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A cross-disciplinary examination of the user behaviors
involved in seeking and evaluating data is surprisingly
absent from the research data discussion. This review
explores the data retrieval literature to identify common-
alities in how users search for and evaluate observa-
tional research data in selected disciplines. Two
analytical frameworks, rooted in information retrieval
and science and technology studies, are used to iden-
tify key similarities in practices as a first step toward
developing a model describing data retrieval.

Introduction

Open research data are touted as having the potential to
transform science and fast-track the development of new
knowledge (Gray, 2009). In order for data to fulfill this
potential, users must first be able to find the data that they
need. This is not a simple task. Facilitating data discovery
relies on developing underlying infrastructures, support
systems, and data supplies (Borgman, 2015). It is equally
important to understand the behaviors involved in data
retrieval, but a user-focused, cross-disciplinary analysis of
data retrieval practices is lacking. This review explores the
existing data retrieval literature and identifies commonali-
ties in documented practices among users of observational
data as a first step toward creating a model describing how
users search for and evaluate research data.

Although information retrieval (IR) has been extensively
studied for over 60 years (Sanderson & Croft, 2012), data
retrieval is a nascent field. Recent studies surrounding the
issue examine how data are made available via data sharing
(Tenopir et al., 2011, 2015), how researchers reuse data
(Faniel, Kriesberg, & Yakel, 2016; Pasquetto, Randles, &
Borgman, 2017), and how systems are designed to optimize
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data discoverability and retrieval (Pallickara, Pallickara, &
Zupanski, 2012). Information documenting data retrieval
behaviors is buried throughout other disciplinary and data-
related literature and is not easy to identify (Gregory,
Cousijn, Groth, Scharnhorst, & Wyatt, 2018).

We draw on work in IR and science and technology
studies (STS) to guide the identification of this buried litera-
ture and to develop our analysis frameworks. The first
framework is based on established models of interactive IR;
the second framework builds on STS-inflected work exam-
ining data practices and communities. We begin by discuss-
ing the frameworks in more detail before using them to
present and synthesize the data retrieval behaviors docu-
mented in the collected literature. We end with a discussion
of commonalities across disciplinary communities and iden-
tify gaps in the literature and areas for future work.

Framework #1: A Broad View of Interactive IR

IR is an interactive process, involving a dynamic inter-
play between users and IR systems (Xie, 2008). Numerous
models describe user-oriented interactive IR. Three of the
most pivotal are Ingwersen’s cognitive model (1992, 1996),
Belkin’s episode model (1993, 1996), and Saracevic’s strat-
ified interaction model (1996, 1997). Detailed characteriza-
tions of the strategies (for example, Bates, 1990) and
cognitive and affective stages in user-oriented information
seeking (Kuhlthau, 1991) have also been proposed. Despite
their differences, established models assume that users are
actively involved in the search process and that context
influences search behaviors (Rieh & Xie, 2006; Xie, 2008).

Interactive IR models share a few key stages1 (Wolfram,
2015) that are used to structure the first framework and to
provide the main divisions of this article:

• Users and Needs: describes user contexts and data needs.
• User Actions: describes the sources and search strategies used
to locate research data.

• Evaluation: describes criteria and processes used when
evaluating data for reuse.

The term “data retrieval” is used in this review to refer
to this entire complement of needs, actions, and evaluation
behaviors.

Framework #2: A Broad View of Data
Communities

Data practices can define communities in different ways
(Birnholtz & Bietz, 2003). Data communities form
around disciplinary domains, (Faniel, Kansa, Kansa, Barrera-
Gomez, & Yakel, 2013; Palmer, Cragin, & Hogan, 2004),
research approaches and data collection methodologies
(Birnholtz & Bietz, 2003; Weller & Monroe-Gulick, 2014),
and particular data sources (Brown, 2003; Sands, Borgman,
Wynholds, & Traweek, 2012). Both macrolevel characteris-
tics, such as using quantitative versus qualitative data
(Birnholtz & Bietz, 2003) and microlevel characteristics,
such as participation in a specific research project (Borgman,
Wallis, & Enyedy, 2007) can define community member-
ship. A researcher may belong to multiple data communities
simultaneously, or s/he may choose to define his/her commu-
nity in unique ways (Birnholtz & Bietz, 2003).

Here we embrace a broad approach to conceptualizing data
communities. The overarching data community used in this
framework is based on accepted classifications of research
data. While classifying data is a notoriously difficult task
(Borgman, 2015), broad categories that have proven to be
useful are observational, experimental, or computational data
(National Science Board, 2005; National Science Foundation,
2007). As a first step in testing the validity of this conception
of data communities, we focus on a community bounded by
the use of a particular data type: observational data.

TABLE 1. Users’ observational data needs by disciplinary community.

Users in this community… Need this type of data
For these purposes (italicized = foreground,

normal = background)

Astronomy Data from sky surveys, telescopes, archives, repositories,
data catalogs, virtual observatory systems

New questions of old data, baselines, instrument calibration,
physical properties, model inputs, data integration

Earth & Environmental
Sciences

Plant, animal, water, weather, solar observations; soil
analyses, rock thin-section and satellite images; maps,
geographic, demographic and census data; continuously
collected and transmitted data, data at temporal/spatial
scales, raw and summarized data

New questions of old data, meta-analyses, calibration,
context, baselines, reference, model inputs,
verification, comparison, environmental planning,
policy- and decision making, education, instrument
monitoring; data integration

Biomedicine Images, complete fMRI studies, pathology results, patient
observations and demographics; population-level disease
data, behavioral data

Disease/disorder research, new visualizations,
evaluations, 3-D anatomical pictures, preparing
research outputs, education, patient care

Field Archeology Field notebooks, photographs, artifacts, stratigraphic
baselines; data at temporal/spatial scales

New insights from data aggregation, comparison,
triangulation; training, dissertations, assignments,
preparing tours, inventories of local excavations

Social Sciences Survey data (often only one question is of interest), long-
running data sets/surveys, interviews, archival
documents, images, videos

Re-interpret data sets; new questions, comparative
research, comparison, preparations, training,
dissertations

1 IR systems are also an important part of these models. The first ver-
sion of the article preprint (arXiv:1707.06937) includes an additional
review of data retrieval systems.
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Observational data result from recognizing, recording,
or noting occurrences. They are often produced with the
help of instruments, and include weather observations,
polling data, photographs, maps, and economic indicators
(Borgman, 2015; National Science Board, 2005). Observa-
tional data are used across disciplines; we therefore intro-
duce disciplinary communities into the second framework
to provide another level of analysis.

STS research explores the role of disciplinary norms
and behaviors in data practices (for example, Leonelli,
2016). Subdisciplines and individual research groups may
have unique data practices, different from those of the
broader disciplinary community (Gregory et al., 2018);
while these differences are important, we suggest that com-
monalities are also important. In order to identify possible
commonalities, we group the disciplines represented in the
retrieved literature into five broad domains: astronomy,
earth and environmental sciences (EES), biomedicine, field
archeology, and social sciences.

This review centers on the role of the researcher as data
user. While the discussion of data communities often takes
the perspective of data producers, researchers play multiple
roles, often mixing data production and consumption
(Borgman, Van de Sompel, Scharnhorst, van den Berg, &
Treloar, 2015). We focus on consumers/users of observa-
tional data who use data they did not create either for new
purposes and/or to support existing projects.

Purpose of the Frameworks

Many studies employ case studies, interviews, and ethno-
graphic research to depict particular data practices in fine
detail (Cragin, Chao, & Palmer, 2011; Weber, Baker,
Thomer, Chao, & Palmer, 2012) and are spread across
disciplinary domains. While these studies provide great
depth, it is challenging to bring them together in meaningful
ways to identify similarities (Faniel, Barrera-Gomez,

Kriesberg, & Yakel, 2013). The primary goal of this review
is to use the macroscopic perspectives of the frameworks
introduced above to identify commonalities in reported prac-
tices. Such a broad approach comes with two drawbacks:
the loss of some of the complexity and detail of the original
studies and a bias in the disciplinary scope.

Each section begins with a table synthesizing the
reviewed literature through the lens of both frameworks.
We then present the literature used to create these synthe-
ses, structuring the findings by disciplinary community. In
the Discussion, we summarize and discuss the key findings
from each section and identify common themes.

Methods

Our literature collection methodology was informed by
the first framework. We performed keyword searches
related to IR (for example, user behavior, information seek-
ing) and data practices (for example, data sharing, data
reuse, research practices) across all fields, primarily in the
Scopus database. We also performed searches related to
data search and data discovery and used bibliometric tech-
niques such as citation chaining and related records.2

We closely read the nearly 400 retrieved documents to
identify articles referring to observational data. As we read,
we again applied the first framework, seeking descriptions
of data users and their needs, sources, and strategies used
to locate data, and the criteria used to evaluate data for
potential reuse. Few studies examine data retrieval prac-
tices directly; much of the information is buried within
investigations of data sharing and data reuse or found in
user studies of particular repositories.

TABLE 2. Actions taken to locate data.

Users in this community… Use these resources In this way

Astronomy NASA archives, journals, personal exchanges, personal
websites, general search engines

Querying archives, extracting data from articles into
new tables, informal personal requests

Earth & Environmental
Sciences

Journals, personal exchanges, repositories, databases,
natural history collections, general search engines,
industry

Extracting data from articles, e-mail/ telephone/letters,
metadata searches, faceted searching, filtering,
aggregating data to create new data sets, “bounded”
strategies (by journal, location, time)

Biomedicine Online image repositories, local image and patient
information systems, personal image collections,
Google Images, journals

local systems—patient name/identifier; Online
sources—keyword and hierarchical searches, short
queries for images

Field Archeology Personal connections – museum staff and data
producers, natural history collections, museums,
repositories/archives, publications

Searching by location (keywords, browsing),
collaborations to gain additional data

Social Sciences Survey banks, data catalogs (that is, DBK), repositories,
governmental/ statistical offices, databases,
commercial providers, personal connections,
publications

Following publication references; survey banks—short
queries, mismatch between strategies and database
design, DBK—more time spent than in literature
searching, keyword searching followed by browsing,
filters and author names not used,

2 For a detailed methodology and machine-readable bibliography,
including references regarding data retrieval systems, see: https://doi.
org/10.17026/dans-zgu-qfpj
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Users and Needs

In this section we analyze the diversity of users’ data
needs within the context of disciplinary communities, as
summarized in Table 1. We adopt the characterization of
background uses of data that support research and fore-
ground uses that drive new research (Wynholds, Wallis,
Borgman, Sands, & Traweek, 2012).

Astronomy

Much astronomical research can be classified as big sci-
ence, involving large international projects supported by
extensive knowledge-sharing infrastructures (Borgman et al.,
2007). Big science is not the only approach, as astronomers
also conduct research falling within the long tail of science
(Wynholds, Fearon, Borgman, & Traweek, 2011). Access to
the vast amount of available research data is remarkably
open, and data sharing is generally encouraged (Hoeppe,
2014; Pepe, Goodman, Muench, Crosas, & Erdmann, 2014).

Data needed. Data from large-scale sky surveys, such as
the Sloan Digital Sky Survey (SDSS), form the foundation
for many research projects (Pepe et al., 2014). Similarly,
the data practices of researchers working with the SDSS
are the cornerstone of the data retrieval literature in astron-
omy (Borgman, Darch, Sands, & Golshan, 2016; Sands
et al., 2012; Wynholds et al., 2011).

Sky survey data fuel studies involving further data pro-
cessing; derived data are then used as the basis for

publications (Pepe et al., 2014). Direct data from ground-
and space-based telescopes, data located in data reposito-
ries and catalogs, and data found through federated queries
of virtual observatory systems are important sources
(Sands et al., 2012; Wynholds et al., 2012). Theoretical
researchers also use observational data from established
archives as model inputs (Sands et al., 2012).

Data uses. Astronomers combine multiple data sets, often
from multiple archives or telescope types, during a single
project (Sands et al., 2012; Wynholds et al., 2011).
Merging data about the same target from different instru-
ments poses a significant challenge (Hoeppe, 2014; Zinzi,
Capria, Palomba, Giommi, & Antonelli, 2016).

Astronomers use external data for foreground purposes
driving new scientific inquiries and leading to new discov-
eries (Wynholds et al., 2011; Wynholds et al., 2012), and
for background purposes supporting research, such as
study baselines, calibrating instruments, and searching for
specific physical properties (Wynholds et al., 2012).

Earth and Environmental Sciences

A variety of disciplines and subdisciplines are repre-
sented in the literature at differing levels of granularity.
Data retrieval practices are sparsely documented in fields
such as volcanology, but discussions are increasing in
other disciplines, such as the water sciences (for example,
Dow, Dow, Fitzsimmons, & Materise, 2015). This is partly

TABLE 3. Evaluation criteria with frames used in the literature.

Users in this community… Use these criteria to evaluate data

Astronomy 1. Contextual Information: instrumentation, observational conditions, data processing, original research
questions

2. Trust: author reputation, source reputation
Earth & Environmental Sciences 1. Contextual Information: instrumentation, observational conditions, data collection procedures, data

processing, provenance, original research questions
2. Quality: meet community standards, comprehensiveness/continuity over time, estimations and uncertainties,
resolution

3. Trust: source, knowledge of object and data collector, author reputation/affiliation, funder, community
membership

4. Understandability: familiarity with practices, data type, subject; consult experienced researchers, first
decode data

5. Ease of access
Biomedicine 1. Quality: noise, resolution, anatomical coverage, image acquisition details

2. Trust: supporting documentation, social networks
3. Relevance: experience, combination of textual/visual/medical criteria, visual relevancy, background
information, understandability, image quality, modality, source

Field Archeology 1. Contextual information: collection methods, instrumentation, observational conditions, provenance, original
research goals, baseline geographic/stratigraphic/chronological data

2. Suitability for analysis: consistent data recording practices
3. Trust: reputation/affiliation/skill of authors, repository features, language in supporting documentation

Social Sciences 1. Contextual Information: collection methods, instrumentation, other analyses, definition/measurement of
variables, data handling/processing

2. Quality: completeness, accessibility, ease of use, credibility, reputation of repository, reputation of
author/journal not important

3. Relevance: time frame of study, keywords, citing literature, title and publication year not as important
4. Trust: prior reuse, reputation of data repository, reputation of data producer
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due to a change in data collection techniques. As researchers
transition from primarily manual field work to using sensors
enabling continuous collection, they must find new ways to
manage their data (Maier et al., 2012). The ecologists
involved in the multidisciplinary Center for Embedded Net-
worked Sensing (CENS) are an example of researchers
caught in this transition (see Borgman et al., 2007; Wallis,
Rolando, & Borgman, 2013).

Data needed. Biodiversity researchers require an incredi-
ble multiplicity of data. Potentially any information about life
on earth, from satellite photos to forest inventories, could be
important (Bowker, 2000b). Scientists need information
about species distribution and occurrence, population trends,
and geographic raw data (Davis, Tenopir, Allar, & Frame,
2014). The needs of CENS researchers exemplify what
Bowker terms “data diversity,” as they use weather, solar,
and river observations, as well as remote sensing and demo-
graphic data (Bowker, 2000a; Wallis et al., 2013). Data
diversity is also the norm in the geo- and water sciences.
Volcanologists rely on images of thin rock sections, chemical
analyses, and characterizations of the earth’s crust. Addition-
ally, stratigraphers use astronomical observations and numer-
ical data extracted from graphs to study geologic history
(Weber et al., 2012). Geographers need data spanning the
physical and social sciences, requiring topographic, geologic,
and demographic maps, satellite images and drawings, and
census data (Borgman et al., 2005). Water scientists need
streamflow, evaporation, groundwater level, and water qual-
ity measurements (Beran, Cox, Valentine, Zaslavsky, &
McGee, 2009). Although they do not exist for every condi-
tion, continuously collected data that can be analyzed by
location and time are expected (Dow et al., 2015).

This need for data at different geographic and temporal
scales connects the disciplines. Atmospheric scientists need
large amounts of observational data from specific regions
and times for their models (Pallickara et al., 2012). Data
collected at local levels can be more important than data
collected at national or state levels, as shown by a user
survey from Davis et al. (2014).

The Davis et al. survey is one of the few that differenti-
ates between the data needs of different types of users;
another example is a study from the Center for Coastal
Margin Observation and Prediction (CMOP) (Maier et al.,
2012). Internal and external researchers using CMOP data
want succinct data overviews. Policy and decision makers
need thematic collections summarized on one page, with
salient data clearly marked; users in education sectors are
also interested in CMOP data, although their specific needs
have not yet been studied (Maier et al., 2012).

Like researchers, environmental policy and decision
makers need information from different locations and
times, but they have difficulties accessing the information
(McNie, 2007) or finding the right type. Data produced by
scientists are not automatically useful for policy makers
(Cash et al., 2003). Environmental planners may not need
the same depth of information as researchers (Van House,

Butler, & Schiff, 1998); reflecting this, differentiated data
products for diverse users are being explored (see Baker,
Duerr, & Parsons, 2015).

Data uses. CENS researchers use external data solely for
background purposes, such as contextualizing their own data
and calibrating instruments (Wallis et al., 2013; Wynholds
et al., 2012). Other background uses include benchmarking
and as references (Bowker, 2000b). Some ecologists do
reuse external data to answer new questions (Zimmerman,
2007) or to create meta-analyses (Michener, 2015).

Integrating diverse data is problematic across the
environmental sciences. Data collected at different scales
and using different nomenclatures are difficult to merge
(Bowker, 2000b; Dow et al., 2015; Maier, Megler, & Tufte,
2014). Natural variances in systems and populations further
complicate fitting biodiversity data together (Bowker,
2000b; Zimmerman, 2007). Stratigraphers use one data set
to calibrate another as they construct geologic timelines used
as baseline data by other researchers (Weber et al., 2012).
Atmospheric scientists and climatologists grapple with prob-
lems stemming from metadata variation (Pallickara et al.,
2012) and differences in community data practices (Edwards,
Mayernik, Batcheller, Bowker, & Borgman, 2011).

Modelers use external data at specific points in the
research process. After reformatting and regridding data to
fit model specifications, earth scientists use observational
data to initially force models and for parameterization; data
availability limits the types of studies undertaken (Parsons,
2011). Coastal modelers engage in similar behavior, con-
tinually calibrating and benchmarking their models, and
comparing outputs to external observational data (Maier
et al., 2012; Weber et al., 2012).

Environmental planners use data not only to make
decisions, but also to defend their viewpoints, to persuade,
and in education (Van House et al., 1998). Although detailed
studies of nonscientists’ data needs are lacking (Faniel &
Zimmerman, 2011), reported “background uses” of oceano-
graphic data include preparation for triathlons, search and
rescue operations, or fishing expeditions (Weber et al., 2012).

Biomedicine

The biomedical literature focuses on fields centering on
imaging, such as neuroscience and radiology.

Data needed. As neuroscience embraces big science meth-
odologies, the field is struggling with how to make data
available, discoverable, and usable (Choudhury, Fishman,
McGowan, & Juengst, 2014). Researchers rely on visualiza-
tions of normal and abnormal brains, although they also
consult brain bank samples (Beaulieu, 2004). Sometimes
researchers need raw functional magnetic resonance imaging
(fMRI) studies, including detailed metadata; sometimes
images and scans suffice (Key Perspectives, 2010; Van
Horn & Gazzaniga, 2013). Neuroimaging data are complex,
consisting of numerous brain section slices, timepoints, and
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other variables (Honor, Haselgrove, Frazier, & Kennedy,
2016). Neuroscientists incorporate more than just imaging
into their work, using demographic, genetic, and behavioral
data (Williams et al., 2009).

Clinicians and medical researchers also use a mixture of
images and other observational data, such as pathology
results, clinical data (for example, progression of tumor
grades), patient demographics, and population-level disease
data (Kim & Gilbertson, 2007). Medical images are an
essential part of workflows in fields such as radiology
(Markonis et al., 2012), where healthcare professionals
tend to search for two types of images: general medical
images (for example, images of anatomic organs) and spe-
cific medical images, which are used for clinical or com-
parison purposes (Sedghi, Sanderson, & Clough, 2011).
Users need images collected with different modalities
(X-rays, computed tomography [CT] scans, and MRIs)
(Kim & Gilbertson, 2007); medical students need images
corresponding to their current courses (Müller et al., 2006).
All reusable medical data must be provided in a way pro-
tecting patient privacy (Erinjeri, Picus, Prior, Rubin, &
Koppel, 2009).

Data uses. Neuroscientists use imaging data for compari-
sons, evaluations, and creating 3D pictures of brain anat-
omy (Beaulieu, 2004). A single scan is of little value
unless incorporated into a larger database of scans. Aggre-
gating individual scans creates complete virtual brains that
can be manipulated to facilitate new discoveries (Beaulieu,
2004), as in the case of combining fMRI scans from differ-
ent populations to yield insights about Alzheimer’s bio-
markers. (Van Horn & Gazzaniga, 2013).

In a study of clinicians, researchers, educators, librar-
ians, and students, users incorporate images in research,
patient care, and education (Hersh, Müller, Gorman, &
Jensen, 2005). A follow-up study further characterizes
these needs, showing that images are used for self-educa-
tion; educating medical students, patient education, making
difficult diagnoses; and developing research ideas, grant
proposals, and publications (Kalpathy-Cramer et al., 2015).

Field Archeology

Archeology is another field in transition. Methodologies
and data practices are changing, as data move away from
being published in analog-only formats to being made avail-
able in digital repositories (for example, Arbuckle et al.,
2014); this facilitates data aggregation to study phenomena
such as domestic livestock expansion (Arbuckle et al.,
2014; Atici, Pilaar Birch, & Erdo�gu, 2017). Interdisciplinar-
ity and data diversity are thriving in archeology, as research
projects can involve soil scientists, zooarchaeologists, and
material scientists (Faniel, Kansa, et al., 2013).

Metadata and documentation of methods and site condi-
tions are extremely important in archeology, as original
sites are often “decomposed” during the research process
(Faniel, Kansa, et al., 2013). Data recording and metadata

standards do not exist (Faniel & Yakel, 2017), making
integration across contexts and collection methodologies
challenging (Faniel & Yakel, 2017; Niccolucci & Richards,
2013).

Field archeologists need field notes, photographs, and
artifacts in museum collections (Faniel, Kansa, et al.,
2013). Geographic, stratigraphic, and chronological base-
line data are also vital (Atici, Kansa, Lev-Tov, & Kansa,
2013). Archeologists compare finds from the field to
museum collections, often triangulating data from multiple
sources (Faniel, Kansa, et al., 2013). Researchers are not
the only “consumers” of archeological data: students, hob-
byists, and employees of museums and companies use data
for diverse background and fewer foreground purposes, for
example, aggregating discrete units of “raw data”
(Borgman, Scharnhorst, & Golshan, forthcoming).

Social Sciences

Reusing quantitative data in the social sciences is well
established (Faniel & Yakel, 2017; Kriesberg, Frank,
Faniel, & Yakel, 2013); the reuse of qualitative data is
complicated by issues of participant confidentiality and the
embeddedness of the researcher in data creation (Broom,
Cheshire, & Emmison, 2009).

Social scientists need data from surveys and long-
running data sets (Shen, 2007). Researchers are often inter-
ested in only one data point or survey question. Details
about the operationalized variables or measured constructs
usually are not present when examining individual ques-
tions in isolation (Dulisch, Kempf, & Schaer, 2015). Social
scientists also need archival documents, images, videos,
and interview data (Karcher, Kirilova, & Weber, 2016).

Data can be reused for comparative research or to ask
new questions, reinterpret data sets, or verify findings
(Corti, 2007). Background uses, that is, preparing for data
collection, are common (Parry & Mauthner, 2005).

Kriesberg et al. examined the needs of early career
researchers (ECRs) in quantitative social sciences, archeol-
ogy, and zoology. External data are used in training and
dissertations; young researchers may reuse data more often,
due to difficulties collecting their own data (2013).

User Actions

This section examines the resources and strategies used
within different communities to locate data (see Table 2).

Astronomy

Astronomers are generally efficient information seekers,
in part due to strong disciplinary infrastructures and tools
(Meyer et al., 2011). SDSS users download data directly
from NASA archives or obtain them from public data
releases (Sands et al., 2012). Discovering and tracking
down smaller data sets is challenging; SDSS users some-
times browse personal websites or use general search
engines. They then contact research groups directly with
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their data requests. Despite well-developed infrastructures,
personal networks remain an important means for identify-
ing and obtaining data (Sands et al., 2012).

Journal articles are another important data source.
Astronomers copy and paste or transcribe data from articles
into new tables for further manipulation (Pepe et al.,
2014). Direct citation of archival accession numbers facili-
tates data discovery from journals (Swan & Brown, 2008).

Earth and Environmental Sciences

Finding and accessing biodiversity data can be challeng-
ing, although academics have an easier time than govern-
ment employees and program managers. A lack of
training, time, and knowing where to look hinders effective
data search among these groups (Davis et al., 2014).
Knowing where to search can be especially problematic
in areas outside of a researcher’s primary expertise
(Devarakonda, Palanisamy, Green, & Wilson, 2011) and is
contingent on knowing that data even exist (Zimmerman,
2003). Personal experiences with data collection and a
familiarity with research trends help researchers estimate
whether data are extant and findable (Zimmerman, 2007).

Compounding this problem, data are distributed across
numerous repositories (Dow et al., 2015). Users must first
discover the repository, and then invest significant time
and energy becoming familiar with each search environ-
ment (Ames et al., 2012; Beran et al., 2009). Given the
diversity of interfaces, it is not surprising that water scien-
tists desire a “Google for data” (Megler & Maier, 2012).

In a global survey of the environmental research commu-
nity, the majority of respondents discover data through jour-
nal articles, search engines, and disciplinary repositories;
40% request data directly from data providers (Schmidt,
Gemeinholzer, & Treloar, 2016). Although some environ-
mental planners are interested in using journals and primary
sources, they find it too time-consuming (Miller et al., 2009),
and may instead turn to colleagues for biodiversity informa-
tion (Janse, 2006; Pullin, Knight, Stone, & Charman, 2004).

Stratigraphers extract data from journals, laboriously
recreating tables from published graphs. They are willing
to spend money as well as time obtaining data, sometimes
purchasing expensive high-resolution data from drilling
companies (Weber et al., 2012). Geographers utilize jour-
nals and search engines to locate maps, images, and reposi-
tories, but poor indexing and metadata derail their efforts
(Borgman et al., 2005). Ecologists in Zimmerman’s studies
gather single data points from multiple sources and then
aggregate them to create new data sets (2007; 2008), an
approach that is increasingly common in biodiversity
research (Davis et al., 2014).

Personal exchanges are valuable, if complex, sources of
external data. Requesting data from CENS, for example, is
a multistep process. Data seekers identify CENS as a
potential source, contact the CENS researcher, and discuss
the availability and suitability of the data. The CENS
researcher then gathers, processes, and delivers the

requested data (Wallis et al., 2013). Ecologists employ a
variety of tactics (e-mails letters, and telephone calls) to
obtain data mentioned in articles. As organizations grow
and such requests increase, personal exchanges cease to be
an effective way to obtain data (Wallis et al., 2007).

Ecologists reusing data employ “bounding” strategies,
limiting searches to particular journals, times, or locations
to collect representative samples (Zimmerman, 2007). As
data seeking is data collection, these researchers use strat-
egies that minimize error, can be publicly defended, and
increase the likelihood of accessing data (Zimmerman,
2007). They have specific search criteria; the general
information in databases usually does not meet their
detailed needs (Zimmerman, 2007). Before building spe-
cific search tools, CMOP researchers struggled with simi-
lar problems, retrieving either zero or thousands of hits. If
researchers found searching too frustrating, they would simply
stop searching (Maier et al., 2012; Megler & Maier, 2012).

Large atmospheric data sets, encoded in binary formats
to facilitate storage and transfer, cannot effectively be
searched with text-based search engines. Rather, users must
browse collections using metadata schemas (Pallickara,
Pallickara, Zupanski, & Sullivan, 2010). For other data, that
is, data sets in the DataONE platform, users prefer keyword
searches, followed by filtering (Murillo, 2014).

Biomedicine

While it has become easier to locate data, for example
in neuroscience (Beaulieu, 2004), access restrictions still
frustrate researchers (Honor et al., 2016).

Medical image retrieval studies show that users search
both local restricted-access systems and free Internet
sources. Local systems, including Picture Archiving and
Communication Systems (PACS), electronic patient
records, hospital archives, and teaching files, house images
and patient data (Müller et al., 2006). Radiologists also
curate their own collections of images stored on personal
computers (Markonis et al., 2012).

Despite access to specialized collections, Internet
searches, particularly with Google Images, are common
(Markonis et al., 2012; Müller et al., 2006). Limitations of
such searches include sifting through irrelevant results and a
dearth of highly-specialized images. Nevertheless, online
image repositories are unpopular among healthcare profes-
sionals, perhaps because of their limited scope (Sedghi
et al., 2011). Academic journals, however, facilitate locating
specialized, cutting-edge images with contextual information
that is difficult to locate on the web (Sedghi et al., 2011).

Search strategies vary depending on the searcher’s profes-
sional role, although commonalities do exist. Users often
search by patient names or identifier in PACS for diagnostic
purposes; brief keyword or hierarchical searching is typical
in nondiagnostic searching (De-Arteaga et al., 2015;
Markonis et al., 2012; Müller et al., 2006).

Success is not assured when searching for images. In a
study of radiologists, users fail to find desired images in
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almost 25% of cases. Users believe these images exist, but
that they simply cannot be found (Markonis et al., 2012).
Possible search difficulties stem from a lack of time and
available relevant articles, the newness of certain topics,
and a lack of domain-specific search tools (Sedghi
et al., 2011).

Field Archeology

Data discovery is a significant problem in field archeol-
ogy. Data are scattered among collections or sometimes are
only in unpublished field reports (Niccolucci & Richards,
2013). Although publications are used in data discovery
(Faniel & Yakel, 2017), they do not consistently include
data; a significant delay between data collection and publi-
cation exacerbates the problem (Kriesberg et al., 2013).
Researchers often do not know what data are available
(Aloia et al., 2017). ECRs circumnavigate difficulties by
collaborating with supervisors to locate data (Kriesberg
et al., 2013). Other archeologists turn to personal networks,
museums, and, as the shift toward digital data continues,
data archives (Faniel, Kansa, et al., 2013; Faniel & Yakel,
2017). Details about how users search archives are sparse
(Borgman et al., 2015), although searching and browsing
by location are important strategies often complicated by
differences in geographic terminology (Borgman et al.,
forthcoming).

Social Sciences

Social scientists use data from governmental/statistical
offices and specialized databases (Shen, 2007). Economists
also obtain data from statistical offices but may purchase data
directly from commercial providers (Bahls & Tochtermann,
2013). Researchers easily locate data from national, publicly
funded data sets, but struggle to locate smaller data sets and
video data for reuse (Key Perspectives, 2010). Researchers
tap publications or make direct requests to find these more
specialized data (Swan & Brown, 2008).

Personal networks, including advisors, coworkers of advi-
sors, or former employers are key sources of qualitative data
(Yoon, 2014b), especially for ECRs, who rely on journal rec-
ommendations from advisors and observations of their col-
leagues (Faniel & Yakel, 2017; Kriesberg et al., 2013). Not
knowing whom to contact or where to begin searching
makes locating relevant data difficult (Curty, 2016).

Searchers of the DBK, the primary catalog for social
science data in Germany, expend more time and effort
when seeking data sets than they do for publications. These
researchers do not frequently use author names; rather,
keyword searching, followed by browsing long results
lists, are more frequent strategies. Researchers complain
about a lack of filtering options, but do not use available
filters (Kern & Mathiak, 2015). Social scientists search a
survey bank by short keyword queries or social construct,
even though these strategies do not match the database’s
structure (Dulisch et al., 2015).

Evaluation

We identify major frames used in the literature to dis-
cuss data evaluation criteria, including trust, quality, neces-
sary contextual information, and relevance. The frames
overlap, as the characteristics composing these frames vary
from article to article, both within and across disciplines.
In Table 3, we present the evaluation criteria and associ-
ated frames as they are discussed in the literature.

Astronomy

Astronomers rely on detailed documentation of instru-
mentation, collection methods, and conditions, data proces-
sing, and original research questions (Borgman et al., 2016;
Wynholds et al., 2011). They know which authors to trust
and believe data in NASA archives and established projects
are valid, accurate, and trustworthy. Researchers must
completely understand data and the creation processes; they
would rather recreate data before using poorly documented
secondary data products (Wynholds et al., 2011).

Earth and Environmental Sciences

When evaluating data for reuse, researchers use contex-
tual information about data provenance (Dow et al., 2015;
Murillo, 2014), technical instrumentation (Wallis et al.,
2007), and original research questions (Zimmerman,
2008). Researchers reuse data they understand, seeking
data collected via practices they have used themselves
(Zimmerman, 2007, 2008) and with familiar data types
(Murillo, 2014). Contextual details are found in field note-
books (Weber et al., 2012) and articles (Carlson & Stowel-
Bracke, 2013), but additional metadata attached to data sets
are the preferred method of conveying context (Bowker,
2000b). Formal metadata has limitations, however, as they
cannot always contain enough detail or inspire the confi-
dence needed for reuse. Researchers may instead base
decisions on the word-of-mouth reputation of the data
set (Weber et al., 2012) or rely on more experienced
researchers to develop understanding or alternative evalua-
tion strategies (Zimmerman, 2008).

Data must have sufficient quality, often defined by com-
munity standards, to be reused (Zimmerman, 2007). Water
researchers and earth science modelers consider compre-
hensiveness and continuity over time and space (Dow
et al., 2015; Parsons, 2011) as well as uncertainties and
error estimates (Larsen, Hamilton, Lucido, Garner, &
Young, 2016; Parsons, 2011) when determining data qual-
ity. Volcanologists use image resolution as a quality indi-
cator (Weber et al., 2012).

Ecologists trust data from well-known sources, such as
databases and literature (Zimmerman, 2007), and make
decisions based on authors’ reputations and affiliations
(Murillo, 2014; Weber et al., 2012). Initial evaluations are
based on the reputation of the source where the data were
discovered, even if researchers eventually obtain them
through other means (Zimmerman, 2007). Standardized
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collection practices are not enough to establish trust, as
practices themselves say nothing about the data collector’s
skill (Zimmerman, 2008). The sponsor of research (McNie,
2007) and membership in the same community of practice
(Van House et al., 1998) facilitate trust among environ-
mental planners and policy makers.

Both ecologists and modelers reuse data that are easy to
access (Parsons, 2011; Zimmerman, 2007). Modelers, how-
ever, face an extra step in the evaluation process, needing
first to decode numerically encoded data sets before decid-
ing if they are appropriate (Pallickara et al., 2010).

Biomedicine

Visual, medical, and textual criteria are used to evalu-
ate biomedical images. Healthcare workers rank visual
relevance, background information, and image quality as
being most important, although they also mention image
modality and understandability (Clough, Sedghi, & San-
derson, 2008). Radiologists rely on a mixture of image
properties, image quality, supporting documentation, and
information about the source to determine suitability
(Markonis et al., 2012).

Evaluation criteria vary depending on users’ profes-
sional specialties and particular situations (Clough et al.,
2008). Users rely on visual attributes when evaluating gen-
eral medical images but incorporate textual information
and credibility criteria for specific images used for back-
ground purposes (Sedghi et al., 2011).

Definitions of quality also vary by user. A neurosur-
geon, for example, uses noise levels, resolution, and ana-
tomical coverage, while a radiologist focuses mostly on
motion artifacts to determine image quality (Heckel, Arlt,
Geisler, Zidowitz, & Neumuth, 2016). Resolution and
acquisition details (for example, slice thickness in tomo-
graphic images) are other proxies for quality (Müller
et al., 2006).

Healthcare professionals determine relevance through a
combination of textual background information, visual
inspection, and mental comparison to imagined ideals
(Sedghi, Sanderson, & Clough, 2012). Personal experience
trumps other criteria, however, when determining image
relevance (Markonis et al., 2012; Müller et al., 2006).

Clinicians build trust in images through supporting docu-
mentation, such as attached exams or biopsies. Systems
allowing researchers to comment on images online can also
build trust normally created through informal “hallway”
communications (Jirotka et al., 2005; Markonis et al., 2012).

Field Archeology

Archeologists require contextual information about col-
lection methods, instrumentation, observational conditions,
and artifact provenance (Faniel, Barrera-Gomez, et al.,
2013). Other fundamental metadata include information
about original research goals and baseline geographic,
stratigraphic, and chronological data (Atici et al., 2013).
Current metadata schemas are not rich enough to provide

this level of contextual description. Archeologists either
make do with the available information or seek other ways
to further develop context (Faniel, Kansa, et al., 2013).

Consistent data recording practices (for example, an
absence of misspellings or translational errors) (Atici
et al., 2013), and detailed language in supporting docu-
mentation (Faniel, Kansa, et al., 2013) help to establish
credibility and trustworthiness. Author reputation and
affiliation and repository features, such as metadata type
and level of transparency, help to establish trust (Faniel,
Kansa, et al., 2013).

Social Sciences

DBK users spend more time evaluating data results
compared with literature results, consulting additional doc-
umentation when needed. Researchers appear to think this
is normal, perhaps because choosing the correct data set is
more important than selecting the correct article (Kern &
Mathiak, 2015). Title and publication year are not as
important as study time frame and keywords in evalua-
tions. Users would like access to literature citing a data set
to determine if a research question has already been
answered (Kern & Mathiak, 2015); prior reuse of data is
also an important way of developing trust (Faniel &
Yakel, 2017).

Data seekers rank accessibility as the most important
factor determining satisfaction with data reuse in the
ICPSR repository. Data completeness (ranked 2nd), credi-
bility (4th), and ease of use (5th) are also contributing fac-
tors; in this study, journal/author reputation do not appear
to impact satisfaction (Faniel et al., 2016). Other work sug-
gests that the repository reputation is an important signal
of data quality and credibility (Curty, 2016) and is used to
develop trust in data (Faniel & Yakel, 2017). Data reusers
tend to either make do with available data or adapt their
research projects to use data that they can find. The more
researchers have to “reshape” their projects, the less satis-
fied they are (Faniel et al., 2016).

Users need contextual information about collection
methods, instrumentation, other analyses, and how vari-
ables are defined and measured (Curty, 2016; Faniel,
Kansa, et al., 2013; Kern & Mathiak, 2015; Yoon, 2014a).
When necessary, researchers turn to other sources to
develop the necessary context (Fielding & Fielding, 2008),
consulting colleagues, codebooks (Faniel & Yakel, 2017),
or bibliographies (Faniel, Barrera-Gomez, et al., 2013).
Ideally, specialized metadata schemas would provide
enhanced context (Kern & Mathiak, 2015). Debate
remains, however, if documentation can build the context
needed to reuse qualitative social science data (Broom
et al., 2009; Parry & Mauthner, 2005).

Novice researchers especially need supporting contextual
information. They want details about coding procedures,
collection methods, and data set merging and matching
(Faniel, Kriesberg, & Yakel, 2012). More experienced
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researchers can make do more easily with limited documen-
tation (Yoon, 2016).

Discussion

Having presented the documented practices of observa-
tional data users, we use the frameworks to synthesize our
key findings and to identify commonalities and themes
spanning the reviewed disciplinary communities.

Users and Needs

Researchers across and within the reviewed disciplines
need a diversity of observational data, requiring data of
different types from different sources and disciplines, col-
lected at different scales using different instruments. Users
have very specific requirements, needing data from particu-
lar locations (geographic, anatomical, or astronomical), at
particular resolutions or collected using particular mechani-
cal or survey instruments.

Integrating diverse data is necessary but challenging.
Astronomers struggle to bring together data from different
telescopes, neuroscientists try to combine neuroimages
with clinical data, and archeologists need to integrate data
collected in different contexts with different methodolo-
gies. Some of these challenges may be augmented by
changes in research practices, such as automated data
collection in EES (Borgman et al., 2007), or by shifts in
community data practices, such as increased data sharing,
as in archeology (Arbuckle et al., 2014) or neuroscience
(Choudhury et al., 2014).

Background and foreground uses are reported across
disciplines, although background uses are better documen-
ted. These include making comparisons, benchmarking,
preparing research projects, calibrating instruments, and as
model inputs. Reported foreground uses are vaguer, often
limited to reports of “asking new questions of data.” This
does not mean that foreground uses do not occur; examples
of new research fueled by data reuse could likely be found
in all of the reviewed disciplines (for example, Atici et al.,
2017). This could indicate a mismatch between what stud-
ies of data practices report and actual practices, or it could
be a sign of changing practices. Even with a broad analy-
sis, we see that data use varies within disciplines. One
group of biodiversity researchers uses secondary data only
to support projects, for example, while another study only
examines cases of foreground use. Other possible data
uses, that is, in teaching, clinical practice, or environmental
planning, are hinted at, although rarely explored in detail.

A generic view of the user is also common. Similar to
our approach, disciplines are often broadly represented; the
social sciences in particular tend to be treated as a homoge-
nous group. Few studies document the needs and behaviors
of specific user groups, such as early career researchers
(Kriesberg et al., 2013; Faniel et al., 2012), policy makers
(Janse, 2006; McNie, 2007; Cash et al., 2003) or students
(Carlson & Stowel-Bracke, 2013). Understanding the data

practices of ECRs sheds light on processes of acculturation
(Kriesberg et al., 2013) and is important, as large-scale
data reuse depends on adoption by ECRs (Faniel et al.,
2012). Understanding the practices of specific user groups
is also critical in designing user-oriented data discovery
systems.

User Actions

Across communities, users find data in repositories,
journals, on websites, and through personal networks. This
variety could be due to differing infrastructures available
within disciplines; however, even in fields with established
data repositories, that is, astronomy and quantitative social
science, researchers seek data outside of these systems
(Faniel & Yakel, 2017; Sands et al., 2012).

Personal exchanges are valuable sources of external
data. While locating large, well-known data sets is straight-
forward, tracking down smaller, specialized data sets is
challenging and often requires personal communication
(Sands et al., 2012). Existing repository search functionali-
ties may not meet the specific needs of researchers, or
users may not develop appropriate search strategies in
these resources (Sedghi et al., 2011). Users may also sim-
ply not be aware of the existence of data or databases; this
may be especially true for researchers seeking data outside
of their primary disciplines.

The distributed nature of observational data compounds
these problems. A variety of data repositories exist within
these disciplines (for example, Dow et al., 2015); within each
new resource, users must start from scratch—first discover-
ing the resource, then investing significant time and energy
becoming familiar with it and the available data. A lack of
time and accessible data also complicates the search process.

Evaluation

Researchers across disciplines need as much contextual
information as possible, requiring documentation about
instruments, methodologies, research questions, and obser-
vational conditions. This information is combined with the
reputation of the repository and often that of the data
author to establish trust, data quality, and relevance.
Although much of the reviewed literature uses frames such
as trust and quality to discuss evaluation, the characteristics
used to develop these frames varies. This variation may
result from disciplinary or individual differences or from
how the articles’ authors define these frames. One com-
monality that we can identify is the association of more
social criteria—such as the reputation of authors and data
sources—in developing trust.

Enriched metadata are often the desired, although
imperfect, methods of conveying contextual information.
Perhaps because of limitations in metadata, researchers
build the needed information by combining a variety
of sources, from codebooks and academic literature to
unpublished reports and museum records (Faniel & Yakel,
2017). Researchers across communities also use social
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connections and personal exchanges to evaluate data. The
discussion about how researchers evaluate data is still
developing, although the process seems to differ from how
researchers evaluate academic literature.

The following themes bridging both frameworks emerge
from this synthesis:

• A tension between breadth and specificity.
• The social aspects of data retrieval.
• Absent practices and communities.

When developing the frameworks for this article, we
presented the tension involved in applying broad perspec-
tives to understand individual practices. This tension
between breadth and specificity is also present in the
reviewed data retrieval practices. Even within disciplines,
researchers need a diversity of observational data and
employ a wide variety of search and evaluation strategies.
At the same time, users seek data with very precise charac-
teristics. They appear to balance breadth and specificity as
they work to integrate data sets from diverse sources to
meet specific needs or to piece together a variety of evalua-
tion criteria to make decisions about reuse.

Social connections and personal exchanges permeate
observational data retrieval. Users rely on personal connec-
tions and their own networks to locate, obtain, and evalu-
ate data, even in disciplines with extensive infrastructures.
This suggests that it is not enough to understand data
retrieval as a series of interactions between users and
search systems; rather, data retrieval is in fact a complex
sociotechnical process.

The absence of many communities and practices in the
literature is also apparent. A relatively small number of
disciplines are represented in our literature corpus. Among
the broad disciplinary categories that we employ, certain
subdisciplines are well represented; others are briefly men-
tioned, and others are treated homogeneously. Building a
robust picture of observational data retrieval requires a dee-
per understanding of practices in other disciplines and of
understudied user groups such as nonscientists or early
career researchers. Deeper studies of how data retrieval
practices change when seeking data for foreground pur-
poses, or when seeking data from different disciplines, are
also absent. Although Faniel and Yakel (2017) have
recently identified five “trust markers” important in data
reuse in archeology, social sciences and zoology, common
frameworks for discussing evaluation criteria across the
observational data community are lacking.

Conclusion: Toward a Model for Data Retrieval

Through our analysis we have achieved the following:

• Shown that a framework based on interactive IR is applicable
to understanding the data retrieval literature.

• Tested the boundaries of defining data communities, using
broad classifications to identify commonalities in practices.

• Revealed absent practices and highlighted areas where more
research is necessary.

• Suggested that a framework based on IR alone is insufficient
for completely understanding the complexity of data retrieval
practices.

The literature also points to ways that IR and data
retrieval differ. Data needs are specific, requiring high pre-
cision in IR systems (Stempfhuber & Zapilko, 2009).
Textual queries and ranking algorithms do not work well
for retrieving numeric or encoded data (Pallickara et al.,
2010). Users employ different search strategies when seek-
ing data rather than literature (Kern & Mathiak, 2015) and
take different roles when interacting with data repositories
(for example, as consumers and creators), which can
impact system design (Borgman et al., 2015). Researchers
also spend more time evaluating data sets (Kern &
Mathiak, 2015), perhaps because lists of data cannot be
efficiently evaluated in the same way as document lists
(Kunze & Auer, 2013).

These differences, in conjunction with the themes iden-
tified in the Discussion, suggest that current IR models
may not completely describe data retrieval practices. Iden-
tifying commonalities in observational data retrieval prac-
tices is a first step in exploring possible characteristics of a
new model for data IR. Further studies of different data
communities, such as users of experimental and computa-
tional data, big and long-tail data seekers, and members of
underrepresented user groups are needed. A model describ-
ing data retrieval would provide insight into the needs and
practices of users that could be applied to both systems
design and policy developments for facilitating data
discovery.

Acknowledgments

K.G. developed the frameworks, collected the data, and
wrote the article. P.G., H.C., S.W., and A.S. contributed to
theory development and editing. This work was funded by
the Netherlands Organization for Scientific Research, Grant
652.001.002.

References

Aloia, N., Binding, C., Cuy, S., Doerr, M., Felicetti, A., Fihn, J., …

Richards, J. (2017). Enabling European archaeological research: The
ARIADNE e-infrastructure. Internet Archaeology, 43(11), 1–21.

Ames, D.P., Horsburgh, J.S., Cao, Y., Kadlec, J., Whiteaker, T., &
Valentine, D. (2012). HydroDesktop: Web services-based software for
hydrologic data discovery, download, visualization, and analysis. Envi-
ronmental Modelling and Software, 37, 146–156.

Arbuckle, B.S., Kansa, S.W., Kansa, E., Orton, D., Çakırlar, C.,
Gourichon, L., … Buitenhuis, H. (2014). Data sharing reveals complex-
ity in the westward spread of domestic animals across Neolithic Turkey.
PLoS One, 9(6), e99845.

Atici, L., Kansa, S.W., Lev-Tov, J., & Kansa, E.C. (2013). Other peo-
ple’s data: A demonstration of the imperative of publishing primary
data. Journal of Archaeological Method and Theory, 20(4), 663–681.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2019
DOI: 10.1002/asi

429



Atici, L., Pilaar Birch, S.E., & Erdo�gu, B. (2017). Spread of domestic ani-
mals across Neolithic western Anatolia: New zooarchaeological evi-
dence from U�gurlu Höyük, the Island of Gökçeada, Turkey. PLoS One,
12(10), e0186519.

Bahls, D. & Tochtermann, K. (2013). Semantic retrieval interface for sta-
tistical research data. In Proceedings of the 3rd International Workshop
on Semantic Digital Archives, 93–103. CEUR-WS.org. Retrieved from
http:ceur-ws.org/Vol-1091/paper9.pdf

Baker, K.S., Duerr, R.E., & Parsons, M.A. (2015). Scientific knowledge
mobilization: Co-evolution of data products and designated communi-
ties. International Journal of Digital Curation, 10(2), 110–135.

Bates, M. (1990). Where should the person stop and the information search
start? Information, Processing and Management, 26(5), 575–591.

Beaulieu, A. (2004). From brainbank to database: The informational turn
in the study of the brain. Studies in History and Philosophy of Biologi-
cal and Biomedical Sciences, 35(2), 367–390.

Belkin, N.J. (1993). Interaction with texts: Information retrieval as
information-seeking behavior. In G. Knorz, J. Krause, & C. Womser-
Hacker (Eds.), Information retrieval’ 93: Von der Modellierung zur
Anwendung (pp. 55–66). Konstanz, Germany: Universitaetsverlag
Konstanz.

Belkin, N.J. (1996). Intelligent information retrieval: Whose intelligence?
In ISI ‘96: Proceedings of the Fifth International Symposium for Infor-
mation science (pp. 25–31). Konstanz, Germany: Universtaetsverlag
Konstanz.

Beran, B., Cox, S.J.D., Valentine, D., Zaslavsky, I., & McGee, J. (2009).
Web services solutions for hydrologic data access and cross-domain
interoperability. International Journal on Advances in Intelligent Sys-
tems, 2(2&3), 317–324.

Birnholtz, J. P. & Bietz, M.J. (2003). Data at work: Supporting sharing in
science and engineering. In Proceedings of the International ACM
SIGGROUP Conference on Supporting Group Work (pp. 339-348).
New York, NY, USA.

Borgman, C.L. (2015). Big data, little data, no data: Scholarship in the
networked world. Cambridge, MA, USA: MIT Press.

Borgman, CL., Darch, P.T., Sands, A.E., & Golshan, M.S. (2016). The
durability and fragility of knowledge infrastructures: Lessons learned
from astronomy. Proceedings of the Association for Information Sci-
ence and Technology, 53, 1–10.

Borgman, C.L., Scharnhorst, A., & Golshan, M.S. (forthcoming). Digital
data archives as knowledge infrastructures: Mediating data sharing and
reuse. Journal of the Association of Information Science and Technol-
ogy. Preprint retrieved from arXiv:1802.02689.

Borgman, C.L., Smart, L.J., Millwood, K.A., Finley, J.R., Champeny, L.,
Gilliland, A.J., & Leazer, G.H. (2005). Comparing faculty information
seeking in teaching and research: Implications for the design of digital
libraries. Journal of the American Society for Information Science and
Technology, 56(6), 636–657.

Borgman, C.L., Van de Sompel, H., Scharnhorst, A., van den Berg, H., &
Treloar, A. (2015). Who uses the digital data archive? An exploratory
study of DANS. Proceedings of the Association for Information Sci-
ence and Technology, 52, 1–4.

Borgman, C.L., Wallis, J.C., & Enyedy, N. (2007). Little science con-
fronts the data deluge: Habitat ecology, embedded sensor networks, and
digital libraries. International Journal on Digital Libraries, 7(1–2),
17–30.

Bowker, G.C. (2000a). Biodiversity datadiversity. Social Studies of Sci-
ence, 30(5), 643–683.

Bowker, G.C. (2000b). Work and information practices in the sciences of
biodiversity. In Proceedings of the 26th International Conference on
Very Large Data Bases Cairo, Egypt.

Broom, A., Cheshire, L., & Emmison, M. (2009). Qualitative researchers’
understandings of their practice and the implications for data archiving
and sharing. Sociology, 43(6), 1163–1180.

Brown, C. (2003). The changing face of scientific discourse: Analysis of
genomic and proteomic database usage and acceptance. Journal of the
American Society for Information Science and Technology, 54(10),
926–938.

Carlson, J., & Stowel-Bracke, M. (2013). Data management and sharing
from the perspective of graduate students: An examination of the cul-
ture and practice at the water quality field station. Libraries Faculty and
Staff Scholarship and Research, 13, 343–361.

Cash, D.W., Clark, W.C., Alcock, F., Dickson, N.M., Eckley, N.,
Guston, D.H., … Mitchell, R.B. (2003). Knowledge systems for sus-
tainable development. Proceedings of the National Academy of Sci-
ences of the United States of America, 100(14), 8086–8091.

Choudhury, S., Fishman, J.R., McGowan, M.L., & Juengst, E.T. (2014).
Big data, open science and the brain: Lessons learned from genomics.
Frontiers in Human Neuroscience, 8, 1–10.

Clough, P.D., Sedghi, S., & Sanderson, M. (2008). A study on the rele-
vance criteria for medical images. Pattern Recognition Letters, 29(15),
2046–2057.

Corti, L. (2007). Re-using archived qualitative data—where, how, why?
Archival Science, 7(1), 37–54.

Cragin, M.H., Chao, T.C., & Palmer, C.L. (2011). Units of evidence for
analyzing subdisciplinary difference in data practice studies. In Proceed-
ings of the 11th ACM/IEEE-CS Joint Conference on Digital Libraries
(pp. 441–442). New York, NY, USA.

Curty, R.G. (2016). Factors influencing research data reuse in the social
sciences: An exploratory study. International Journal of Digital Cura-
tion, 11(1), 96–117.

Davis, M.L.E.S., Tenopir, C., Allar, S., & Frame, M.T. (2014). Facilitat-
ing access to biodiversity information: A survey of users’ needs and
practices. Environmental Management, 53(3), 690–701.

De-Arteaga, M., Eggel, I., Do, B., Rubin, D., Kahn, C.E., & Müller, H.
(2015). Comparing image search behaviour in the ARRS GoldMiner
search engine and a clinical PACS/RIS. Journal of Biomedical Infor-
matics, 56, 57–64.

Devarakonda, R., Palanisamy, G., Green, J.M., & Wilson, B.E. (2011).
Data sharing and retrieval using OAI-PMH. Earth Science Informatics,
4(1), 1–5.

Dow, A.K., Dow, E.M., Fitzsimmons, T.D., & Materise, M.M. (2015).
Harnessing the environmental data flood: A comparative analysis of
hydrologic, oceanographic, and meteorological informatics platforms.
Bulletin of the American Meteorological Society, 96(5), 725–736.

Dulisch, N., Kempf, A.O., & Schaer, P. (2015). Query expansion for sur-
vey question retrieval in the social sciences. In S. Kapidakis,
C. Mazurek, & M. Werla (Eds.), Research and Advanced Technology
for Digital Libraries. Lecture notes in computer science (Vol. 9316).
Berlin: Springer.

Edwards, P.N., Mayernik, M.S., Batcheller, A.L., Bowker, G.C., &
Borgman, C.L. (2011). Science friction: Data, metadata, and collabora-
tion. Social Studies of Science, 41(5), 667–690.

Erinjeri, J.P., Picus, D., Prior, F.W., Rubin, D.A., & Koppel, P. (2009).
Development of a Google-based search engine for data mining radiol-
ogy reports. Journal of Digital Imaging, 22(4), 348–356.

Faniel, I.M., Barrera-Gomez, J., Kriesberg, A., & Yakel, E. (2013). A
comparative study of data reuse among quantitative social scientists and
archaeologists. In iConference 2013 Proceedings (pp. 797–800).

Faniel, I.M., Kansa, E., Kansa, S.W., Barrera-Gomez, J., & Yakel, E.
(2013). The challenges of digging data: A study of context in archaeo-
logical data reuse. In Proceedings of the 13th ACM/IEEE-CS Joint
Conference on Digital Libraries (pp. 295–304). New York: ACM.

Faniel, I.M., Kriesberg, A., & Yakel, E. (2012). Data reuse and sensemak-
ing among novice social scientists. Proceedings of the American Soci-
ety for Information Science and Technology, 49, 1–10.

Faniel, I.M., Kriesberg, A., & Yakel, E. (2016). Social scientists’ satisfac-
tion with data reuse. Journal of the Association for Information Science
and Technology, 67(6), 1404–1416.

Faniel, I.M. & Yakel, E. (2017). Practices do not make perfect: Disciplin-
ary data sharing and reuse practices and their implications for repository
data curation. In L.R. Johnson (Ed.), Curating research data, Volume
1: Practical strategies for your digital repository. Chicago, IL, USA:
Association of College and Research Libraries. Retrieved from https://
www.oclc.org/research/publications/2017/practices-do-not-make-perfect.
html

430 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2019
DOI: 10.1002/asi

http:ceur-ws.org/Vol-1091/paper9.pdf
https://www.oclc.org/research/publications/2017/practices-do-not-make-perfect.html
https://www.oclc.org/research/publications/2017/practices-do-not-make-perfect.html
https://www.oclc.org/research/publications/2017/practices-do-not-make-perfect.html


Faniel, I.M., & Zimmerman, A. (2011). Beyond the data deluge: A
research agenda for large-scale data sharing and reuse. International
Journal of Digital Curation, 6(1), 58–69.

Fielding, N.G., & Fielding, J.L. (2008). Resistance and adaptation to crim-
inal identity: Using secondary analysis to evaluate classic studies of
crime and deviance. Historical Social Research, 33(3), 75–93.

Gray, J. (2009). Jim gray on eScience: A transformed scientific method.
In T. Hey, S. Tansley, & K. Tolle (Eds.), The fourth paradigm: Data-
intensive scientific discovery (pp. xvii–xxxi). Richmond, WA: Micro-
soft Research.

Gregory, K., Cousijn, H., Groth, P., Scharnhorst, A., & Wyatt, S. (2018).
Understanding data retrieval practices: A social informatics perspective.
arXiv preprint arXiv,1801,04971.

Heckel, F., Arlt, F., Geisler, B., Zidowitz, S., & Neumuth, T. (2016).
Evaluation of image quality of MRI data for brain tumor surgery. In
Proceedings SPIE 9787, Medical Imaging 2016: Image Perception,
Observer Performance, and Technology Assessment (Vol. 9787).

Hersh, W., Müller, H., Gorman, P., & Jensen, J. (2005). Task analysis for
evaluating image retrieval systems in the ImageCLEF biomedical image
retrieval task. In Slice of Life Conference on Multimedia in Medical
Education, Portland, OR.

Hoeppe, G. (2014). Working data together: The accountability and reflex-
ivity of digital astronomical practice. Social Studies of Science, 44(2),
243–270.

Honor, L.B., Haselgrove, C., Frazier, J.A., & Kennedy, D.N. (2016). Data
citation in neuroimaging: Proposed best practices for data identification
and attribution. Frontiers in Neuroinformatics, 10, 1–12.

Ingwersen, P. (1992). Information retrieval interaction. London: Taylor
Graham.

Ingwersen, P. (1996). Cognitive perspectives of information retrieval
interaction: Elements of a cognitive IR theory. Journal of Documenta-
tion, 52(1), 3–50.

Janse, G. (2006). Information search behaviour of European forest policy
decision-makers. Forest Policy and Economics, 8(6), 579–592.

Jirotka, M., Procter, R., Hartswood, M., Slack, R., Simpson, A.,
Coopmans, C., … Voss, A. (2005). Collaboration and trust in health-
care innovation: The eDiaMoND case study. Computer Supported
Cooperative Work, 14(4), 369–398.

Kalpathy-Cramer, J., de Herrera, A.G.S., Demner-Fushman, D.,
Antani, S., Bedrick, S., & Müller, H. (2015). Evaluating performance
of biomedical image retrieval systems – An overview of the medical
image retrieval task at ImageCLEF 2004–2013. Computerized Medical
Imaging and Graphics, 39, 55–61.

Karcher, S., Kirilova, D., & Weber, N. (2016). Beyond the matrix: Repos-
itory services for qualitative data. IFLA Journal, 42(4), 292–302.

Kern, D., & Mathiak, B. (2015). Are there any differences in data set
retrieval compared to well-known literature retrieval? In S. Kapidakis,
C. Mazurek, & M. Werla (Eds.), Research and advanced technology for
digital libraries. Lecture notes in computer science (Vol. 9316). Cham,
Switzerland: Springer.

Key Perspectives. (2010). Data dimensions: Disciplinary differences in
research data sharing, reuse and long term viability. SCARP Synthesis
Study. Digital Curation Centre. Retrieved from http://www.dcc.ac.uk/scarp

Kim, S., & Gilbertson, J. (2007). Information requirements of cancer cen-
ter researchers focusing on human biological samples and associated
data. Information Processing and Management, 43(5), 1383–1401.

Kriesberg, A., Frank, R.D., Faniel, I.M., & Yakel, E. (2013). The role of
data reuse in the apprenticeship process. Proceedings of the American
Society for Information Science and Technology, 50, 1–10.

Kuhlthau, C.C. (1991). Inside the search process: Information seeking
from the user ‘s perspective. Journal of the American Society for Infor-
mation Science, 42(5), 361–371.

Kunze, S.R. & Auer, S. (2013). Data set retrieval. In 2013 I.E. 7th Inter-
national Conference on Semantic Computing, ICSC 2013 (pp. 1–8).

Larsen, S., Hamilton, S., Lucido, J., Garner, B., & Young, D. (2016).
Supporting diverse data providers in the open water data initiative:
Communicating water data quality and fitness of use. Journal of the
American Water Resources Association, 52(4), 859–872.

Leonelli, S. (2016). Data-centric biology: A philosophical study. Chicago,
IL, USA: University of Chicago Press.

Maier, D., Megler, V.M., Baptista, A.M., Jaramillo, A., Seaton, C., &
Turner, P.J. (2012). Navigating oceans of data. In A. Ailamaki &
S. Bowers (Eds.), Scientific and statistical database management.
SSDBM 2012. Lecture notes in computer science (Vol. 7338,
pp. 1–19). Berlin: Springer.

Maier, D., Megler, V.M., & Tufte, K. (2014). Challenges for data set
search. In S.S. Bhowmick, C.E. Dyreson, C.S. Jensen, M.L. Lee,
A. Muliantara, & B. Thalheim (Eds.), Database systems for advanced
applications. DASFAA 2014. Lecture notes in computer science (Vol.
8421). Berlin: Springer.

Markonis, D., Holzer, M., Dungs, S., Vargas, A., Langs, G.,
Kriewel, S., & Müller, H. (2012). A survey on visual information
search behavior and requirements of radiologists. Methods of Informa-
tion in Medicine, 51(6), 539–548.

McNie, E.C. (2007). Reconciling the supply of scientific information with
user demands: An analysis of the problem and review of the literature.
Environmental Science and Policy, 10(1), 17–38.

Megler, V.M. & Maier, D. (2012). When big data leads to lost data. In
Proceedings of the 5th Ph.D. Workshop on Information and Knowledge
(pp. 1–8), Maui, Hawaii: ACM.

Meyer, E.T., Bulger, M., Kyriakidou-Zacharoudiou, A., Power, L.,
Williams, P., Venters, W., … Wyatt, S. (2011). Collaborative yet inde-
pendent: Information practices in the physical sciences. London:
Research Information Network.

Michener, W.K. (2015). Ecological data sharing. Ecological Informatics,
29, 33–44.

Miller, J.R., Groom, M., Hess, G.R., Steelman, T., Stokes, D.L.,
Thompson, J., … Marquardt, R. (2009). Biodiversity conservation in
local planning. Conservation Biology, 23(1), 53–63.

Müller, H., Despont-Gros, C., Hersh, W., Jensen, J., Lovisa, C., &
Antoine Geissbuhler. (2006). Health care professionals’ image use and
search behaviour. In Proceedings of the Medical Informatics Europe
Conference (MIE 2006) (pp. 24–32). Maastricht, The Netherlands: IOS
Press, Studies in Health Technology and Informatics.

Murillo, A.P. (2014). Examining data sharing and data reuse in the
DataONE environment. Proceedings of the American Society for Infor-
mation Science and Technology, 51, 1–5.

National Science Board. (2005). Long-lived digital data collections:
Enabling research and education in the 21st century. National Science
Foundation. Retrieved from https://www.nsf.gov/pubs/2005/nsb0540/
nsb0540.pdf.

National Science Foundation. (2007). Cyberinfrastructure vision for 21st
century discovery. Retrieved from https://www.nsf.gov/pubs/2007/
nsf0728/nsf0728.pdf.

Niccolucci, F., & Richards, J.D. (2013). ARIADNE: Advanced research
infrastructures for archaeological data set networking in Europe. Inter-
national Journal of Humanities and Arts Computing, 7(1–2), 70–88.

Pallickara, S.L.S., Pallickara, S.S., & Zupanski, M. (2012). Towards effi-
cient data search and subsetting of large-scale atmospheric data sets.
Future Generation Computer Systems, 28(1), 112–118.

Pallickara, S.L.S., Pallickara, S. S., Zupanski, M., & Sullivan, S. (2010).
Efficient metadata generation to enable interactive data discovery over
large-scale scientific data collections. In Proceedings of the 2010 I.E.
Second International Conference on Cloud Computing Technology and
Science (pp. 573–580). IEEE Computer Society.

Palmer, C.L., Cragin, M.H., & Hogan, T.P. (2004). Information at the
intersections of discovery: Case studies in neuroscience. In Proceedings
of the ASIST Annual Meeting (Vol. 41, pp. 448–455).

Parry, O., & Mauthner, N. (2005). Back to basics: Who re-uses qualitative
data and why? Sociology, 39(2), 337–342.

Parsons, M.A. (2011). Making data useful for modelers to understand
complex earth systems. Earth Science Informatics, 4, 197–223.

Pasquetto, I.V., Randles, B.M., & Borgman, C.L. (2017). On the reuse of
scientific data. Data Science Journal, 16(8), 1–9.

Pepe, A., Goodman, A., Muench, A., Crosas, M., & Erdmann, C. (2014).
How do astronomers share data? Reliability and persistence of data sets

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2019
DOI: 10.1002/asi

431

http://www.dcc.ac.uk/scarp
https://www.nsf.gov/pubs/2005/nsb0540/nsb0540.pdf
https://www.nsf.gov/pubs/2005/nsb0540/nsb0540.pdf
https://www.nsf.gov/pubs/2007/nsf0728/nsf0728.pdf
https://www.nsf.gov/pubs/2007/nsf0728/nsf0728.pdf


linked in AAS publications and a qualitative study of data practices
among US astronomers. PLoS One, 9(8), e104798.

Pullin, A., Knight, T., Stone, D., & Charman, K. (2004). Do conservation
managers use scientific evidence to support their decision making? Bio-
logical Conservation, 119(2), 245–252.

Rieh, S.Y., & Xie, H. (2006). Analysis of multiple query reformulations
on the web: The interactive information retrieval context. Information
Processing and Management, 42(3), 751–768.

Sanderson, M., & Croft, W.B. (2012). The history of information retrieval
research. Proceedings of the IEEE, 100, 1444–1451.

Sands, A., Borgman, C.L., Wynholds, L., & Traweek, S. (2012). Follow
the data: How astronomers use and reuse data. In Proceedings of the
ASIST Annual Meeting (Vol. 49, pp. 1–3). Baltimore, MD.

Saracevic, T. (1996). Modeling interaction in information retrieval (IR): A
review and proposal. In Proceedings of the 59th Annual Meeting of the
American Society for Information Science (pp. 3–9).

Saracevic, T. (1997). The stratified model of information retrieval interac-
tion: Extension and applications. In Proceedings of the 60th Annual
Meeting of the American Society for Information Science (pp. 313–327).

Schmidt, B., Gemeinholzer, B., & Treloar, A. (2016). Open data in global
environmental research: The Belmont Forum’s open data survey. PLoS
One, 11(1), e0146695.

Sedghi, S., Sanderson, M., & Clough, P. (2011). Medical image resources
used by health care professionals. Aslib Proceedings: New Information
Perspectives, 63(6), 570–585.

Sedghi, S., Sanderson, M., & Clough, P. (2012). How do health care pro-
fessionals select medical images they need? ASLIB Proceedings, 64(4),
437–456.

Shen, Y. (2007). Information seeking in academic research: A study of
the sociology faculty at the University of Wisconsin-Madison. Informa-
tion Technology and Libraries, 26(1), 4.

Stempfhuber, M. & Zapilko, B. (2009). Integrated retrieval of research
data and publications in digital libraries. In Rethinking Electronic Pub-
lishing: Innovation in Communication Paradigms and Technologies—
Proceedings of the 13th International Conference on Electronic Publish-
ing (pp. 613–620). Milano, Italy.

Swan, A. & Brown, S. (2008). To share or not to share: Publication and
quality assurance of research data outputs. Retrieved from http://www.
rin.ac.uk/system/files/attachments/To-share-data-outputs-report.pdf.

Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A.U., Wu, L., Read, E., …
Frame, M. (2011). Data sharing by scientists: Practices and perceptions.
PLoS One, 6(6), e21101. https://doi.org/10.1371/journal.pone.0021101

Tenopir, C., Dalton, E.D., Allard, S., Frame, M., Pjesivac, I., Birch, B., …
Dillman, D. (2015). Changes in data sharing and data reuse practices and
perceptions among scientists worldwide. PLoS One, 10(8), e0134826.

Van Horn, J.D., & Gazzaniga, M.S. (2013). Why share data? Lessons
learned from the fMRIDC. NeuroImage, 82, 677–682.
Van House, N.A., Butler, M.H., & Schiff, L.R. (1998). Cooperative
knowledge work and practices of trust: Sharing environmental planning
data sets. In Proceedings of the 1998 ACM Conference on Computer
Supported Cooperative Work. New York, NY, USA: ACM.

Wallis, J.C., Borgman, C.L., Mayernik, M.S., Pepe, A.,
Ramanathan, N., & Hansen, M. (2007). Know thy sensor: Trust, data

quality, and data integrity in scientific digital libraries. In L. Kovács,
N. Fuhr, & C. Meghini (Eds.), Research and advanced Technology for
Digital Libraries. ECDL 2007. Lecture notes in computer science (Vol.
4675, pp. 380–391). Berlin, Heidelberg: Springer.

Wallis, J.C., Rolando, E., & Borgman, C.L. (2013). If we share data, will
anyone use them? Data sharing and reuse in the long tail of science and
technology. PLoS One, 8(7), e67332.

Weber, N.M., Baker, K.S., Thomer, A.K., Chao, T.C., & Palmer, C.L.
(2012). Value and context in data use: Domain analysis revisited. In
Proceedings of the American Society for Information Science and Tech-
nology, 49, 1–10.

Weller, T., & Monroe-Gulick, A. (2014). Understanding methodological
and disciplinary differences in the data practices of academic
researchers. Library Hi Tech, 32(3), 467.

Williams, R., Pryor, G., Bruce, A., Macdonald, S., Marsden, W.,
Calvert, J., … Neilson, C. (2009). Patterns of information use and
exchange: Case studies of researchers in the life sciences. Research
Information Network.

Wolfram, D. (2015). The symbiotic relationship between information
retrieval and informetrics. Scientometrics, 102(3), 2201–2214.

Wynholds, L., Fearon, D.S., Borgman, C.L., & Traweek, S. (2011). When
use cases are not useful: Data practices, astronomy, and digital libraries.
In Proceedings of the 11th Annual International ACM/IEEE Joint Con-
ference on Digital Libraries (pp. 383–386).

Wynholds, L.A., Wallis, J.C., Borgman, C.L., Sands, A., & Traweek, S.
(2012). Data, data use, and scientific inquiry: Two case studies of data
practices. In Proceedings of the 12th ACM/IEEE-CS Joint Conference
on Digital Libraries (pp. 19–22).

Xie, I. (2008). Interactive information retrieval in digital environments.
Hershey, PA: IGI Publishing.

Yoon, A. (2014a). End users’ trust in data repositories: Definition and
influences on trust development. Archival Science, 14(1), 17–34.

Yoon, A. (2014b). “Making a square fit into a circle”: Researchers’ expe-
riences reusing qualitative data. Proceedings of the American Society
for Information Science and Technology, 51, 1–4.

Yoon, A. (2016). Red flags in data: Learning from failed data reuse expe-
riences; red flags in data: Learning from failed data reuse experiences.
Proceedings of the Association for Information Science and Technol-
ogy, 53, 1–6.

Zimmerman, A. (2007). Not by metadata alone: The use of diverse
forms of knowledge to locate data for reuse. International Journal on
Digital Libraries, 7(1–2), 5–16. https://doi.org/10.1007/s00799-007-
0015-8

Zimmerman, A.S. (2003). Data sharing and secondary use of scientific
data: Experiences of ecologists (unpublished). Ann Arbor, MI: Univer-
sity of Michigan.

Zimmerman, A.S. (2008). New knowledge from old data: The role of
standards in the sharing and reuse of ecological data. Science Technol-
ogy and Human Values, 33(5), 631–652.

Zinzi, A., Capria, M.T., Palomba, E., Giommi, P., & Antonelli, L.A.
(2016). MATISSE: A novel tool to access, visualize and analyze data
from planetary exploration missions. Astronomy and Computing, 15,
16–28.

432 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2019
DOI: 10.1002/asi

http://www.rin.ac.uk/system/files/attachments/To-share-data-outputs-report.pdf
http://www.rin.ac.uk/system/files/attachments/To-share-data-outputs-report.pdf
https://doi.org/10.1371/journal.pone.0021101
https://doi.org/10.1007/s00799-007-0015-8
https://doi.org/10.1007/s00799-007-0015-8

	 Searching Data: A Review of Observational Data Retrieval Practices in Selected Disciplines
	Introduction
	Framework #1: A Broad View of Interactive IR
	Framework #2: A Broad View of Data Communities
	Purpose of the Frameworks
	Methods
	Users and Needs
	Astronomy
	Data needed
	Data uses

	Earth and Environmental Sciences
	Data needed
	Data uses

	Biomedicine
	Data needed
	Data uses

	Field Archeology
	Social Sciences

	User Actions
	Astronomy
	Earth and Environmental Sciences
	Biomedicine
	Field Archeology
	Social Sciences

	Evaluation
	Astronomy
	Earth and Environmental Sciences
	Biomedicine
	Field Archeology
	Social Sciences

	Discussion
	Users and Needs
	User Actions
	Evaluation

	Conclusion: Toward a Model for Data Retrieval
	Acknowledgments
	References


