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Abstract
Purpose: Deep-learning (DL) techniques have been successful in disease-prediction tasks and could improve the prediction of
mandible osteoradionecrosis (ORN) resulting from head and neck cancer (HNC) radiation therapy. In this study, we retrospectively
compared the performance of DL algorithms and traditional machine-learning (ML) techniques to predict mandible ORN binary
outcome in an extensive cohort of patients with HNC.
Methods and Materials: Patients who received HNC radiation therapy at the University of Texas MD Anderson Cancer Center from
2005 to 2015 were identified for the ML (n = 1259) and DL (n = 1236) studies. The subjects were followed for ORN development for at
least 12 months, with 173 developing ORN and 1086 having no evidence of ORN. The ML models used dose-volume histogram
parameters to predict ORN development. These models included logistic regression, random forest, support vector machine, and a
random classifier reference. The DL models were based on ResNet, DenseNet, and autoencoder-based architectures. The DL models
Sources of support: Research reported in this publication was supported by the National Institutes of Health (NIH)/National Cancer Institute (NCI
under award number P30CA016672, the Helen Black Image Guided Fund, resources from the Image Guided Cancer Therapy Research Program at th
University of Texas MD Anderson Cancer Center, a generous gift from the Apache Corporation, and support from the Tumor Measurement Initiativ
through the MD Anderson Strategic Initiative Development Program.

Disclosures: Mr Reber and Dr Brock received support from the NIH/NCI under award number P30CA016672, the Helen Black Image Guided Fund
resources from the Image Guided Cancer Therapy Research Program at the University of Texas MD Anderson Cancer Center, a generous gift from th
Apache Corporation, and support from the Tumor Measurement Initiative through the MD Anderson Strategic Initiative Development Program. D
Van Dijk has received support from the Dutch Cancer Society (KWF-13529), Rubicon (NWO-452182317), and VENI (NWO-09150162010173). D
Anderson received an Allied Scientist grant from the Society of Interventional Radiology. Abdallah Mohamed received support from the NIH through
NIH National Institute of Dental and Craniofacial Research (NIDCR) Academic Industrial Partnership Grant (R01DE028290), NIH/National Scienc
Foundation NCI Smart Connected Health Program (R01CA257814), and an NIDCR Establish Outcome Measures for Clinical Studies of Oral and Cra
niofacial Diseases and Conditions award 1 (R01DE025248). Dr Fuller received an NCI Institutional Research Training Grant (T32CA261856) an
National Institute of Biomedical Imaging and Bioengineering Grant for Research Education Programs for Residents and Clinical Fellows. Dr Lai ha
received support from the NIDCR (R01 DE025248).

Research data were acquired under NIH R01DE025248 and are stored on figshare at the following URL: https://figshare.com/articles/dataset/Dosev
lume_histogram_DVH_parameters_of_the_mandible_for_Normal_Tissue_Complication_Probability_modelling/13568207

*Corresponding author: Brandon Reber.; E-mail: breber@mdanderson.org

https://doi.org/10.1016/j.adro.2022.101163
2452-1094/© 2023 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article unde
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
)
e
e

,
e
r
r
a
e
-
d
s

o

r

http://crossmark.crossref.org/dialog/?doi=10.1016/j.adro.2022.101163&domain=pdf
https://figshare.com/articles/dataset/Dosevolume_histogram_DVH_parameters_of_the_mandible_for_Normal_Tissue_Complication_Probability_modelling/13568207
https://figshare.com/articles/dataset/Dosevolume_histogram_DVH_parameters_of_the_mandible_for_Normal_Tissue_Complication_Probability_modelling/13568207
mailto:breber@mdanderson.org
https://doi.org/10.1016/j.adro.2022.101163
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.adro.2022.101163


2 B. Reber et al Advances in Radiation Oncology: July−August 2023
used each participant’s dose cropped to the mandible. The effect of increasing the amount of available training data on the DL models’
prediction performance was evaluated by training the DL models using increasing ratios of the original training data.
Results: The F1 score for the logistic regression model, the best-performing ML model, was 0.3. The best-performing ResNet,
DenseNet, and autoencoder-based models had F1 scores of 0.07, 0.14, and 0.23, respectively, whereas the random classifier’s F1 score
was 0.17. No performance increase was apparent when we increased the amount of training data available for DL model training.
Conclusions: The ML models had superior performance to their DL counterparts. The lack of improvement in DL performance with
increased training data suggests that either more data are needed for appropriate DL model construction or that the image features
used in DL models are not suitable for this task.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Head and neck cancers (HNCs) involve the oral cavity,
sinuses, pharynx, larynx, and associated regions.1 The
global relative incidence rates for HNCs by region are
2.0% for the oral cavity, 1.0% for the larynx, 0.7% for the
nasopharynx, 0.5% for the oropharynx, 0.4% for the
hypopharynx, and 0.3% for the salivary glands.2 Radiation
therapy (RT) is a cornerstone treatment modality for
HNC whether in the definitive or adjuvant setting.3 Sur-
vival rates for head and neck squamous cell carcinoma
have increased over the past few decades, with the Surveil-
lance, Epidemiology, and End Results Program reporting
5-year survival rates of 54.7% in 1992 to 1996 and 65.9%
in 2002 to 2006.2 This is mainly attributed to the predom-
inance of the prognostically better human papillomavirus
−associated variants in recent decades.4 This improve-
ment in survival indicates the importance of reducing the
incidence of HNC treatment late toxic effects to enhance
both RT for these cancers and patient quality of life after
treatment.

When treating HNCs with radiation, various treat-
ment-related late toxic effects can occur afterward, includ-
ing xerostomia, dysphagia, dysgeusia, trismus, and
osteoradionecrosis (ORN).5-7 Osteoradionecrosis is the
persistent exposure of bone resulting from irradiation
that does not heal over 3 months and can present as acute
or delayed exposure after RT.8 In RT for HNC, the man-
dible is the bone most affected by ORN; the maxilla also
can be affected, but at a much lower prevalence (24:1).9

The onset of ORN usually occurs within 4 months to
2 years after treatment.10 The severity of ORN can be clas-
sified using various systems, with most distinguishing
between higher and lower severity.9 Management may
include nonsurgical methods such as pentoxifylline and
antibiotics or surgical procedures in which necrotic bone
is resected.10 Typically, earlier-stage ORN is treated with
more conservative measures before moving to more-inva-
sive strategies such as surgery.11

The ability to predict ORN risk before treatment would
enable further optimization of treatment techniques (pro-
ton therapy, adaptive RT) and monitoring for early indi-
cations of ORN. Many studies have looked at risk factors
for ORN, including clinical and dose-volume parameters.
Identified risk factors include dosimetric parameters such
as the Dmean, smoking, preradiation therapy surgery/tooth
extraction, oral mucositis, dentist visits before RT, man-
dibular surgery, and tumor location. However, consider-
able variation remains regarding which of these
parameters are significant for ORN development.12-17

Researchers have applied machine-learning (ML) tech-
niques to various problems related to cancer.18 Tradi-
tional ML techniques use pre-extracted or hand-crafted
features to infer a target class. In comparison, deep-learn-
ing (DL) techniques extract features within images, text,
and other data without pre-extraction, creating features
that may be hard to construct using traditional
approaches. These low-level image features often include
lines, curves, and gradients among other simple image
components. Investigators have applied DL to several
medical imaging tasks, such as segmentation, disease
detection, and noise reduction.19,20 Deep-learning also
has been applied to outcome prediction for several ana-
tomic sites and differing outcomes, but ORN prediction
from HNC RT remains an ongoing problem of interest.21

The DL models have progressed over the years, from the
introduction of the convolutional layer to the skip con-
nection, attention mechanisms, and recent transformer
models.22

One problem that affects DL methods is a requirement
for larger sample sizes than those used with traditional
ML algorithms.18 In medical imaging, obtaining large
samples for DL can be difficult because of the relative
smaller number of events and stronger privacy require-
ments compared with many natural image tasks. How-
ever, unlike traditional ML algorithms, which are limited
to discretized variables, DL methods can use entire spa-
tial gradients contained within images. Whereas different
traditional ML algorithms have been compared for ORN
prediction, to the best of our knowledge, no study has
examined the viability of DL for this task, used full spatial
dose information contained within images, or compared
DL and ML performance for ORN prediction.23 In this
study, we compared the performance of traditional ML
algorithms with DL algorithms for the prediction of
binary ORN outcome using HNC patient radiation
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dose distributions. With full 3-dimensional (3D) dose
information, we believe that DL should outperform the
ML models for this prediction task.
Methods and Materials
Data

After institutional review board approval (RCR03-
0800), retrospective subject data from 2005 to 2015 at the
University of Texas MD Anderson Cancer Center was
obtained and evaluated. The subjects’ eligibility included
patients with head and neck squamous cell carcinoma
treated with RT alone or in conjunction with surgery or
chemotherapy with curative intent. Initially, 1789 subjects
were identified for inclusion; however, 530 were excluded
as the result of having previous HNC irradiation, a sur-
vival time shorter than 1 year, a history of salivary gland
cancer, or unavailable treatment plans. Figure E1 shows
the exclusion criteria, and Table E1 shows the treatment
prescription. The 1259 remaining evaluable subjects were
followed for a minimum of 12 months after RT. This min-
imum follow-up time was chosen to maximize the num-
ber of cases followed while still allowing time
posttreatment for ORN cases to develop. Most cases
received a splitfield that matched a larynx midline block
and lower anterior neck field for primary tumors and
upper nodal neck disease. Intensity modulated RT was
used when tumors were inferiorly positioned. There were
not changes to the dose calculation algorithm throughout
the study. Full 3D dose maps were readily available for
1236 of the subjects. The 23 3D dose maps not included
could have their dose−volume histogram parameters
extracted for the ML approaches, but the images them-
selves were not available for the DL methods. The ORN
grading scheme used was the one defined by Tsai et al24:
grade 1, minimal bone exposure with conservative man-
agement only; grade 2, minor debridement; grade 3,
hyperbaric oxygen therapy; and grade 4, major invasive
mandible surgery.

Computed tomography images of the head and neck
used for treatment planning were obtained for each subject.
A multiatlas-based segmentation of the mandible on each
computed tomography image was performed using
ADMIRE software (research version 1.1; Elekta). Dose grids
were obtained using 1 of 2 treatment planning systems:
Pinnacle (version 6.2b or later; Philips Medical Systems) or
CORVUS (version 4.0; Nomos Corporation). Spacing of 4
mm £ 4 mm £ 4 mm was ensured for the dose fields and
mandible contours. The Python package SimpleITK (ver-
sion 2.1.1) was used to resample the images using nearest
neighbor interpolation to ensure correct spacing, if neces-
sary.25 The SimpleITK package also was used to ensure
that the mandible contours and dose maps had the same
physical origin for each patient. The mandible contour for
each subject was used to crop the corresponding 3D dose
grids to the pixel dimensions of 32 £ 128 £ 128 around
the mandible using a Python script.

All cropped images were inspected to ensure that the
entire mandible fit within the 32 £ 128 £ 128 cropping.
Mandibles smaller than the cropping window had addi-
tional adjacent voxels included to ensure the cropped
image met the required size. Including voxels not solely
within the region of interest was needed to ensure that all
input images had the same size. In addition, including
voxels outside the region of interest, in this case the man-
dible, is common when applying convolutional neural
networks to medical image tasks.20 An example of the
dose and cropping is given in Fig. E2.

The subject data were split into training and withheld
test sets for the ML and DL models. A total of 1236 sub-
jects were available for use with the DL models, with 171
ORN + cases and 1065 ORN− cases. In comparison, a
total of 1259 subjects were available for use with the tradi-
tional ML models, with 173 ORN+ and 1086 ORN−
cases. The same cases for the test set were withheld from
all ML and DL models: 369 subjects with 48 ORN+ cases.
Although the total number of cases were different
between the ML and DL approaches, the test sets had the
same cases for both, which allowed for final performance
comparisons. For the traditional ML methods, the
remaining data were used in a nested cross-validation.
For the DL models, the remaining data were split into
training and validation sets. The validation set was used
during training to select the best set of hyperparameters
for each DL model type. The final data split was 650, 217,
and 369 subjects in the training, validation, and test sets,
respectively. The number of ORN+ cases was 111, 12, and
48 in the training, validation, and test sets, respectively. A
random number generator was used to split the data into
the different groups so that the incidence rate of ORN+
cases in the test set was approximately similar to the inci-
dence rate of ORN+ in the overall data set. The training
data was selected to be 75% of the remaining data not
included in the test set. A larger proportion of ORN+
cases in the training data set compared with the validation
data set was allowed to maximize the number of ORN+
cases seen during training.

All data sets for the DL models were z-score−stan-
dardized using the mean and SD voxel values from the
training data set. All voxel values for all training subject
data from the cropped 3D dose maps were used to calcu-
late the mean and SD voxel values. Standardizing the con-
volutional neural network model input instead of using
the original voxel values is common in medical image
DL.20 To account for data imbalance, the class with a
smaller number of samples within the data set (ORN+)
was oversampled randomly with replacement to match
the number of samples of the class with a larger number
of cases within the data set (ORN−). This random
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oversampling was only applied to the training set. The
oversampled training set had 1078 subjects.
Standard ML

The standard ML techniques used were logistic regres-
sion, random forest, and support vector machine. R (ver-
sion 4.0.4; R Foundation for Statistical Computing,
Vienna, Austria) was used for the logistic regression
model with the package caret to construct the model.26,27

The Python package Scikit-learn (version 0.24.2) was
used to construct the random forest and support vector
machine models.28 A random classifier was created to
establish a reference ORN prediction model. The random
classifier randomly classifies a case as ORN+ or ORN−
with equal probability. The dose-volume histogram
parameters of the mandible used in the models were the
following: V5-V70 in 5-Gy increments, D5-D95 in 5%
increments, D2, D97, D98, D99, mean dose, min dose, and
max dose. The Pearson correlation coefficient was used to
remove collinear variables. Variables were removed if the
Pearson correlation coefficient was >0.90. A nested cross-
validation was used to compare the ML techniques. The
inner loop performs a hyperparameter grid search for the
random forest and support vector machine models. The
inner loop is replaced by a stepwise feature selection
method for the logistic regression model. The outer loop
is used to compare the performance of the ML models.
Both inner and outer loops use a 10-fold stratified cross-
validation with 10 repeats. The withheld test set was not
used in the nested cross-validation.

Data were z-score−standardized using the mean and
SD of training data within each cross-validation iteration.
A description of the hyperparameters used in the grid
search can be found in Appendix E1. A backward stepwise
feature selection using the Bayesian information criterion
was used to select features for the logistic regression
model to then use in the corresponding outer loop itera-
tion. The accuracy, balanced accuracy, recall, precision,
F1 score, area under the receiver operating characteristic
curve (AUROC), and area under the precision recall curve
(AUPRC) were evaluated for each outer loop iteration
withheld fold. The mean (§SD) values for the metrics
from all outer loop iterations’ withheld cross-validation
folds were collected. Next, the best-performing ML algo-
rithm was identified by the largest AUROC and AUPRC
from the cross-validation. This identified ML model was
then trained on the entire training data set and evaluated
on the withheld test set.
DL models

The DL models used were 3D versions of the residual
neural network (ResNet) and densely connected
convolutional network (DenseNet) architectures.29,30 In
addition, a model using an autoencoder as a feature
extractor and a series of convolution layers using the bot-
tleneck features was constructed. Diagrams and descrip-
tions of the DL models can be found in Appendix E2. A
grid search to select the best hyperparameters for each of
the 3 architecture types also was completed. The grid
search procedure is also described in the Appendix E3.

All DL model training and evaluation was performed
using TensorFlow software (version 2.4.1).31 Dose map
images were augmented using the random rotation of
images by §90° in the transverse plane and reflections in
the median plane. A batch size of 1 was used for all mod-
els. The binary cross-entropy loss was used for all models
except the autoencoder component of the autoencoder-
based approach. The autoencoder-based approach was
trained in 2 stages. In the first stage, the autoencoder was
trained using the mean squared error loss between the
input and reconstructed dose input. In the second stage,
the ORN classification layers were trained using the
binary cross-entropy loss. A cosine decay learning rate
schedule was used with 200 epochs, with the learning rate
starting at 1 £ 10�5 using the Adam optimizer. Training
continued until the loss did not improve on the validation
set after 20 epochs. The saved weights for each model
hyperparameter combination were the weights that had
the lowest binary cross-entropy loss on the validation set.
The best-performing ResNet, DenseNet, and autoen-
coder-based models were used to predict ORN in the test
set, and the performance of each model was measured by
calculating the accuracy, balanced accuracy, recall, preci-
sion, F1 score, AUROC, and AUPRC.
DL model performance with increased
available training data

An additional study was completed to gauge the use-
fulness of increasing the amount of training data available
to the best performing DL models. The architectures of
the best-performing DenseNet and ResNet models were
trained using smaller subsets of the total training data set
(10%-100% in 10% increments in addition to 25% and
75%) to look for changes in performance on the test set.
The validation and test sets were not changed. The models
were trained 5 times for each subset of the total training
data using random weight initialization and shuffling of
the available training data. The model training was per-
formed using the same training strategy as the prior mod-
els. The 5 models trained for each subset of the total
training data were used to create a majority votes (3 of 5)
prediction of ORN and were evaluated on the test set that
was withheld from model training. An additional ensem-
ble was created using the 5 DenseNet and the 5 ResNet
models trained on the entire data set. A majority votes
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prediction of ORN status (5 of 10, with a tie predicting
ORN negativity) was then completed on the cases in the
withheld test set. The metrics of accuracy, balanced accu-
racy, recall, precision, and F1 score were then calculated
for each training set ratio.
Statistical analysis

The performance of the models was evaluated using
receiver operating characteristic (ROC) analysis and pre-
cision-recall analysis. The metrics derived from these
analyses include AUROC, accuracy, recall, precision, bal-
anced accuracy, F1 score, and AUPRC. Balanced accuracy
is the arithmetic mean of recall and specificity, and the F1
score is the harmonic mean of precision and recall. The
Scikitlearn package (version 0.24.2) was used to calculate
model metrics for the random forest and support vector
machine models, and Tensorflow (version 2.4.1) was used
to calculate model metrics for the DL models.28,31 The R
package MLmetrics was used to obtain the accuracy, bal-
anced accuracy, recall, precision, and F1 score for the
logistic regression model.32 The R package pROC was
used to calculate the area under the AUROC and AUPRC
for the logistic regression models.33 The best-performing
prediction model between the ML and DL models was
identified by greater metric values on the test set. For
examining DL model performance with increasing
amounts of training data, the accuracy, balanced accuracy,
recall, precision, and F1 score were calculated manually
for each training set ratio. Increases in metric values with
training ratio were used to determine whether there was
increasing DL model performance as more training data
was available for model development.
Results
Standard ML

The demographics of all subjects are summarized in
Table 1. After we filtered out correlated variables with the
Pearson correlation coefficient, 4 DVH parameters
remained: the mean dose to the mandible, the minimum
dose to the mandible, the maximum dose to the mandible,
and V65. These 4 features were used in the ML models.
The logistic regression feature selection selected in the
cross-validation the mean dose 100% of the time and
added the minimum dose 85% of the time. No other vari-
ables were selected. For the random forest, the most
selected hyperparameter combination in the cross-valida-
tion was 2 max features per split, 10 minimum samples
per leaf, and 10 minimum samples per split. This combi-
nation was selected 25% of the time. The most important
feature for the random forest model was the mean dose.
For the support vector machine, the most selected hyper-
parameter combination for the cross-validation was the
radial basis function kernel, a value of 10 for C, and a
value of 0.01 for g. This combination was selected 37% of
the time. The frequency of all hyperparameter combina-
tions from the grid search and a plot of the variable
importance for the random forest model is available in
the supporting documentation.

The outer cross-validation loop determined the best-
performing ML ORN prediction model. The mean values
for the metrics on the withheld fold for each iteration and
their SDs are shown in Table 2. Specifically, the results for
the 3 traditional ML models and the random classifier
used for ORN prediction with the dose-volume histogram
parameters are shown in the table.

We selected the logistic regression model based on the
superior cross-validation balanced accuracy, AUROC,
and AUPRC results. We trained the logistic regression
model using the full training data set and subsequently
evaluated the model on the test data set. The resulting
metrics are as follows: 0.64 accuracy, 0.63 balanced accu-
racy, 0.61 recall, 0.20 precision, 0.31 F1 score, 0.70
AUROC, and 0.24 AUPRC. The mean dose to the mandi-
ble was selected.
DL model

The best ResNet model constructed after the hyper-
parameter search had 5 stages with 2 blocks per stage and
64 starting filters. The best DenseNet model had 4 stages
with 6 repetitions for each dense block and 64 starting fil-
ters. The best autoencoder-based approach had 3 down-
sampling stages and 1 convolutional layer per stage.
Table 3 shows the performance of the best DL models on
the test set that is withheld during the training process
and only used for best model evaluation. Table 3 shows
the results from single model evaluations, so the reported
metrics are not averages with associated standard devia-
tions.
DL model performance with increased
available training data

The DL models underperformed compared with the
traditional ML models in examining the metrics most
sensitive to data set imbalance, such as AUPRC, F1 score,
and balanced accuracy. Subpar DL model performance
compared with the traditional ML models motivated the
examination of how different amounts of training data
available for model creation affect the final performance
of the DL models. Figure 1 shows how the DL model per-
formance changed with increased amounts of training
data available for model creation. Figure 1 shows results
from a single evaluation on a test set, so there are no



Table 1 Summary of subject demographics*

ORN− ORN+

Number of subjects 1086 173

Age, y, median 61 60

Sex, male, n (%) 894 (82%) 150 (87%)

Smoking, current, n (%) 153 (14%) 27 (16%)

Smoking, pack-years, median 7 8

Postoperative RT 172 (16%) 44 (25%)

Dental extraction pre-RT 270 (25%) 72 (42%)

Tumor site

Oral cavity 146 (13%) 44 (25%)

Oropharynx 703 (65%) 123 (71%)

Hypopharynx/larynx/nasopharynx/unknown-primary 237 (22%) 6 (3%)

Abbreviations: ORN = osteoradionecrosis; RT = radiation therapy.
* Percent signs within cells indicate the percent of the subject cohort for the ORN− and ORN + cases separately that have each row attribute.
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average and standard deviations of metrics to report. The
ensemble combining the best performing DenseNet and
ResNet architectures and using the entire training data set
had the following results: accuracy 0.87, balanced accu-
racy 0.58, recall 0.25, precision 0.15, and F1-score 0.19.
These results are a slight performance increase compared
with the models in Table 3 but underperformed compared
with the traditional ML models in Table 2. The ensemble
approach using just the DenseNet or ResNet architecture
did not result in significant performance improvement in
majority voting after increasing the data amount from
10% to 100%.
Discussion
Overall, the ML algorithms outperformed the DL ORN
prediction models. Most of the traditional ML algorithms
performed similarly to each other according to the cross-
validation metrics. Because of the imbalance between
ORN− and ORN + cases in the data set, metrics less influ-
enced by data set imbalance should be prioritized, such as
Table 2 Mean (§SD) metric values for the cross-validation wit

Model Accuracy Balanced accuracy Recal

Logistic regression 0.69 § 0.05 0.70 § 0.07 0.72 §
Random forest 0.65 § 0.05 0.69 § 0.07 0.74 §
Support vector machine 0.69 § 0.04 0.70 § 0.07 0.71 §
Random classifier 0.52 § 0.04 0.49 § 0.08 0.45 §
Abbreviations: AUPRC = area under the precision recall curve; AUROC =
learning.
* Each cell shows the mean (§SD) of the metrics from the withheld folds of t
the F1 score, the AUPRC, and balanced accuracy. In this
HNC data set, the AUPRC of a random classifier in the
test set would have a value of 0.13 (P / [N + P] = 48/
369 = 0.13). The logistic regression model evaluated on
the test set surpassed this value. The traditional ML meth-
ods also produced balanced accuracy values greater than
the balanced accuracy of 0.5 that a random classifier
would produce, as shown in the cross-validation results.
The F1 score is the harmonic mean of the recall and preci-
sion and gives a good indication of model performance on
data sets with imbalance between classes. The ML models’
have relatively greater F1 scores compared to the random
classifier reference model.

Overall, the DL models performed worse than the
logistic regression model evaluated on the test set. Metrics
sensitive to data set imbalance (ie, F1 score, balanced
accuracy, and AUPRC) were lower for the DL models
than for the logistic regression model. In particular, the
F1 score was greater for the logistic regression (0.31) than
the ResNet (0.07), DenseNet (0.14), autoencoder-based
(0.23), and random classifier (0.13) models. The ResNet
and DenseNet models performed better than a random
hheld folds for the ML models*

l Precision F1 score AUROC AUPRC

0.14 0.27 § 0.05 0.39 § 0.07 0.74 § 0.07 0.28 § 0.08

0.14 0.25 § 0.04 0.37 § 0.06 0.69 § 0.07 0.23 § 0.04

0.13 0.27 § 0.04 0.39 § 0.06 0.70 § 0.07 0.24 § 0.04

0.14 0.14 § 0.04 0.21 § 0.07 0.50 § 0.00 0.14 § 0.01

area under the receiver operating characteristic curve; ML = machine

he stratified 10-fold cross-validation with 10 repeats.



Table 3 Performance of the best DL models for each architecture type*

Architecture Accuracy Balanced accuracy Recall Precision F1 score AUROC AUPRC

ResNet 0.87 0.69 0.04 0.50 0.07 0.57 0.23

DenseNet 0.83 0.54 0.10 0.21 0.14 0.58 0.17

Autoencoder 0.71 0.53 0.33 0.18 0.23 0.59 0.15

Random 0.49 0.46 0.46 0.11 0.17 0.49 0.13

Abbreviations: AUPRC = area under the precision recall curve; AUROC = area under the receiver operating characteristic curve; DL = deep learning.
* The reported metrics are from the withheld test set not used during model training or selection. Metrics sensitive to data imbalance, such balanced
accuracy, F1 score, and AUPRC, were lower than those for the logistic regression model using the test set.
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classifier when we compared the AUPRC and balanced
accuracy but performed worse than the traditional ML
methods. Unlike the traditional ML models, the DL mod-
els tend to misclassify ORN+ cases as ORN−. This is also
reflected in the greater accuracy scores for the DL models
than for the traditional ML methods.

Ensembles of DL models can be used to improve the
performance of DL prediction models versus the use of a
single model alone. Using the entire training data set, we
found that the ensemble of the best ResNet and DenseNet
models did not outperform the logistic regression model
performance on the test set according to metrics such as
balanced accuracy and the F1 score. To further examine
the performance of the DL models, we constructed vari-
ous ensembles of models using various ratios of the total
training data. The performance of the classifiers should
improve as more data becomes available for training. In
addition, using ensembles of models helps limit prediction
variability owing to random weight initialization. How-
ever, trends of improvement in performance with more
data, as shown in Fig 1, do not occur. The increasing
and decreasing changes in performance while increasing
Figure 1 Deep-learning model performance w
training data size shown in Fig 1 suggests that there is
insufficient training data in total for establishing a mean-
ingful DL prediction model. If there is sufficient training
data, the results could suggest that the low-level features
of the dose maps used by the DL models are not as power-
ful as the dose-volume histogram associations used by the
ML models for ORN prediction.

The results for the DL models highlight the challenges
of data set size for medical imaging data sets. Relative
complication rates should be considered before attempt-
ing DL approaches, with rarer complications increasingly
requiring larger amounts of total data than more common
complications.

A common issue with the application of DL models to
medical imaging tasks is limited testing of the models
using data from external institutions. A DL model that
performs similarly on the internal test set and external
institutional data are more robust compared with DL
models training exclusively on a single institution data
set. The original intent of this study had the DL ORN pre-
diction models proven superior to the traditional ML
models was to use an external data set from a different
ith increasing amounts of training data.
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institution to evaluate the DL models’ generalizability.
Because of the low performance of the DL models, this
step was not needed. A test set typically should not be
used to evaluate different model iterations such as com-
pleted when examining how the DL model performance
changes with an increase in the available training data.
However, the low performance of the DL models moti-
vated this exploration to determine whether a meaningful
prediction model was created.

To our knowledge, this is the first study to examine the
feasibility of DL for ORN prediction. Humbert-Vidan et al23

previously studied the viability of ML techniques for man-
dibular ORN prediction. In their study, they similarly con-
cluded that the ML models performed similarly for ORN
prediction.23 Both studies have similar test accuracy metrics,
but their study had slightly greater recall and precision val-
ues.23 However, direct comparisons are difficult because of
the smaller sample size and the different case occurrence
rates between the 2 data sets. In this study, for the logistic
regression model, the mean dose was the most selected vari-
able. The mean dose was found to be highly associated with
ORN development in other studies as well.12,13

There are several limitations to this study. First, only
dose was used in the models, and additional imaging
modalities such as functional magnetic resonance imaging
or computed tomography could be included in the future.
Furthermore, the population used to construct the models
were obtained from a single geographic region and may not
be representative of populations in other communities.
Finally, an external validation set should be used in the
future to determine the generalizability of the ML models.

In the future, more imaging data can be collected for
model construction that could potentially benefit the DL
approaches. Moreover, future DL architectures may
improve the performance of DL on ORN prediction tasks.
The use of additional imaging modalities such as func-
tional magnetic resonance imaging also can be explored.
Conclusion
In this work, we compared traditional ML algorithms
to DL algorithms for the prediction of mandible ORN
resulting from HNC RT. The traditional ML algorithms
performed similarly to each other when using cross-vali-
dation and were successful at predicting ORN. The per-
formance of the ML models shows promise in clinical
integration for future studies. Despite our use of differ-
ent architectures and model ensembles, the DL models
continued to underperform compared to the best-per-
forming ML algorithm identified by cross-validation,
logistic regression, when evaluated on the test set. When
we used additional training data, no performance
improvement trends were evident, suggesting that more
data are needed despite the relatively large HNC patient
cohort. In further work, researchers could use more
subjects, additional imaging data, more imaging modali-
ties, and future DL architectures to improve on this
ORN prediction task.
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