a sphere with a diameter of 150 μm, 

standardized islet enumeration on the basis of volume and reduced variability (15–17). The 

current standard method involves staining islets with dithizone (diphenylthiocarbazone, 

DTZ) (18), followed by LM visualization and manual counting. Usually, one dimension is 

estimated, such as the diameter of a circle having the same area as the islet. Islet diameters 

are divided into groups of 50-μm increments, and conversion factors are used to estimate 

total islet volume (15). This oversimplified calculation leads to inaccuracy (19, 20) because 

the volume is calculated assuming that the islet is a sphere, and use of a single conversion 

factor over a large increment adds additional error. Furthermore, measurements that differed 

by as much as 40% between different operators occurred in one unpublished multicenter 

study (21). Digital image analysis applied to replace visual estimation (22–25) is based on a 

two dimensional area estimate and the assumption that the islet is a sphere or ellipsoid of 

revolution, neither of which is true (26, 27).

We propose an alternative approach: separate measurements are made of (1) the total 

amount of tissue (e.g. total volume or number of cells) and (2) the fraction that is islet tissue, 

from which the amount of islet tissue is calculated. Methods to measure total amount of 

tissue include the change in electrical resistance as a tissue particle passes through an 

aperture and assay of DNA content, total protein, and dry weight (10, 29, 30). Measurements 

of the packed cell volume (PCV) are routinely made with human islet preparations (31) but 

have not been used to estimate the volume of tissue. There remains a need for a fast, 

accurate, and precise method for measuring the total amount of tissue in an islet preparation.

Nuclei counting is a standard method for accurate enumeration of individual cells (32, 33), 

and release of nuclei from cells osmotically lysed with hypotonic citric acid occurs without 

nuclei breakdown or losses. With addition of a surfactant, nuclei counts can be used to 

quantitatively assess cell number in suspensions of cell aggregates (34). In this study, we 

first examine nuclei counting following cell disruption for measuring the total number of 

cells in rat islet preparations as well as cell suspensions. Nuclei are quantitated by visual 

counting with a hemocytometer and with two automated methods, aperture electrical 

resistance measurement and flow cytometry. Comparison with DNA analysis demonstrates 

the superiority of nuclei counting. We use nuclei counting to determine the number of IE in 

pure rat islet preparations and compare the data with DTZ staining/manual counting. We 

then combine nuclei counting and light microscopy (LM) analysis to determine the number 

of IE in freshly isolated human islet preparations. We showed in a previous study (31) that 

LM morphological analysis of 1-μm plastic sections by stereological point counting provides 

estimates of the islet volume fraction in impure preparations with accuracy and precision 

comparable to that obtained by electron microscopic (EM) ultrastructural analysis of 

ultrathin sections. We compare the number of IE obtained by LM/nuclei counting to the 
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standard method of DTZ staining/manual counting and to a combination of LM analysis and 

PCV measurements. These data demonstrate that the current standard DTZ staining method 

substantially overestimates the number of IE and that nuclei counting with LM analysis 

provide an attractive alternative.

MATERIALS AND METHODS

Culture of Cell Lines and Islet Preparations

Mouse insulinoma βTC3 cells (35) were cultured in tissue culture flasks in DMEM medium 

(Mediatech, Herndon, VA, USA) that contained 4.5 g/l glucose supplemented with 10% 

(v/v) fetal bovine serum (FBS, Mediatech), 100 U/ml penicillin (Sigma-Aldrich, St. Louis, 

MO, USA), 100 μg/ml streptomycin (Sigma), and 10 mM HEPES (Mediatech), in a 

humidified 5% CO2 incubator at 37°C. Rat insulinoma INS-1 cells (36) were cultured in 

RPMI medium with 11.1 mM D-glucose (Mediatech) supplemented with 10% FBS, 100 

U/ml penicillin, 100 μg/ml streptomycin, 10 mM HEPES, 2 mM L-glutamine (Mediatech), 1 

mM sodium pyruvate (Mediatech), and 50 μM 2-mercaptoethanol (Sigma). Islets, isolated 

from male Sprague-Dawley rats using collagenase digestion/ficoll purification (37), were 

cultured in Medium 199 (Invitrogen, Carlsbad, CA, USA) supplemented with 80 mg/l 

ciprofloxacin (Mediatech), 5 mM sodium pyruvate, 2 mM GlutaMax (Invitrogen), 16.7 μM 

zinc sulfate (EM Sciences, Darmstadt, Germany), 25 mM HEPES buffer, and 10 ml/l of ITS 

+ Premix solution (BD Biosciences, Bedford, MA, USA). Human islet preparations were 

cultured in CMRL 1066 (Miami formulation, Mediatech) that contained 1 g/l glucose 

supplemented with 10% (v/v) FBS.

Human Islet Isolation

Islets were isolated as described previously (31) from cadaver pancreata, some using the 

two-layer perfluorocarbon (PFC) method (38),(9) by the Islet Resource Center of the Joslin 

Diabetes Center using standard collagenase/protease digestion (1, 39, 40). From the final 

islet suspension, aliquots were taken immediately for assays, including DTZ staining for 

volume fraction estimation and manual counting for islet enumeration, PCV measurements, 

LM morphological analysis, and nuclei counting. Two 0.5 ml aliquots for morphological 

analysis by LM were fixed immediately. In this study, aliquots for DNA analysis were taken 

from islet samples received about 4 to 6 hr after isolation was complete and were 

immediately frozen for subsequent measurement. Samples examined in this study by LM 

analysis, DTZ staining, and PCV measurement were from 12 freshly isolated preparations 

deemed suitable only for research because they had insufficient number of IE for 

transplantation.

Cells and Nuclei for Counting

Cells from cell lines were removed from flasks by incubation with 0.05% (w/v) trypsin in 

0.53 mM EDTA solution (Mediatech) at 37°C for 7 min (βTC3) or 3 min (INS-1). The 

resulting suspension containing single cells with occasional small aggregates was stored on 

ice. Cell counting was performed within 30–45 min after tryspinization to avoid clumping. 

Islet suspensions were mixed by vortexing, and aliquots were removed for nuclei 

preparation using narrow-orifice (0.6 mm inside diameter (id)) pipette tips (0–200 μl, USA 
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Scientific, Ocala, FL, USA). Selected experiments were carried out with wide-orifice (2-mm 

id) (0–200 μl, Thermo Fisher Scientific, Waltham, MA, USA) and medium-orifice (1-mm 

id) (200–1000 μl, USA Scientific, Ocala, FL, USA) pipette tips. Nuclei were prepared from 

cells and islets by adding equal 100-μl volumes of sample and of a lysis solution containing 

0.1 M citric acid (Sigma) and 1% (v/v) Triton X-100 (Sigma) to a 1.5 ml microtube. The 

mixture was incubated at room temperature for 5 min with vortex mixing every 1.5–2 min. 

The islet mixture was additionally placed in a 1-ml syringe and rapidly forced through a 

26G3/8″ needle (Becton Dickinson, Franklin Lakes, NJ, USA) 10 consecutive times. Unless 

otherwise specified, 105 cells and 160 IE (2.5 × 105 cells assuming 1560 cells per IE (36)) 

were used for each sample analyzed.

Counting Methods

Visual Counting of cells and nuclei with Hemacytometer—A cell suspension 

volume of 200 μl was stained with 200 μl of 0.4% (v/v) trypan blue and diluted with 

Dulbecco’s phosphate buffered saline (D-PBS, Invitrogen, Carlsbad, CA, USA) to between 

5 and 15 × 105 cells/ml. A 12-μl sample was placed on a hemacytometer (Hausser Scientific, 

Horsham, PA, USA) and counted using 40x magnification (41, 42). Stained and unstained 

cells were counted to obtain total cell number. For each of triplicate samples, 250 cells were 

counted on each side of the hemacytometer (total 500 cells). For counting nuclei, crystal 

violet (Sigma) was added to the lysed samples to a concentration of 0.1% (w/v). Unless 

otherwise specified, samples were diluted with D-PBS to between 5 and 15 × 105 nuclei/ml 

and counted as described for cells; 500 nuclei were counted for each of triplicate samples.

Aperture Electrical Resistance Measurement—A Coulter Multisizer II (Beckman-

Coulter, Miami, FL, USA) was used to determine particle size distribution by monitoring 

current between two electrodes on either side of a 100 μm diameter aperture that allowed 

detection of diameters from 2.0 to 60 μm. The instrument was calibrated with standardized 

beads (CC Size Standard L 43 certified NIST traceable latex beads, Beckman-Coulter). A 

known volume of nuclei sample was diluted with 40% glycerol in ISOTON II diluent 

(Beckman-Coulter) to a volume of 20 ml. A sample volume of 500 μl was drawn through the 

aperture, and the resulting current pulses were analyzed (AccuComp, Beckman-Coulter) to 

provide a volume distribution and the sample concentration.

Flow Cytometer—Unless otherwise specified, nuclei were diluted with D-PBS to no 

higher than 5 ×105 nuclei/ml, stained with 7-aminoactinomycin D (7-AAD, Invitrogen) at a 

final concentration of 0.01 mg/ml for at least 2 min at room temperature, then analyzed 

using a flow cytometer (Guava Personal Cell Analysis (PCA) system, Guava Technologies, 

Hayward, CA, USA). Instrument performance was verified with the Guava Check™ 

application and Guava Check Kit reagents (Guava Technologies). 7-AAD fluorescence was 

detected in photomultiplier 2 (PM2) with PM1 and PM2 voltage set at 430 and 450 V, 

respectively. PM2 threshold was set between 70 and 100, forward scatter (FSC) gain at 4x, 

and FSC gate at 100. Nuclei exhibited FSC intensities greater than 100, and debris (events 

with FSC intensity less than 100) were excluded. Scatter plots of 7-AAD intensity and FSC 

were initially viewed with Guava Express software. Data from 7-AAD-stained nuclei 

samples were acquired using the Guava ViaCount application. The number of nuclei events 
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appeared in the “Total Cells/mL” section of the data table, and 1000 events were acquired 

per sample in triplicate.

DNA Analysis

DNA concentration in cells or islets was quantified by fluorospectrophotometry using the 

CyQUANT® Cell Proliferation Assay Kit (Invitrogen) and the λ DNA standard (Invitogen), 

which is based on the strong fluorescence enhancement that CyQUANT GR dye undergoes 

when bound to cellular nucleic acids. CyQUANT dye binding to RNA was eliminated by 

pre-treating samples with DNAse-free RNAse (Sigma). Fluorescence intensity was 

measured with 480 nm excitation and 520 nm emission wavelengths in a plate reader 

(Spectra MAX Gemini micro-plate spectrophotometer, Molecular Devices, Sunnyvale, CA, 

USA) and was linearly related to the nucleic acid concentration in the sample. DNA was 

also quantified with the PicoGreen® dsDNA Quantitation Kit (Invitrogen) for comparison. 

The procedure, λ DNA standard, and lysis buffer were the same as for the CyQUANT assay; 

only the dye was different.

Islet Volume Fraction from LM Morphological Analysis

A 5 ml aliquot was processed to produce 1-μm plastic sections stained with toluidine blue 

that were analyzed at 420X by stereological point counting (43) with a 90-point grid 

covering adjacent, non-overlapping fields. to determine the volume fraction of islet tissue, as 

previously described (31). The tissue type was determined at each intercept point over 

tissue.

Number of IE from Nuclei Counting Data and LM Morphology

The volume fraction of islet tissue obtained from LM morphological analysis by 

stereological point counting was combined with the total number of all cells measured by 

nuclei counting to yield an estimate of the number of IE in the preparation. The calculation 

procedure used Equations (1) to (5) as described in the Appendix. Briefly, the first step was 

conversion of the volume fraction islet tissue into the volume fraction of islet cells amongst 

all cells exclusive of extracellular volume, Equation (2), and then into the number fraction of 

islet cells by using estimates of the volume of each cell type, Equation (3). Multiplication by 

the total number of all cells yielded the number of islet cells, Equation (4), which was 

converted to number of IE following division by 1560 cells per IE (31) with Equation (5). 

The total volume of islets could be calculated once the number of IE was known.

Volume Fraction Islets and Number of IE by DTZ Staining

DTZ was used to discriminate islet from non-islet tissue by staining islet cells (18). Volume 

fraction islets was estimated by LM visualization, and the number of IE in a sample was 

determined by size estimation using a micrometer disc calibrated reticle and use of a 

standard formula (44), as previously described (31).

Number of IE from PCV measurement and LM morphology

The packed cell volume of in the islet preparation was measured as previously described 

(31), from which tissue volume was determined by using an estimate of 0.3 (45) for the void 
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volume fraction of the packed cell pellet. The calculation procedure used Equations (6–9) in 

the Appendix. The volume of islet tissue was determined from the total tissue volume 

together with the volume fraction islets obtained directly from the LM morphological 

analysis. Finally, the volume of an IE was used to calculate the number of (NIE) in the 

preparation.

Statistics

Straight lines were fitted to data by linear least squares regression. Unless specified 

otherwise, precision was reported as standard deviation for sample means and error bars and 

as the standard error of the estimate for fitted slopes. The significance of differences in 

means and slopes of straight lines was evaluated by two-sided Student t tests.

Additional details of methods are available elsewhere (45).

RESULTS

Comparison of Nuclei Counting Methods

Visual and Graphical Output—Cell disruption of high and low purity human islet 

preparations by osmotic lysis using hypotonic citric acid together with Triton x-100 

surfactant and shear produced a suspension of individual nuclei; no clumping of two or more 

nuclei was observed (Figures 1A, 1D). Cell debris and fragments were more pronounced 

with islets than with cells and with low purity than with high purity preparations. Intact 

normal nuclei and a small fraction of nuclei shrunken during apoptosis, but not any smaller 

fragments, were included when counting with a hemacytometer. Aperture resistance 

measurements produced a size distribution with two, slightly overlapping populations that 

represented nuclei and smaller fragments, (Figures 1B, 1E). The flow cytometer produced 

dot plots with two populations (Figures 1C, 1F). Only the nuclei displayed high 7-AAD 

fluorescence intensity, thereby permitting a clean separation of nuclei from cell fragments.

Linearity, Accuracy, and Precision of Enumeration Measurements—INS-1 cells 

were suspended and disrupted to form a stock nuclei suspension. Aliquots diluted to cover a 

wide concentration range were counted by each method. Measured nuclei concentration is 

plotted in Figure 2A as a function of the calculated concentration over four orders of 

magnitude and in Figures 2B and 2C on linear coordinates over different concentration 

ranges to illustrate where each counting method departs from linearity. Concentration 

measured with a hemacytometer varied linearly with calculated concentration over the entire 

range but was uniformly about 11% higher than the line of identity (Figure 2C). Flow 

cytometry and aperture electrical resistance data agreed well with the line of identity up to 

about 5 × 105 and 7 × 107 nuclei/ml, respectively (Figure 2B), above which the data began 

to deviate from linearity. These deviations arose from coincident events (two nuclei 

registering in the sensing zone at the same time), which increased with concentration. The 

Coulter Multisizer II gave erroneously high readings at less than about 104 nuclei/ml (data 

not shown).

The higher concentration measured with the hemacytometer was explored further using data 

from three different operators. Data analogous to that in Figure 2 from multiple batches of 
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cells (n = 4) and rat islets (n = 3) yielded a slope of 1.16 ± 0.02, and a single measurement 

with human islets yielded a ratio of 1.17 ± 0.04 for nuclei counted by hemacytometer and 

flow cytometer. Lastly, nuclei and the cell suspension from which they were prepared were 

counted with a hemacytometer (Figure 3). The data for nuclei concentration versus cell 

concentration fit a straight line with a slope of 1.07 ± 0.02. All together, nuclei concentration 

measured by visual counting with a hemocytometer was high by about 7 to 17% (average of 

all data 12 ± 5%), presumably because of the presence of large cellular fragments, particles, 

and debris that appeared as nuclei by visual counting but were not registered as nuclei by the 

two other counting methods.

The precision of nuclei concentration measurement improved with an increase in the number 

of nuclei counted (Figure 4A). The coefficient of variation (COV) data was consistent with 

the prediction for data that follows a Poisson distribution, as is expected for counting data 

(46). The COV was lower with the medium- and wide-orifice pipette tips than with the 

narrow-orifice pipette tips; it decreased as the number of IE in the original sample increased 

(Figure 4B) and was about 6% or less when 160 or more IE were sampled, which provides a 

reasonable balance between acceptable precision and use of a small number of islets.

All three methods were relatively rapid. A nuclei suspension sample took about 5 min to 

prepare. Visual counting of 500 nuclei (250 per side) took about 10 min. The Coulter 

Multisizer took an additional 5 min for sample preparation and about 1 min for counting 

1000 nuclei. The Guava PCA flow cytometer required 2 min for sample preparation and 

took about 10 sec for counting 1000 nuclei using a sample loaded at about 2.5 × 105 

nuclei/ml. All further nuclei counting was carried out with the flow cytometer.

Comparison of Nuclei Counts with DNA Analysis

The slope of the standard curve (absorbance versus DNA concentration) of the same DNA 

standard was constant for 3 months and increased 25% over the next 2 months. That 

increase led to a concomitant decrease in DNA measured with DNA controls. Subsequently, 

we replaced the DNA standard every 3 months. DNA concentration was linearly 

proportional to the nuclei concentration. With nuclei measured by flow cytometry, DNA 

concentration measured with the CyQUANT dye was 6.2 ± 0.6 and 6.4 ± 0.8 pg/cell for four 

batches of βTC3 cells and two batches of rat islets, respectively. Corresponding values 

measured with PicoGreen dye, 5.6 ± 0.8 and 4.9 ± 0.9 pg/cell for βTC3 cell and rat islets, 

respectively were significantly lower (p < 0.05). Recent measurements in a different islet 

center have yielded consistently higher values with PicoGreen than with CyQUANT 

(unpublished data, (47)). Measurements with CyQUANT dye over 3 years yielded an 

average of 6.5 ± 1.1 pg/cell for 45 different rat islet preparations, 6.9 ± 2.3 pg/cell for 26 

preparations of freshly-isolated human islets sampled 4–6 hr after completion of islet 

isolation, and 8.5 ± 2.3 pg/cell for 21 samples of human islet preparations shipped to our 

laboratory from various islet isolation centers.

Comparison of Two Methods to Determine Number of Rat Islet Preparations

The number of IE in 27 rat islet preparations was determined by the standard method of 

DTZ staining with microscopic visualization and by nuclei counting. All rat islet 
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preparations were of high purity (greater than 95%, most greater then 98%). NIE determined 

by DTZ staining is plotted versus NIE determined by LM/nuclei counting in Figure 5A. The 

data is scattered; 23 of 27 estimates of (NIE)DTZ lie above the line of identify, which means 

that DTZ staining overestimates the number of NIE in comparison to LM/nuclei counting, in 

some cases substantially. The slope of the best-fit straight line is 1.23 ± 0.09, and the ratio of 

the mean values is 1.60, corresponding to a 60% overestimate by DTZ staining.

Human Islet Preparations

Data was obtained with 12 freshly isolated human islet research preparations.

Volume fraction islets—The average volume fraction of islets was 0.59 ± 0.21 by LM 

morphological analysis and 0.72 ± 0.22 by DTZ staining. The substantially higher value by 

DTZ staining is consistent with our previous observations (31).

Comparison of three methods to determine number of IE—We compared the 

number of IE obtained by three different methods: (1) measurements of islet volume fraction 

by LM morphological analysis together with the total number of cells by nuclei counting; 

(2) DTZ staining with manual counting by microscopic visualization; and (3) measurements 

of islet volume fraction by LM together with packed cell volume measurements. The 

number of IE measured by each of the three methods is compared in Figure 5B, in which 

NIE determined by both the DTZ staining and LM/PCV methods is plotted versus NIE 

determined by LM/nuclei counting. For 11 of the 12 sets of data, both DTZ staining/manual 

counting and LM/PCV substantially overestimate the number of IE, as reflected by the 

slopes of the best-fit straight lines. On average, DTZ staining overestimates the LM/nuclei 

counting measurement by 92%. The slope for DTZ staining is 15% higher than that for LM/

PCV.

DISCUSSION

Determination of the amount of islet tissue in an islet preparation, whether by volume, 

protein content, DNA content, or number of cells, is important in all areas of islet 

investigation and is especially crucial in islet transplantation. This is the first study to 

demonstrate that nuclei counting provides a rapid, accurate, and precise method for 

enumeration of the total number of cells in an islet preparation. Nuclei counting combined 

with islet volume fraction measurements from morphological analysis using light 

microscopy is a novel method for accurately determining the volume of islet tissue in a 

freshly-isolated impure islet preparation.

Prior to this study, we evaluated dissociation of islets with trypsin with subsequent counting 

of liberated cells. This approach was not quantitative, some cells were lost, and fractions of 

original islet cells were not recovered as single cells (data not shown), which is consistent 

with previous reports (48–50). Instead, in this study we disrupted the cells with a 

combination of (1) hypotonic citric acid, which caused osmotic lysis of the cell membrane 

but not the nuclear membrane (51), (2) Triton-X 100, which reduced the size of cell debris 

(52), and (3) application of shear force, which freed the nucleus from the cytoplasm, 

followed by (4) staining with crystal violet, which sharpened the nuclear image (32). The 
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resulting suspension contained no aggregates of nuclei but did contain cellular debris and 

fragments. Because the nucleus swells reversibly in hypotonic solution without lysis of the 

nuclear membrane (51), all of the nuclei from cells in the islet tissue should be recovered 

after the procedure, in contrast to the loss of intact cells, which occurs as a result of rupture 

of some cell membranes following dissociation with serine proteases such as trypsin.

We investigated three methods for counting nuclei, all of which could be used satisfactorily. 

They differed in the way nuclei were distinguished from fragments, the resulting accuracy, 

the time required for a measurement, and the range over which the measurement was linear 

with nuclei concentration (Figures 1–3). Visual counts with a hemacytometer were linear 

over the entire concentration range studied but were higher than the other two methods by 

about 12 ± 5% because of the inability of the eye to consistently distinguish fragments from 

true nuclei. This was confirmed by visual counting of aliquots of cells and nuclei prepared 

from the same cell suspension. Data from flow cytometry (Guava PCA) and aperature 

electrical resistance measurement (Coulter Multisizer II) deviated from linearity at 

concentrations above about 5 × 105 and 7 × 104 nuclei/ml, respectively. Aperture resistance 

measurements distinguished cell fragments from nuclei purely on the basis of size. The flow 

cytometer dot plots with nuclei prepared from islets revealed the presence of a small 

population of unstained particles producing forward scatter (which depends on particle size 

and granularity) comparable to that of the stained nuclei that contained DNA. By setting the 

7-AAD fluorescence intensity gate sufficiently high, it was possible to eliminate virtually all 

of these unstained particles.

In addition to providing the most accurate measurement over a wide concentration range, 

flow cytometry was also the most rapid. Once nuclei samples were prepared (5 min) and 

stained (2 min), only seconds were required for measurement. Aperture resistance 

measurements required an additional 5-min for sample preparation, and visual counting took 

10 min. Debris and fragments could have been eliminated by repeated centrifugation to 

make visual counting more accurate but with a substantially lengthened sample preparation 

time (32). We selected the Guava PCA flow cytometer because it had a small footprint, 

could be operated with minimal training, and required less than 20 μl sample volume (and 

consequently a minimal quantity of islets) because the sample was analyzed while flowing 

through a microcapillary without sheath fluid, which is used in flow-activated cell sorters 

that require a much larger sample volume.

Precision of measurements made by visual counting and by the flow cytometer 

approximately followed Poisson statistics (Figure 4A). Flow cytometry had better precision 

than visual counting because many more counts could be made in a reasonable time period. 

The uncertainty in counting nuclei from islets was minimized so long as 160 or more IE 

were sampled (Figure 8). The COV increased with a smaller sample because of 

heterogeneity in islet sizes as well as sampling errors. The latter were minimized by using a 

larger pipette orifice.

We compared nuclei counts by flow cytometry with cell DNA analysis, using two 

commonly-used fluorescent dyes. With CyQUANT, we obtained 6.4 – 6.5 pg DNA/cell for 

rat islets and 6.9 pg DNA/cell for human islets. These values are comparable to estimates for 
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human cells (6.6 and 6.4 pg/cell for female and male, respectively) (53) and to values of 7.3 

and 5.7 pg/cell reported (48) for rat islet α and β cells, respectively. This agreement between 

our measurements of DNA content per cell and accepted values in the literature supports the 

notion that the cell nuclei originally in the tissue were recovered without significant loss. It 

also supports the accuracy of both flow cytometer nuclei counts and DNA analysis with 

CyQUANT dye. We obtained lower DNA concentrations per cell with PicoGreen (p < 0.05), 

whereas others observed opposite trends, which illustrates the difficulties of using DNA 

analysis for measurement of the amount of tissue in islet preparations when different dyes 

are used. In addition, DNA analysis requires several hours for completion; nuclei counting is 

much faster. The instability observed in the λ DNA standard is another potential source of 

error. For these reasons, we conclude that nuclei counting is more accurate and convenient 

than DNA measurement for enumeration of cells in islet preparations. Furthermore, we 

observed values of DNA/cell that were higher than expected with human islet preparations 

that were received after shipment, which suggests the presence of residual, undegraded 

DNA released from dead cells. These high values present an additional complexity in using 

DNA content for measuring the total number of cells in an islet preparation; nonetheless, 

measurement of the ratio of DNA/cell may be informative with regard to occurrence of 

recent cell damage in the preparation.

With highly purified rat islet preparations, the number of IE determined with the standard 

counting method using DTZ stained islets correlated poorly with estimates from LM 

morphological analysis and nuclei counting and averaged about 60% higher (Figure 5A). 

Purity was in excess of 95% and thus was not an issue; the overestimation must have been 

due to errors in volume estimation with DTZ-stained islets and the possible presence of 

some dying cells in the interior of the islets. Nuclei counting provided a direct measurement 

of the number of cells that had intact nuclei. Dying cells that retain some structure despite no 

longer having intact nuclei were not counted.

We also measured the number of IE in 12 freshly isolated human islet preparations using 

nuclei counting combined with LM morphological analysis of plastic sections, which we 

have shown has accuracy and precision equivalent to that of EM analysis of ultrathin 

sections of human islets preparations (31). We compared these measurements to estimates 

obtained by the standard counting method with DTZ stained islets and to estimates by LM 

analysis combined with PCV measurements. DTZ staining and LM/PCV measurements 

overestimated the number of IE in 12 preparations by an average of about 92 and 67% 

respectively.

We attribute the large overestimation of the current standard method of DTZ staining as 

compared to LM/nuclei counting to three factors: (1) difficulty in identification of the 

stained islet tissue in impure islet preparations, (2) the presence of some dying cells that 

occupy volume but no longer have intact nuclei, and (3) large errors in the estimate of islet 

volume that result from errors in the estimate of the islet diameter. Moreover, the method is 

prone to systematic error because the actual shape of islets is not spherical (19, 20), which 

introduces an upward bias leading to overestimation of volume. The three largest 

dimensions in mutually perpendicular directions (obtained by rotating islets with a 

micropipet) have been measured in 97 freshly isolated rat islets using a microscope with a 
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calibrated reticule (54), leading to average measured half-axis ratios of b/a = 0.82 and c/a = 

0.60 for an ellipsoid. In the most likely stable configuration, the ellipsoid has its smallest 

axis c perpendicular to the surface and appears to the viewer during visual size estimation as 

an ellipse with half axes a and b, from which the radius of an equivalent circle can be 

estimated. The volume of the equivalent sphere having this radius is 50% greater than the 

true volume of the ellipsoid. Use of the largest measured half-axis for the sphere radius leads 

to an overestimation of 100%. Thus, the assumption of spherical islets for the purpose of 

calculating islet volume could account for all or a substantial part of the error incurred by 

the conventional DTZ staining/manual counting technique.

Overestimation of islet volume by the LM/PCV method may also arise from the presence of 

dying cells that occupy volume but do not have intact nuclei. In addition, variation in 

centrifugation methods could result in a pellet void volume fraction substantially larger than 

the value of 0.3 used in estimating the total tissue volume, which would lead to a 

substantially larger estimated islet tissue volume than that which was actually present.

We have shown that LM morphological analysis combined with nuclei counting provides 

accurate, precise, and objective measurement of islet volume and number of IE in impure 

preparations. LM analysis of plastic sections requires 10 min, but preparation of the sections 

takes three days. Further refinement to permit use of frozen sections for LM analysis would 

allow the method to be used in real time. As shown by an analysis in the Appendix 

(Equations (10–14)), the number and volume of β cells is approximately linearly 

proportional to, and can be estimated from, the volume of islet tissue. Our findings suggest 

that islet volume measured with the DTZ staining/manual counting method grossly 

overestimates the volume of islet tissue. Compared to measurement by that standard method, 

the substantially lower value from LM/nuclei counting may be a more accurate indicator of 

functional islet mass, which is the important parameter for islet transplantation.
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NOTATION

a Half-axis of a symmetrical ellipsoid

b Half-axis of a symmetrical ellipsoid

c Half-axis of a symmetrical ellipsoid
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fIC Number fraction of all islet cells

fβIC Number fraction of β cells among all islet cells

nIC Number of islet cells

nIE Number of cells in an islet equivalent volume

nβ Number of β cells

NIE Number of islet equivalents

(NIE)DTZ Number of IE calculated from DTZ staining data

(NIE)LM/Nuclei Number of IE calculated from nuclei counting and light microscopy data

(NIE)LM/PCV Number of IE calculated from packed cell volume and light microscopy 

data

VI Total volume of the islet domain

VIC Volume of islet cells

VIE Volume of an islet equivalent (1.77 × 106 μm3)

VPC Volume of packed cell pellet

VT Total tissue volume

Vβ Volume of β cells

φIC Volume fraction of islet cells amongst all cells

φBIC Volume fraction of β cells among all islet cells

ΦI Volume fraction of islets

ΦIEC Volume fraction of islet extracellular space within the islets

ΦVPC Void fraction of packed cell pellet

(ΦI)DTZ ΦI calculated from DTZ staining data

(ΦI)LM ΦI calculated from light microscopy morphology analysis

νβ Cell volume of β cells

ν̄IC Average cell volume for islet cells

ν̄TC age cell volume for all of the cells
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APPENDIX

Number of IE and Islet Volume from Nuclei Counting Data and LM 

Morphology

LM morphological analysis by stereological point counting produced measurements of the 

volume fraction ΦI of islet tissue in the preparation. To make use of this information, we 

employ the framework of equations and parameters we previously developed (31). In the 

first step, data for ΦI is converted to φIC, the volume fraction of islet cells amongst all cells, 

exclusive of extracellular space. The two quantities are related by

(1)

where ΦIEC and ΦNIEC are the volume fractions of extracellular space in islet and non-islet 

tissue, respectively. With values of ΦIEC and ΦNIEC equal to 0.29 and 0.19 respectively (31), 

Equation (1) may be rearranged to yield

(2)

In the second step, φIC is converted to the number fraction of islet cells φIC by the relation

(3)

where ν̄
TC/ν̄

IC = 0.925 is the ratio of the average volume per cell for all cells in a human 

islet preparation divided by the average value for islet cells as determined for 33 clinical 

islet preparations (31). The total number of all cells nTC in the preparation, obtained by 

nuclei counting, is then used to estimate the number of islet cells from the estimate of fIC 

calculated with Equation (3) and the definition of fIC,

(4)

Equations (1), (3), and (4) correspond to Equations (30), (18), and (4) in the original 

derivation (31). Lastly, the number of IE in the preparation NIE is determined from
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(5)

where nIE = 1560 cells per IE (31). NIE is also related to volume of islets VI by

(6)

where VIE = 1.77 × 10−12 cm3 is the volume of an IE. Islet volume VI can be estimated if 

NIE is known.

Islet Volume and Number of IE from Packed Cell Volume and LM 

Morphology

Volume components of a packed cell pellet are shown schematically in Figure 7. The 

measured total packed cell pellet volume is VPC, and the volume of microscopic voids 

between the tissue components is VVPC. The volume fraction of voids is defined by

(7)

The total tissue volume VT in the pellet is therefore

(8)

and the total islet volume VI in the preparation is given by

(9)

from which the total number of islet equivalents is calculated using Equation (6). The void 

volume fraction of the packed cell pellet ΦVPC is estimated to be 0.3 from a measurement of 

the distribution space of mannitol in pellets from freshly isolated rat islets (45).

Relationship between Islet Volume, β-Cell Volume, and Number of β Cells

Rearrangement of Equations (24) and (20), respectively, from the original derivations (31) 

gives expressions for islet cell volume

(10)

and β-cell volume

(11)
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These volume quantities, in turn, can be used to calculate the number of islet cells and β 

cells in an islet preparation

(12)

(13)

By combining Equations (31) and (32) in the original derivation, one obtains

(14)

ΦIEC is a constant. Because fβIC the volume fraction of β cells among all islet cells, varies 

little between different islet preparations (31), to a first approximation it is constant, and the 

volume (and number) of β cells is directly proportional to the islet volume (or number of 

islet equivalents) in an islet preparation.
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Figure 1. 
Output of each counting method for nuclei from human islets of high (about 80%, top row) 

and low (30%, bottom row) purity by DTZ staining). (A, D) Photomicrograph of visual 

image for counting nuclei from these islets. During counting with a hemacytometer, the 

image was defocused slightly to maximize contrast around the border of each nucleus. (B, 

E) Nuclei size distribution measured at a concentration of 2 × 104 nuclei/ml by the aperture 

resistance method (Coulter Multisizer II). For counting purposes, the position of the 

minimum at 3 μm is taken as the border separating larger nuclei from smaller fragments. 

The diameter registered by the aperture resistance measurement is smaller than the actual 

size (see panels A and D) because the nuclear envelope is permeable to ions (54), which 

carry electrical current. (C) Flow cytometer plot of 7-AAD fluorescence intensity versus 

forward scatter intensity using the Guava PCA system with stained nuclei. Nuclei are in the 

population of events with high forward scatter (> 100) and high 7-AAD intensity (> 100). 

Image was obtained with Guava Express software and 1000 events in the nuclei quadrant. 

Output of each counting method for nuclei from rat islets was essentially identical to that for 

high purity human islets.

The higher density of incidents at low 7-AAD intensity (<100) in Panel A, as compared to 

Panel D, results from the relatively larger concentration of cellular fragments in the low 

purity preparation. The same trend is reflected in the size distribution of particles less than 3 

μm in diameter from aperture resistance measurements in Panels B and E.
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Figure 2. 
Measured versus calculated concentration of nuclei from INS-1 cells counted by all three 

methods. (A) All data plotted on log-log coordinates. (B) Data for concentrations up to 106 

nuclei/ml plotted on linear coordinates. (C) Data for concentrations up to 2 × 105 nuclei/ml 

plotted on linear coordinates. Data for visual counting with a hemacytometer were fitted 

with a straight line through the origin and yielded a slope of 1.11 ± 0.03. To determine 

calculated concentration, each measured concentration was multiplied by its dilution factor 

to estimate the original stock solution concentration. The average of these estimates in the 

range of 1–5 × 105 (flow cytometry) and 2–7 × 104 nuclei/ml (aperture resistance) agreed 

within 2%. The combined average was taken as the actual stock nuclei concentration, from 

which all other values were calculated using the known dilution factors. Line of identity is 

dashed.
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Figure 3. 
Nuclei concentration versus cell concentration for INS-1 and βTC3 cells, both measured by 

visual counting with a hemacytometer. Different symbols represent different batches of 

cells. The dashed line is the line of identity. The fitted line through the origin has a slope of 

1.07 ± 0.01. Suspensions of cells were prepared to provide a wide range of concentrations. 

Six aliquots were taken from each suspension for counting with the hemacytometer, three 

for nuclei and three for cell concentration.
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Figure 4. 
(A) Coefficient of variation from triplicate counts versus number of nuclei (from INS-1 

cells) counted by hemacytometer and flow cytometer. Straight line is the predicted 

coefficient of variation for data that follows a Poisson distribution. (B) Coefficient of 

variation versus the number of rat IE (estimated assuming 1560 cells per IE (31)) sampled 

using three different kinds of pipette tips. Samples of different volume were taken from islet 

stock solutions prepared from each of four batches of islets; nuclei were prepared and 

diluted to the same concentration within each batch, and 1000 nuclei were counted with the 

flow cytometer. Below about 200 islets counted, the narrow orifice pipette tip produced a 

higher COV than the other two pipette tips.
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Figure 5. 
(A) Number of IE by DTZ staining/manual counting versus number of IE by LM/nuclei 

counting for 27 rat islet preparations. The average NIE was 18,000 ± 6,000 for DTZ staining 

and 13,000 ± 7,000 for LM/nuclei counting. (B) Comparison of three methods for 

determination of number of IE in samples from 12 research preparations of freshly isolated 

human islet preparations. NIE by DTZ staining/manual counting (closed symbols) and IE by 

LM/PCV (open symbols) are plotted against NIE by LM/nuclei counting. On average visual 

counting substantially overestimated the number of IE compared to LM/nuclei counting by 

about 92% as shown by the slope of the straight line fit to the data. A similar trend is 

observed with LM/PCV with an overestimation of 67% compared to LM/nuclei counting. 

The mean values of NIE for all preparations were 87000, 167000, and 154000 for LM/nuclei 

counting, DTZ staining, and LM/PCV, respectively. Solid lines are from linear regression of 

the data through the origin. Dashed lines are lines of identity.
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