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Abstract: A variety of screening approaches have been proposed to diagnose epileptic seizures,
using electroencephalography (EEG) and magnetic resonance imaging (MRI) modalities. Artificial
intelligence encompasses a variety of areas, and one of its branches is deep learning (DL). Before the
rise of DL, conventional machine learning algorithms involving feature extraction were performed.
This limited their performance to the ability of those handcrafting the features. However, in DL, the
extraction of features and classification are entirely automated. The advent of these techniques in
many areas of medicine, such as in the diagnosis of epileptic seizures, has made significant advances.
In this study, a comprehensive overview of works focused on automated epileptic seizure detection
using DL techniques and neuroimaging modalities is presented. Various methods proposed to
diagnose epileptic seizures automatically using EEG and MRI modalities are described. In addition,
rehabilitation systems developed for epileptic seizures using DL have been analyzed, and a summary
is provided. The rehabilitation tools include cloud computing techniques and hardware required
for implementation of DL algorithms. The important challenges in accurate detection of automated
epileptic seizures using DL with EEG and MRI modalities are discussed. The advantages and
limitations in employing DL-based techniques for epileptic seizures diagnosis are presented. Finally,
the most promising DL models proposed and possible future works on automated epileptic seizure
detection are delineated.
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1. Introduction

Epilepsy is a noncommunicable disease and one of the most common neurological
disorders of humans, usually associated with sudden attacks [1]. Sudden attacks of seizures
are a swift and early abnormality in the electrical activity of the brain that disrupts the part
or whole body [2]. Various kinds of epileptic seizures are affecting around 60 million people
worldwide [3]. These attacks occasionally provoke cognitive disorders that can cause severe
physical injury to the patient. Moreover, people with epileptic seizures sometimes suffer
emotional distress due to embarrassment and lack of appropriate social status. Hence,
early detection of epileptic seizures can help the patients and improve their quality of life.

Screening techniques in the diagnosis of epileptic seizures comprise two important
categories of functional and structural neuroimaging modalities [4–9]. The functional neu-
roimaging modality provides important information about brain function during epileptic
seizure occurrence for physicians and neurologists [4–9]. The structural neuroimaging
modalities provide physicians with substantial information about the brain structure of
individuals with epileptic seizures [4–9]. The most important functional neuroimaging tech-
niques are EEG [5], magnetoencephalography (MEG) [6], positron emission tomography
(PET) [7], single-photon emission computed tomography (SPECT) [7,10], functional MRI
(fMRI) [4,11], electrocorticography (ECoG) [12], and functional near-infrared spectroscopy
(fNIRS) [13]. In contrast, structural MRI (sMRI) and diffusion tensor imaging (DTI) are
among the most significant structural neuroimaging techniques [4,14]. In the diagnosis of
epileptic seizures, functional neuroimaging modalities are more commonly applied than
structural modalities [4–9]. Research on the diagnosis of epileptic seizures has indicated
that EEG modalities are the most popular among physicians.

The EEG signals are widely preferred as they are economical, portable, and show
clear rhythms in the frequency domain [8,9]. The EEG provides the voltage variations
produced by the ionic current of neurons in the brain, which indicate the brain’s bioelectric
activity [15]. They need to be recorded for a long period of time to detect epileptic seizures.
In addition, these signals are recorded in multiple channels, making the analysis complex.
The EEG signals are also prone to artifacts generated by main power supply, electrode
movement, and muscle tremor [16]. This will pose challenges to the physicians to diagnose
epileptic seizures using noisy EEG signals. To resolve these difficulties, much research is
being carried out to diagnose and predict epileptic seizures based on EEG modalities and
other techniques such as MRI coupled with AI techniques [17,18]. AI techniques in the
field of epileptic seizures diagnosis have employed conventional machine learning and DL
methods [19–22].

Many machine learning algorithms have been developed using statistical, time, frequency,
time-frequency domain and nonlinear parameters to detect epileptic seizures [23,24]. In
conventional machine learning techniques, the selection of features and classifiers is done
by trial-and-error method [25,26]. One needs to have sound knowledge of signal processing
and data mining techniques to develop an accurate model. Such models perform well for
limited data. Nowadays, with the increase in the availability of data, machine learning
techniques may not perform very well. Hence, the DL techniques, which are the state-of-art
methods, have been employed [27,28]. DL models, unlike conventional machine learning
techniques, require huge data in the training phase [29]. This is because these models
have a large number of feature spaces, and in case of lack of data, they face the problem of
overfitting [29].

In conventional machine learning algorithms, most simulations were executed in the
Matlab software environment, but the DL models are usually developed using Python
programming language with numerous open-source toolboxes. The python language with
more freely available DL toolboxes has helped the researchers to develop novel automated
systems, and there is greater accessibility of computation resource to everyone thanks to
cloud computing. Figure 1 shows that the TensorFlow and one of its high-level APIs, Keras,



Int. J. Environ. Res. Public Health 2021, 18, 5780 3 of 33

are widely used for epileptic seizure detection using DL in reviewed works due to their
versatility and applicability.

Figure 1. Number of times each DL tool was used for automated detection of epileptic seizure by
various studies.

Since 2016, substantial research has been done to detect epilepsy using DL models
such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), deep
belief networks (DBNs), Autoencoders (AEs), CNN-RNNs, and CNN-AEs [30–33]. The
number of studies in this area using DL is growing as new efficient models are proposed.
Figure 2 provides the overview of number of studies conducted using various DL models
from 2014 to 2021 in detecting epileptic seizures.

Figure 2. Number of studies conducted using various DL models from 2014 until now (2021).

It can be noted from Figure 2 that various DL models have been exploited in the
diagnosis of epileptic seizures. Compared to other DL techniques, 2D-CNN and 1D-CNN
models are the most widely used in epileptic seizures detection. Researchers have mostly
employed 2D-CNN models to diagnose epilepsy. In the diagnosis of epileptic seizures
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using 2D-CNN models, EEG signals are first converted into two-dimensional (2D) images
using preprocessing methods such as short-time Fourier transform (STFT). Next, these
images are applied to 2D-CNN networks. The second category comprises 1D-CNN models,
which have achieved a special place among researchers for epileptic seizures detection. In
this work, EEG signals are first preprocessed (noise removal and normalization) and then
applied to 1D-CNN networks. Simple implementation and high efficiency are among the
most important advantages of this type of network.

The keywords “EEG”, “MRI”, “Epilepsy”, “Epileptic Seizures”, and “Deep Learning”
were used to search articles. These keywords were searched in various citation databases
such as IEEE, Elsevier, Springer, Wiley, and ArXiv. Google Scholar was also used to search
further. Figure 3 shows the number of accepted papers in each citation database. It is
observed that the IEEE citation database contains the most accepted articles.

Figure 3. Search strategy used.

The main aims of this study are as follows:

• Providing information on available EEG datasets;
• Reviewing works done using various DL models for automated detection of epileptic

seizures with various modality signals;
• Introducing future challenges on the detection of epileptic seizures;
• Analyzing the best performing model for various modalities of data.

Epileptic seizures detection using DL is discussed in Section 2. Section 3 describes the
non-EEG-based epileptic seizure detection. Hardware used for epileptic seizures detection
is provided in Section 4. Discussion on the paper is outlined in Section 5. The challenges
faced by employing DL methods for epileptic seizure detection are summarized in Section 6.
Finally, the conclusion and future work are delineated in Section 7.

2. Epileptic Seizures Detection Based on DL Techniques

Figure 4 illustrates the working of a computer-aided diagnosis system (CADS) for
epileptic seizures using DL architectures. The input to the DL model can be EEG, MEG,
ECoG, fNIRS, PET, SPECT, and MRI. Then, the signal is subjected to the preprocessing
to remove the noise. These eliminated signals are used to develop the DL models. The
performance of the model is evaluated using accuracy, sensitivity, and specificity. Addi-
tionally, a table combining all the works conducted on epileptic seizure detection using DL
is presented in the table form in Appendix A of the paper.
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Figure 4. Block diagram of a DL-based CAD system for epileptic seizures.

2.1. Dataset

Datasets play an important role in developing accurate and robust CADS. Multiple
EEG datasets, namely, Freiburg [34], CHB-MIT [35], Kaggle [36], Bonn [37], Flint-Hills [26],
Bern-Barcelona [38], Hauz Khas [26], and Zenodo [39], are available to develop the auto-
mated epileptic seizure detection systems. The signals from these datasets are recorded
either intracranial or from the scalp of humans or animals.

2.1.1. Fribourg

The EEG dataset contains invasive EEG signals from 21 patients suffering from re-
fractory focal epilepsy which were recorded during pre-surgical epilepsy monitoring at
the epilepsy center of the University Hospital Fribourg. To provide direct recording from
focal area, reduction of artifacts and achieving higher Signal to Noise Ratio (SNR), the
in-tra-cortical grid, strip, and depth electrodes were used. The EEG signals were recorded
using 128-channel Neurofile NT system with 6 contacts electrodes (three focal and three
extra focal) and digitized by a 16bits A/D with sample rate of 256 Hz. For each patient,
there are ictal and interictal data, the former contains seizures with at least 50 minutes’ of
the pre-ictal region and the latter contains about 24 h of EEG data without seizure [34].

2.1.2. CHB-MIT

The database comprises 844 h of continuous recording of scalp EEG signals with
163 seizures from 23 children, recorded according to intentional 10–20 standard electrode
positions and sampled at 256 samples per second. The inter-ictal region is defined as the
period between at least 4 h before the onset seizure and 4 h after the seizure ended. There
are two types of seizures, called combined and main seizures, available in this database.
The former are multiple seizures close to each other, while the later are great seizures
considered for prediction. Generally, the prediction is meaningful for patients having less
than 10 seizures per day. In this database, there are sufficient data available (at least three
main seizures and 3 h inter-ictal recording) from 13 patients [35].
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2.1.3. Kaggle

The database is the epileptic seizures prediction challenge of the American Epilepsy
Society and contains intracranial EEG signals from five dogs and two patients with 48
seizures and 627 h total duration. The EEG signals of dogs were acquired by 16 implantable
electrodes, which were sampled at 400 KHz, while the EEG signals from patient 1 and
patient 2 were recorded using 15 deep and 24 subdural electrodes, respectively, with
sample rate of 5 KHz. In this database, 10 min segments of pre-ictal and inter-ictal data
are available, and for each seizure, six pre-ictal segments (with 10 s distance) up to five
minutes before seizure onset are accessible. The inter-ictal segments are selected randomly
at least one week before each seizure [36].

2.1.4. Bonn

Bonn database consists of five datasets, A, B, C, D, and E, each containing 100 single-
channel EEG signals of 23.6 s duration. The EEG signals were digitized at a sample rate
of 173.61 Hz by 12-bit A/D converter. Datasets A and B have the normal signals of five
volunteers with eyes opened and closed states, respectively. The EEG signals of datasets C
and D are related to pre-ictal region and were recorded from epileptogenic and left area of
hippocampus, respectively. The EEG signals of E dataset are related to ictal region. Signals
of datasets A and B were recorded using 10–20 scalp EEG standard, while the signals of C
and D were intracranial EEG recorded using depth electrodes, and the signals of E were
provided using both depth and strip electrodes. Depth electrodes are located symmetrically
on hippocampus, while strip electrodes are located on lateral and base sections of neo
cortex [37].

2.1.5. Flint-Hills

The database presents electrocardiography signals with total duration of 1419 h and
sample rate of 249 Hz. In addition, meta information about 59 seizures and information
related to the position of electrodes are presented. The signals of this database were
obtained using 48 to 64 electrodes for each patient [26].

2.1.6. Bern Barcelona

Barcelona database was collected from the brain department of Bern Hospital of
Barcelona and contains intracranial EEG of patients with focal epilepsy. Subjects were
monitored for several days, and no antiepileptic drugs were used to determine seizures
and possible surgery. The signals were acquired using AD-Tech intracortical electrodes,
and one extra reference electrode based on 10–20 standard between PZ and FZ positions
was used. The database contained two types of EEG signals: focal and extra focal EEG
signals. Every dataset contained 3750 pairs of simultaneous recorded signals with duration
of 20 s and sample rate of 512 Hz. The database consists of total 83 h EEG data from five
patients with different ages [38].

2.1.7. Hauz Khas

The database was collected at a brain center in Delhi, India and comprises of scalp
EEG signals of 10 patients, recorded with AS40 system and sampled at a rate of 200 Hz in
Hauz Khas neurons. The signals were filtered using band-pass filter with pass frequency of
0.5–70 Hz and classified as pre-ictal, inter-ictal, and ictal classes by neurologist experts [26].

2.1.8. Zenodo

This dataset contains multichannel EEG recordings of 79 human neonates collected
in Helsinki University Hospital, with the median recording duration of 74 min. The EEG
data were annotated by three experts, and every expert has annotated about 460 seizures,
39 neonates had seizure and 22 neonates were seizure-free in consensus [26].

The supplementary information on each dataset is listed in Table 1. Figure 5 shows the
number of times each dataset employed epileptic seizures detection using DL techniques.
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It can be observed that the Bonn dataset is most widely used for automated detection of
seizure using DL methods.

Table 1. Review of popular and available EEG datasets for epileptic seizures detection.

Dataset Number of
Patients

Number of
Seizures Recording Times Sampling

Frequency

Flint-Hills [26] 10 59 Continues intracranial
ling term ECoG 1419 249

Hauz Khas [26] 10 NA Scalp EEG NA 200

Freiburg [34] 21 87 IEEG 708 256

CHB-MIT [35] 22 163 Scalp EEG 844 256

Kaggle [36]
5 dogs

48 IEEG 627
400

2 patients 5 KHz

Bonn [37] 10 NA Surface and IEEG 39 m 173.61

Bern Barcelona [38] 5 3750 IEEG 83 512

Zenodo [39] 79 neonatal 460 Sclap EEG 74 m 256

Figure 5. Usage of various datasets for automated detection of seizure using DL techniques by
various studies.

2.2. Preprocessing

In developing CADS using DL models with EEG signals, the preprocessing involves
three steps: noise removal, normalization, and signal preparation for DL network applica-
tions [29,40]. In the noise removal step, finite impulse response (FIR) or infinite impulse
response (IIR) filters are usually used to eliminate extra signal noise. Normalization is then
performed using various schemes such as the z-score technique. Finally, different time
domain, frequency, and time–frequency methods are employed to prepare the signals for
the deployment of deep networks.

2.3. Review of Deep Learning Techniques

In contrast to conventional neural networks, or so-called shallow networks, deep
neural networks are structures with more than two hidden layers. This increase in the
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size of the networks results in a massive rise in the number of parameters of the network,
requiring appropriate methods for learning, and also measures to avoid overfitting of
the learned network. Convolutional networks use filters convolved with input patterns
instead of multiplying a weight vector (matrix), which reduces the number of trainable
parameters dramatically.

Furthermore, other methods are suggested to help the network to learn, as well [41].
Pooling layers reduce the size of the input pattern to the next convolutional layer. Batch
normalization, dropout, early stopping, unsupervised or semi unsupervised learning, and
regularization techniques prevent the learned network from overfitting and increase the
learning ability and speed. The AE and DBN are employed as unsupervised learning and
then fine-tuned to avoid overfitting for limited labeled data. Long short-term memory
(LSTM) and gated recurrent units (GRU) are RNNs capable of revealing the long-term time
dependencies of data samples.

2.3.1. Convolutional Neural Networks (CNNs)

CNNs are one class of the most popular DL networks to which most of the researches
in machine learning have been devoted [30]. They were initially presented for image-
processing applications, but have recently been adopted to one- and two-dimensional
architectures for diagnosis and prediction of diseases using biological signals [42]. This
class of DL networks is widely used for the detection of epileptic seizures using EEG signals.
In two-dimensional convolutional neural networks (2D-CNN), the one-dimensional (1D)
EEG signals are first transformed into two-dimensional plots by employing visualization
methods such as spectrogram [43], higher-order bispectrum [44,45], and wavelet trans-
forms, and are then applied to the input of the convolutional network. In 1D architectures,
the EEG signals are applied in the one-dimensional form to the input of convolutional
networks. In these networks, changes are made to the core architecture of 2D-CNN that
makes it capable of processing the 1D-EEG signals. Therefore, since both 2D and one-
dimensional convolutional neural networks (1D-CNNs) are used in the field of epileptic
seizures detection, they are investigated separately.

A. 2D Convolutional Neural Networks (2D-CNNs)

Nowadays, deep 2D networks are used for various medical applications such as
diagnosis of COVID-19 in CT and X-ray [46,47], and autism spectrum disorders from MRI
modalities [48]. First, in 2012, Krizovsky et al. [49] suggested this network to solve image
classification problems, and then quickly used similar networks for different tasks such as
medical image classification, in an effort to obviate the difficulties of previous networks
and solve more intricate problems with better performance. Figure 6 shows a general form
of a 2D-CNN used for epileptic seizure detection. The application of 2D-CNN architectures
is arguably the most important architecture in the deep neural nets. More information
about visualization and preprocessing method can be found in Appendix A.

Figure 6. A typical 2D-CNN for epileptic seizure detection.
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In one study [50], the SeizNet 16-layer convolutional network is introduced, with
additional dropout layers and batch normalization (BN) behind each convolutional layer
having a structure similar to that of VGG-Net. The authors in [51] presented a new 2D-CNN
model that can extract the spectral and temporal characteristics of EEG signals and used
them to learn the general structure of seizures. Zuo et al. [52] developed the diagnosis
of higher-frequency oscillations (HFO) epilepsy from 16-layer 2D-CNN and EEG signals.
A DL framework called SeizureNet that uses convolution layers with dense connections
is proposed in [53]. A novel DL model called the temporal graph convolutional network
(TGCN) has been introduced by Covert et al. [54], comprising of five architectures with
14, 18, 22, 23, and 26 layers. Bouaziz et al. [55] split the EEG signals of CHB-MIT with
23 channels into 2 s time windows and then converted them into density images (spatial
representation), which were fed as inputs to the CNN network.

B. AlexNet

FeiFei Li, Professor of Stanford University, created a dataset of labeled images of real-
world objects and termed her project as ImageNet [56]. ImageNet organizes a computer
vision competition called ILSVRC annually to solve the image classification problems. Alex
Krizhevsky revolutionized the image classification world with his algorithm, AlexNet,
which won the 2012 ImageNet challenge and started the whole DL era [49]. AlexNet
won the competition by achieving the top-5 test accuracy of 84.6%. Taqi et al. [57] used
the AlexNet network to diagnose focal epileptic seizures. This proposed network used
the feature extraction approach and eventually applied the Softmax layer for classifica-
tion purposes and achieved 100% accuracy. In another study, the AlexNet network was
employed [58]. They transformed the 1D signal to 2D image by passing through the Sig-
nal2Image (S2I) module. The several methods used in this are signal as image, spectrogram,
one-layer 1D-CNN, and two-layer 1D-CNN.

C. VGG

A research team at Oxford proposed the visual geometry group (VGG) model in
2014 [59]. They configured various models, and one such model was VGG-16, which was
submitted to the ILSVRC 2014 competition. The VCG-16 comprises 16 layers and delivered
an excellent performance for image classification problems. Ahmedt-Aristizabal et al. [60]
performed VGG-16 architecture to diagnose epilepsy from facial images. Their proposed
approach attempted to extract and classify semiological patterns of facial states automati-
cally. After recording the images, the proposed VGG architecture is trained primarily by
well-known datasets, followed by various networks such as 1D-CNN and LSTM in the last
few layers. In [58], the VGG network used one-dimensional and two-dimensional signals.
To train the models, Adam’s optimizer and a cross-entropy error function were used. They
used the batch size and number of epochs as 20 and 100, respectively. The idea of detecting
epileptic seizures on the sEEG signal plots was examined by Emami et al. [61]. In the
preprocessing step, the signals were segmented into different time windows and VGG-16
was used for classification, using small (3 × 3) convolution filters to efficiently detect small
EEG signal changes. This architecture was pre-trained by applying an ImageNet dataset to
differentiate 1000 classes, and the last two layers had 4096 and 1000 dimensional vectors.
They modified these last two layers to have 32 and 2 dimensions, respectively, to detect
seizure and non-seizure classes.

D. GoogleNet

GoogLeNet won the 2014 ImageNet competition with 93.3% top-5 test accuracy [62].
This 22-layer network was called GoogLeNet to honor Yann Lecun, who designed LeNet.
Before the introduction of GoogLeNet, it was stated that by going deep, one could achieve
better accuracy and results. Nevertheless, the google team proposed an architecture called
inception, which achieved better performance by not going deep but by better design. It
represented a robust design by using filters of different sizes on the same image. In the
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field of EEG signal processing to diagnose epileptic seizures, this architecture has recently
received the attention of researchers. Taqi et al. [57] used this network in their preliminary
studies to diagnose epileptic seizures. Their model was used to extract features from the
Bern-Barcelona dataset and achieved excellent results.

E. ResNet

Microsoft’s ResNet won the ImageNet challenge with 96.4% accuracy by applying
a 152-layer network that utilized a ResNet module [63]. In this network, residual blocks
capable of training deep architecture were introduced by using skip connections that copied
inputs of each layer to the next layer. The idea was to learn something different and new
in the next layer. So far, little research has been accomplished on the implementation
of ResNet networks to diagnose epilepsy, but this may grow significantly in the coming
days. Bizopoulos et al. [58] introduced two ResNet and DenseNet architectures to diagnose
epileptic seizures and attained good results. They showed that S2I-DenseNet based model
with an average of 70 epochs was sufficient to gain the best accuracy of 85.3%. A summary
of related works done using 2D-CNNs is shown in Table 2. A sketch of accuracy accuracy
(%) obtained by various authors is shown in Figure 7.

Table 2. Summary of related works done using 2D-CNNs.

Works Networks Number of Layers Classifier Accuracy (%)

[50] SeizNet 16 NA NA

[51] 2D-CNN 9 Softmax 98.05

[52] 2D-CNN 16 Softmax NA

[53] SeizureNet 133 Softmax NA

[54] TGCN

14

Sigmoid NA

18

22

22

26

[55] 2D-CNN 8 Softmax 99.48

[57]

GoogleNet

Standard Networks Softmax 100AlexNet

LeNet

[58] Different PreTrain Networks Standard Networks Softmax 85.30

[60] 2D-CNN
VGG-16

SVM 95.19
VGG-8

[64] 2D-CNN
3

Logistic Regression (LR) 87.51
4

[65] 2D-CNN 9 Softmax NA

[66] Combination 1DCNN
and 2D-CNN 11 Sigmoid 90.58

[67] 2D-CNN 18 Softmax NA

[68] 2D-CNN/MLP hybrid 11 Sigmoid NA

[69] 2D-CNN 9 Softmax 86.31

[70] 2D-CNN with
1D-CNN 12 Softmax NA

[71] 2D-CNN 6 Softmax 74.00
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Table 2. Cont.

Works Networks Number of Layers Classifier Accuracy (%)

[72] 2D-CNN 12 Softmax and Sigmoid 99.50

[73] 2D-CNN 16 91.80

[74] 2D-CNN 23 Softmax 100

[75] 2D-CNN 5 Softmax 100

[76] 2D-CNN 14 Softmax 98.30

[77]
2D-CNN

7

MV-TSK-FS 98.335

3D-CNN 8

[78] 2D-CNN
23 Sigmoid

NA
18 RF

[79] 2D-CNN 7 KELM 99.33

[61] 2D-CNN VGG-16 Softmax NA

Figure 7. Sketch of accuracy (%) obtained by various authors using 2D-CNN models for seizure
detection.

F. 1D—Convolutional Neural Network (1D-CNN)

1D-CNNs are intrinsically suitable for processing of biological signals such as EEG
for epileptic seizures detection [2]. These architectures present a more straightforward
structure, and a single pass of them is faster as compared with CNN with 2D architecture,
due to fewer parameters. The most important superiority of 1D to 2D architectures is the
possibility of employing pooling and convolutional layers with a larger size. In addition
to that, signals are 1D in nature, and using preprocessing methods to transform them to
2D may lead to information loss. Figure 8 shows a general form of a 1D-CNN used for
epileptic seizure detection.
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Figure 8. Typical sketch of the 1D-CNN model that can be used for epileptic seizure detection.

The authors in [58] conducted experiments using 1D-LeNet, AlexNet, VGGnet, ResNet,
and DenseNet architectures, and applied well-known 2D architectures in 1D space in the
first study in this section. In [80], 1D-CNN was used for feature extraction procedure.
The researchers in [81] used 1D-CNN for other work. They used a CHB-MIT dataset, and
the signals from each channel were segmented into 4 s intervals; overlapping segments
were also accepted to increase the data and accuracy. Combining CNNs with conven-
tional feature extraction methods was explored in [82]; they used the empirical mode
decomposition (EMD) method for feature extraction, and CNN was used to acquire high
accuracy in the multiclass classification tasks. In [83], a framework for the diagnosis of
epileptic seizures is presented that combined the capability of interpreting probabilistic
graphical models (PGMs) with advances in DL. The authors in [84] submitted a 1D-CNN
architecture-defined CNN-BP (standing for CNN bipolar). In this work, they used the data
from patients monitored with combined foramen ovale (FO) electrodes and EEG surface
electrodes. A new scheme to classify EEG signals based on temporal convolution neural
networks (TCNN) was introduced by Zhang et al. [85]. Table 3 shows the summary of
related works done using 1D-CNNs. Figure 9 shows the sketch of accuracy (%) obtained
by various authors using 1D-CNN models for epileptic seizures detection.

Figure 9. Sketch of accuracy (%) versus authors obtained using 1D-CNN models for seizure detection.
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Table 3. Summary of related works done using 1D-CNNs.

Works Networks Number of Layers Classifier Accuracy (%)

[58] 1D-CNN
VGG-16, 19

Standard PreTrain Nets 83.30
DenseNet 161

[69] 1D-CNN 7 Softmax 82.04

[80] 1D-CNN 5 Softmax, SVM 86.86

[81] 1D-CNN 33 NA 99.07

[82] 1D-CNN 12 Softmax 98.60

[83] PGM-CNN 10 Softmax NA

[84] 1D-CNN-BP 14 Sigmoid NA

[85] 1D-TCNN NA NA 100

[86] P-1D-CNN 14 Softmax 99.10

[87] 1D-CNN 13 Softmax 88.67

[88] MPCNN 11 Softmax NA

[89] 1D-FCNN 11 Softmax NA

[90] 1D-CNN 5 Binary LR NA

[91] 1D-CNN 23 Softmax 79.34

[92] 1D-CNN 4 Sigmoid 97.27

[93] 1D-CNN 13 NA 82.90

[94] 1D-CNN with
residual connections

17 Softmax
99.00

91.80

[95] 1D-CNN 15 Softmax 84.00

[96] 1D-CNN 10 Sigmoid 86.29

[97] 1D-CNN 13 Softmax NA

[98] 1D-CNN 9 Sigmoid NA

[99] 1D-CNN 8 NA 99.28

[100] 1D-CNN 15 Softmax 98.67

[101] Deep ConvNet 14 Softmax 80.00

2.3.2. Recurrent Neural Networks (RNNs)

Sequential data such as text, signals, and videos show characteristics such as variable
and great length, which makes them not suitable for simple DL methods [41]. However,
these data form a significant part of the information in the world, compelling the need
for DL-based schemes to process these types of data. RNNs are the solution suggested
to overcome the mentioned challenges, and are widely used for physiological signals.
Figure 10 shows a general form of RNN used for epileptic seizure detection. In the
following section, an overview of popular RNN models are presented in addition to the
reviewed papers.

A. Long Short-Term Memory (LSTM)

The main problem of a simple RNN is short-term memory. RNN may leave out
key information as it has a hard time transporting information from earlier time steps
to the next steps in long-sequence data. Another drawback of RNN is the vanishing
gradient problem [30–33]. The problem arises because of the shrinking of gradients as it
back-propagates. To solve the short-term memory problem, LSTM gates were created [30].
The flow of information can be regulated through gates. The gates can preserve the long
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sequence of necessary data, and throw away the undesired ones. The building block of
LSTM is the cell state and its gates.

Figure 10. Sample RNN model that can be used for seizure detection.

In this section, Golmohammadi et al. [68] evaluated two LSTM architectures with
three and four layers together with the Softmax classifier in their investigation and ob-
tained satisfactory results. In [92], three-layer LSTMs are used for feature extraction and
classification. The sigmoid active function is used in the last fully connected (FC) layer for
classification. According to directed experiments in [98], they employed two architectures:
LSTM and GRU. The LSTM GRU model architecture is composed of a layer of Reshape,
four layers of LSTM/GRU with the activator, and one layer of FC with sigmoid activator.
In another work, Yao et al. [102] practiced ten different and independently ameliorated
RNN (IndRNN) architectures and achieved the best accuracy using Dense IndRNN with
attention (DIndRNN) with 31 layers.

B. Gated Recurrent Unit (GRU)

One variation of LSTM is GRU, which combines the input and forgets gates into one
update gate [30–33]. It merges the input and forgets gates and also makes some other
modifications. The gating signals are decreased to two. One is the reset gate, and another
is the updating gate. These two gates decide which information is necessary to pass to the
output. In one experiment, Chen et al. [92] used a three-layer GRU network with sigmoid
classifier and yielded 96.67% accuracy. Talathi et al. have used a new CADS based on GRU
for epileptic seizure detection [103]. In the proposed method, during the preprocessing, the
input signals are split into time windows and spectrogram are obtained from them. Then,
these plots are fed to a four-layer GRU network with a Softmax FC layer in the classification
stage; 98% accuracy was achieved. In another study, Roy et al. [104] employed a five-layer
GRU network with Softmax classifier and achieved remarkable results. Table 4 provides
the summary of related works done using RNNs. Figure 11 shows the sketch of accuracy
(%) obtained by various authors using RNN models for seizure detection.
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Table 4. Summary of related works done using RNNs.

Works Networks Number of Layers Classifier Accuracy (%)

[68] LSTM
3

Sigmoid NA
4

[92]
LSTM

3 Sigmoid
96.67

GRU 96.82

[93]
IndRNN 48

NA
87.00

LSTM 4 84.35

[98]
LSTM

6 Sigmoid NA
GRU

[102] ADIndRNN 31 NA 88.70

[103] GRU 4 LR 98.00

[104] GRU 5 Softmax NA

[105] RNN NA MLP NA

[106] LSTM 4 Softmax 100

[107] LSTM
2

Sigmoid 95.54
5

[108] LSTM 4 Softmax 100

[109] LSTM 3 Softmax 97.75

[110] LSTM 4 Softmax 100

[111] GRU 3 LR 98.50

[112] Bi LSTM One Bi LSTM Softmax 98.91

Figure 11. Sketch of accuracy (%) obtained by authors using RNN models for seizure detection.

2.3.3. Autoencoders (AEs)

AE is an unsupervised machine learning model for which the input is the same as
output [30–33]. Input is compressed to a latent-space representation, and then the output
is obtained from the representation. Therefore, in AE, the compression and decompression
functions are coupled with the neural network. AE consists of three parts, i.e., encoder, code,
and decoder. AE networks are most commonly used for feature extraction or dimensionality
reduction in the brain signal processing. Figure 12 shows a general form of an AE used
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for epileptic seizures detection. As the first research in this section, Rajaguru et al. [113]
separately surveyed the multilayer AE (MAE) and expectation-maximization with principal
component analysis (EM-PCA) methods to diminish the representation dimensions and
then employed the GA for classification. They obtained an average classification accuracy
of 93.78% when MAEs were applied for dimensionality reduction and combined with GA
as classifier. In another work, it was proposed to design an automated system based on
AEs for the diagnosis of epilepsy using the EEG signals [114]. First, Harmonic wavelet
packet transform (HWPT) was used to decompose the signal into frequency sub-bands,
and then fractal features, including box-counting (BC), multiresolution BC (MRBC), and
Katz fractal dimension (KFD), were extracted from each of the sub-bands.

Figure 12. Sample AE network that may be used for seizure detection.

A. Other Types of AEs

To create a more robust representation, a number of schemes such as denoising AE
(DAE) (which tries to recreate input from a corrupted form of it) [41], stacked AE (SAE)
(stacking a few AEs on top of each other to go deeper) [41], and sparse AEs (SpAE) (which
attempts to harness from sparse representations) [41] have been applied. These methods
might pursue other objectives as well, for example, the DAE can be used to recover the
corrupted input.

Works in this section begin with Golmohammadi et al. [68], who presented various
deep networks, one of which is stacked denoising AE (SDAE). Their architecture in this
section consists of three layers, and the final results demonstrated good performance of
their approach. Qiu et al. [115] exerted the windowed signal, z-score normalization step of
preprocessing EEG signals and imported preprocessed data into the denoising sparse AE
(DSpAE) network. In their experiment, they achieved an outstanding performance of 100%
accuracy. In [116], a high-performance automated EEG analysis system based on principles
of machine learning and big data is presented, which consists of several parts. At first, the
signal features are extracted by linear predictive cepstral coefficients (LPCC) coefficients,
then three paths are applied for precise detection. The first pass is sequential decoding
using hidden Markov models (HMMs), the second pass is composed of both temporal
and spatial context analysis based on DL, and in the third pass, a probabilistic grammar
is employed.

In another study, Yan et al. [117] proposed a feature extraction and classification
method based on SpAE and support vector machine (SVM). In this approach, first, the
feature extraction of the input EEG signals is performed using SAE, and, finally, the classifi-
cation is performed by SVM. Another SAE architecture was proposed by Yuan et al. [118],
which is namedWave2Vec. In the preprocessing stage, the signals were first framed, and
in the deep network segment, the SAE with Softmax was applied and achieved 93.92%
accuracy. Following the experiments of Yuan et al., in [119], different stacked sparse de-
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noising AE (SSpDAE) architectures have been tested and compared. In this work, feature
extraction is accomplished by the SSpDAE network and finally classification by Softmax.
They obtained an accuracy of 93.64%. Table 5 provides the summary of related works done
using AEs. In addition, Figure 13 shows the comparison of the accuracies obtained by
different researchers.

Table 5. Summary of related works done using AEs.

Works Networks Number of Layers Classifier Accuracy (%)

[68] SDAE 3 NA NA

[113] MAE NA GA 93.92

[114] AE 3 Softmax 98.67

[115] DSpAE 3 LR 100

[116]

SPSW-SDA
Each Model has 3

hidden layers LR NA6W-SDA

EYEM-SDA

[117] SpAE Single-Layer SpAE SVM 100

[118]
Wave2Vec NA

Softmax
93.92

SSpDAE 2 93.64

[119] SAE 3 Softmax 96.10

[120] AE One Layer Sigmoid NA

[121] SSpDAE 8 Softmax 93.82

[122] SSpAE 3 Softmax 100

[123] SAE 3 Softmax 86.50

[124] SSpAE 3 Softmax 100.00

[125] SpAE 3 Softmax 100.00

[126] SAE 3 Softmax 96.00

[127] SSpAE 3 Softmax 94.00

[128] SAE 3 Softmax 88.80

Figure 13. Sketch of accuracy (%) versus authors obtained using AE models for seizure detection.

2.3.4. Deep Belief Networks (DBNs)

Restricted Boltzmann machines (RBM) is a variant of deep Boltzmann machines (DBM)
and an undirected graphical model [30]. The unrestricted Boltzmann machines may also
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have connections between the hidden units. Stacking the RBMs forms a DBN; RBM is
the building block of DBN. DBNs are unsupervised probabilistic hybrid generative DL
models comprising latent and stochastic variables in multiple layers [30–33]. Furthermore,
a variation of DBN is called convolutional DBN (CDBN), which could successfully scale
the high-dimensional model and uses the spatial information of the nearby pixels [30–33].
DBNs are probabilistic, generative, unsupervised DL models which contain visible and
multiple layers of hidden units [30–33]. Xuyen et al. [129] used DBN to identify epileptic
spikes in EEG data. The proposed architecture in their study consisted of three hidden
layers and achieved an accuracy of 96.87%. In another study, Turner et al. [130] applied the
DBN network to diagnose epilepsy and found promising results.

2.3.5. Convolutional Recurrent Neural Networks (CNN-RNNs)

The highly efficient combination of DL networks used to predict and detect epileptic
seizures from EEG signals is the CNN-RNN architecture. Adding convolutional layers
to RNN helps to find spatially nearby patterns effectively as RNN characteristic is more
suitable for time-series data. In [68], they applied numerous preprocessing schemes; then, a
modified CNN-LSTM architecture was proposed comprising 13 layers and the sigmoid was
used for the last layer. Finally, the proposed approach demonstrated better performance.

Roy et al. [69] used different CNN-RNN hybrid architectures to improve the experi-
mental results. Their first network comprised a one-dimensional seven-layer CNN-GRU
convolution architecture, and the second one is a three-dimensional (3D) CNN-GRU net-
work. In another work, Roy et al. [104] concentrated on natural and abnormal brain
activities and suggested four different DL architectures. The proposed ChronoNet model
was developed using previous models. It achieved 90.60% and 86.57% training and test
accuracies, respectively.

Fang et al. [131] used the Inception-V3 network. At the outset, a preliminary train-
ing was used on this network. Then, to fine-tune this architecture, an RNN- based net-
work called spatial temporal GRU (ST-GRU) was applied, and achieved 77.30% accuracy.
Choi et al. [132] proposed a multiscale 3D-CNN with RNN model for the detection of
epileptic seizures. The CNN module output is applied as the input of the RNN module.
The RNN module consists of a unilateral GRU layer that extracts the temporal feature
of epileptic seizures, which are finally classified using an FC layer. At the end of this
section, generalized information from the CNN-RNN research is presented in Table 6 and
Figure 14, respectively.

Figure 14. Sketch of accuracy (%) versus different researchers obtained using CNN-RNN models for
seizure detection.
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Table 6. Summary of related works done using CNN-RNNs.

Works Networks Number of Layers Classifier Accuracy (%)

[60] 2D CNN-LSTM VGG-16 Sigmoid 95.19

[68] 2D-CNN BiLSTM 13 Sigmoid NA

[69]
1D CNN-GRU 7

Softmax
99.16

TCNN-RNN 10 95.22

[104]

C-RNN 8

Softmax

83.58

IC-RNN 14 86.90

C-DRNN 8 87.20

ChronoNet 14 90.60

[131] ST-GRU ConvNets Inception-V3 + GRU NA 77.30

[132] 3D-CNN BiGRU NA NA 99.40

[133] 2D CNN-LSTM 8 NA NA

[134] 2D CNN-LSTM 18 Softmax 99.00

[135] 1D CNN-LSTM
7 Sigmoid 89.73
8

2.3.6. Convolutional Autoencoders (CNN-AEs)

In addition to finding nearby patterns, convolutional layers can reduce the number
of parameters in structures such as AEs. These two reasons make their combination
suitable for many tasks such as unsupervised feature extraction for epileptic seizure
detection. A novel approach based on CNN-AE was presented by Yuan et al. [136]. At
the feature extraction stage, two deep approaches, AE and 2D-CNN, were used to extract
the supervised and unsupervised features, respectively. The unsupervised features were
obtained directly from the input signals, and the supervised features were acquired from
the spectrogram of the signals. Finally, the Softmax classifier was utilized for classification
and achieved 94.37% accuracy. In another investigation, Yuan et al. [137] proposed an
approach called deep fusional attention network (DFAN), which can extract channel-aware
representations from multichannel EEG signals. They developed a fusional attention
layer that utilized a fusional gate to fully integrate multiview information to quantify the
contribution of each biomedical channel dynamically. A multiview convolution encoding
layer, in combination with CNN, has also been used to train the integrated DL model.
Table 7 provides the summary of related works done using CNN-AEs, and Figure 15 shows
the accuracies (%) obtained by different researchers.

Table 7. Summary of related works done using CNN-AEs.

Works Networks Number of Layers Classifier Accuracy (%)

[136] CNN-AE 10 Softmax 94.37

[137] CNN-AE NA Softmax 96.22

[138] CNN-AE 15 Different
Classifiers 92.00

[139] 1D-CNN-AE 16 Sigmoid 100

[140]
CNN-ASAE 8

LR
66.00

CNN-AAE 7 68.00
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Figure 15. Sketch of accuracy (%) versus authors obtained using CNN-AE models for
seizure detection.

3. Non-EEG-Based Epileptic Seizures Detection
3.1. Medical Imaging

Various DL models were developed to detect epileptic seizure using sMRI, fMRI, and
PET scans with or without EEG signals [141–148]. These models outperformed the conven-
tional models in terms of automatic detection and monitoring of the disease. However, due
to the nature and difficulties in using imaging methods, these models are mostly practiced
for localization and detection of seizure.

The authors of [141] proposed automatic localization and detection of focal cortical
dysplasia (FCD) from the MRI modality using a CNN model. The diagnosis of FCD rate is
only 50% despite the progress in the analytics of MRI modalities. Gill et al. [142] proposed
a CNN-based algorithm with feature learning capability to detect FCD automatically. The
authors [143] designed DeepIED based on DL and EEG-fMRI scans for epilepsy patients,
combining the general linear model with EEG-fMRI techniques to estimate the epilep-
togenic zone. Hosseini et al. [144] proposed an edge computing autonomic framework
for evaluation, regulation, and monitoring of epileptic brain. The epileptogenic network
estimated the epilepsy using rs-fMRI and EEG. Shiri et al. [148] presented a technique
for direct attenuation correction of PET images by applying emission data via CNN-AE.
Nineteen radiomic features from 83 brain regions were evaluated for image quantification
via Hammersmith atlas. Finally, the summary of related works done using medical imaging
methods and DL is shown in Table 8.

3.2. Other Neuroimaging Modalities

Ravi Prakash et al. [135] introduced an algorithm based on DL for ECoG-based func-
tional mapping (ECoG-FM) for eloquent language cortex identification. However, the
success rate of ECoG-FM is low as compared with electro-cortical stimulation mapping
(ESM). In another work, Rosas-Romero et al. [149] have used fNIRS to detect epileptic
seizure and obtained better performance than achieved using conventional EEG signals.
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Table 8. Summary of related works done using MRI modalities and DL.

Works Networks Number of Layers Classifier Accuracy (%)

[141] 2D-CNN 30 sigmoid 82.50

[142] 2D-CNN 11 Softmax NA

[143] ResNet 31
Softmax

NA
Triplet

[144] 2D-CNN NA SVM NA

[145]
2D-CNN

11 Softmax
89.80

3D-CNN 82.50

[146] 2D-CNN NA NA NA

[147]

ResNet

14 sigmoid 98.22VGGNet

Inception-V3

SVGG-C3D

[148] Deep Direct Attenuation Correction
(Deep-DAC) 44 Tanh NA

4. Rehabilitation Systems for Epileptic Seizures Detection

The high performance and robustness to noise have made the DL techniques suitable
for commercial products. Nowadays various commercial products have been developed
in the field of DL, one of which is DL applications and hardware for diagnosing epileptic
seizures. In the first study investigated, the brain–computer interface (BCI) system was
developed using an AE for epileptic seizure detection by Hosseini et al. [127]. In another
study, Singh et al. [128] indicated a utilitarian product for the diagnosis of epileptic seizures,
which comprised the user segment and the cloud segment. The block diagram of the
proposed system presented by Singh et al. is shown in Figure 16.

Figure 16. Block diagram of proposed epileptic seizure detection system using DL methods with
EEG signals.

Kiral-Kornek et al. [150] demonstrated that DL in combination with neuromorphic
hardware could help in developing a wearable, real-time, always-on, patient-specific
seizure warning system with low power consumption and reliable long-term performance.
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5. Discussion

Nowadays, many people worldwide have epileptic seizures and suffer from these
neurological disorders. Early detection of epileptic seizures is of substantial importance
because it directly affects the patients’ quality of life and can enhance their self-confidence at
all stages of life. So far, much research has been accomplished to diagnose epileptic seizures
using AI techniques. The objective of these studies is to assist physicians in accurate
epileptic seizures diagnosis. AI research involves conventional machine learning [151] and
DL [152–156] scopes. Until recently, many machine learning methods that were adopted
to automatically detect seizures could not be seriously used for a variety of real-time
diagnostic aid tools for epileptic seizures due to their disadvantages. DL is one of the state-
of-the-art fields of epileptic seizure detection that has been employed for epileptic seizure
detection since 2016. In recent years, the research growth in epileptic seizure diagnosis
using DL is proceeding rapidly due to the simultaneous development of DL toolboxes as
well as graphics processing units (GPUs). Applying DL techniques to diagnose epileptic
seizures gives doctors hope that in the not-too-distant future a variety of rehabilitation
tools will be developed for patients with epileptic seizures. Table A1 in the Appendix
shows the overview of works done in this area. It also shows the type of dataset used,
implementation tool, preprocessing, DL network, and evaluation methods utilized.

As shown in this study, various DL structures are applied for epileptic seizure detec-
tion, yet none of them has superiority over others. The best structure should be chosen
carefully based on the dataset and problem characteristics, such as the need for real-time
detection or minimum acceptable accuracy or even the use of pre-trained models. There
are many databases available with different models. Hence, it is difficult to compare them
as they have been developed using different datasets and models. Overall, one of the most
important advantages of DL algorithms is their high performance. Hence, such models
have been widely used for many applications. Another advantage of DL methods is that
they are robust to noise. Therefore, noise removal can be omitted in many applications.
However, they need more data to train, and training takes time. Developing a robust model
is time consuming and requires huge data.

6. Challenges

There are several challenges in diagnosing epileptic seizures using neuroimaging
modalities and DL procedures. Inaccessibility of datasets with high registration time is the
first challenge in this area. The datasets available for diagnosing epileptic seizures have a
finite registration time (or recording), making it difficult to conduct serious (or important)
research in the field of epileptic seizures. The complete datasets are not shared in the public
domain, only a portion of the data may be available. Hence, real-time diagnosis of epileptic
seizures is still challenging. However, research in the field of real-time epileptic seizures
diagnosis has been performed, using clinical data [157–159].

Due to the lack of accessible datasets, researchers have not yet been able to present a
DL-based CADS for diagnosing epileptic seizures with optimum performance. Addition-
ally, it is not possible to combine the available EEG datasets to enhance the efficiency of DL
networks. This is because each of the datasets presented possesses different sampling fre-
quencies, and in order to achieve higher detection accuracy, it is not pragmatic to integrate
them to feed to DL networks.

Table 1 shows all available EEG datasets used for epileptic seizure detection. However,
other neuroimaging modalities such as MRI are used for epileptic seizures detection.
In [141–148], MRI modalities coupled with DL methods have been used to diagnose
epileptic seizures. Datasets with non-MRI modalities are not available, and this has led
to limited research in this area. Therefore, providing datasets from other neuroimaging
modalities is important to conduct research.

Nowadays, DL models have made considerable advancements [160–164]. This has
resulted in the development of computer hardware [165,166] that is expensive and not
easily accessible to the researchers. Researchers working in the field of epileptic seizures
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detection/prediction do not always have access to high-power hardware to implement
novel DL models. Although powerful computing servers are available by Google, con-
straints such as the amount of data that can be uploaded to these servers and execution
time are still the challenges.

7. Conclusion and Future Works

In recent years, a lot of research has been done in the epileptic seizures detection field
using artificial intelligence methods [167–175]. In this paper, a comprehensive review of
works done in the field of epileptic seizure detection using various DL techniques such
as CNNs, RNNs, and AEs is presented. Various screening methods have been developed
using EEG and MRI modalities. We have investigated the epileptic seizures detection using
DL-based practical and applied hardware methods. It is very encouraging that much of the
future research will concentrate on hardware—practical applications aid in the accurate
detection of such diseases. The functional hardware has also been utilized to boost the
performance of detection strategies. Furthermore, the models can be placed in the cloud by
hospitals. Therefore, handheld applications, mobile or wearable devices, may be equipped
with such models, and cloud servers will perform the computations; by taking benefit from
predictive models, these devices can be used to avert patients in a timely manner. Alert
messages may be generated to the family, relatives, the concerned hospital, and doctor in
the detection of epileptic seizures through the handheld devices or wearables, and thus
the patient can be provided with proper treatment in time. Moreover, a cap with EEG
electrodes in it can obtain the EEG signals, which can be sent to the model kept in the cloud
to achieve real-time detection. Additionally, if we can detect early stage of seizure using
interictal periods of EEG signals, the patient can take medication immediately and prevent
seizure. This field of research requires more research that combines different screening
methods for more precise and fast detection of epileptic seizures and also applies semi
supervised and unsupervised methods to further overcome the dataset size limits. Finally,
having publicly available comprehensive datasets can help to develop an accurate and
robust model that can detect the seizure in the early stage.
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Appendix A

Table A1 shows the detailed summary of DL methods employed for automated
detection of epileptic seizures.
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Table A1. Summary of DL methods employed for automated detection of epileptic seizures.

Work Dataset Preprocessing DL Toolbox DL Network K-Fold Classifier Accuracy (%)

[50] Clinical
Down-Sampling,

Normalization, Data
Augmentation

Keras SeizNet – – –

[51] CHB-MIT Visualization PyTorch 2D-CNN – Softmax 98.05

[52] Clinical Filtering, Normalization,
Visualization NA 2D-CNN 10 Softmax NA

[53] TUH DivSpec PyTorch SeizureNet 5 Softmax NA

[54] Clinical STFT NA TGCN – Sigmoid NA

[55] CHB-MIT Spatial Representation NA 2D-CNN – Softmax 99.48

[61] Clinical Filtering, Visualization Chainer 2D-CNN – Softmax NA

[64] Clinical Spectrogram NA 2D-CNN – LR 87.51

[65] Clinical Normalization Matlab 2D-CNN – Softmax NA

[66]
Clinical

Filtering NA 1D-CNN with
2D-CNN

– Sigmoid
90.50

CHB-MIT 85.60

[67] Clinical Filtering, Down-Sampling

Octave

2D-CNN – Softmax NAKeras

Theano

[68]
TUH

Filtering NA CNN-RNN – Different
Methods NA

Clinical

[69] TUH Different Methods NA 1D-CNN-GRU – Softmax 99.16

[70] Clinical Normalization, STFT PyTorch
1D-CNN

– Softmax –
2D-CNN

[71] TUH Feature Extraction TensorFlow 2D-CNN 10 Softmax 74.00

[72]
Clinical Filtering, EMD,

DWT, Fourier
Octave

2D-CNN 4
Sigmoid

99.50
Bern Barcelona Keras Softmax

[73] Bern Barcelona Normalization, STFT TensorFlow 2D-CNN 10 Softmax 91.80

[74] Bonn DWT NA 2D-CNN 10 Softmax 100

[75] Bonn CWT Keras 2D-CNN 10 Softmax 100

[76] Bonn Filtering Matlab 2D-CNN – Softmax
99.60

90.10

[77] CHB-MIT FFT, WPD
TensorFlow 2D-CNN

5 MV-TSK-FS 98.35
Matlab 3D-CNN

[78] Clinical Different Methods Matlab 2D-CNN 10
Sigmoid

NA
RF

[79]
CHB-MIT

MAS NA 2D-CNN 5 KELM 99.33
Clinical

[80] Clinical Filtering, Down-Sampling TensorFlow 1D-CNN 4
Softmax

83.86
SVM

[60] Clinical Different Techniques

Caffe FRCNN with
2D-CNN

5
SVM

95.19Keras
FRCNN with

2D-CNN-LSTMTheano Sigmoid

[57] Bern Barcelona NA Caffe Pre-Train
Methods – Softmax 100

[58] UCI Signal2Image PyTorch 1D-CNN – DenseNet 85.30

[86] Bonn DA TensorFlow P-1D-CNN 10 Majority
Voting 99.10

[87] Bonn Normalization Matlab 1D-CNN 10 Softmax 86.67

[88] CHB-MIT Filtering, DA NA MPCNN – Softmax NA

[89] Clinical Down-Sampling, Filtering Keras 1D-FCNN 5 Softmax NA

[91] TUH Normalization Keras 1D-CNN – Softmax 79.34

[90] Clinical Filtering
Theano

1D-CNN – Binary LR NA
Lasagne
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Table A1. Cont.

Work Dataset Preprocessing DL Toolbox DL Network K-Fold Classifier Accuracy (%)

[81] CHB-MIT DWT, Feature Extraction,
Normalization NA 1D-CNN 10 – 99.07

[92] Bonn DWT, Normalization NA 1D-CNN 5 Sigmoid 97.27

[85] Bonn Normalization NA 1D-TCNN NA NA 100

[82] Bonn EMD, MPF NA 1D-CNN 10 Softmax 98.60

[93] CHB-MIT Windowing NA IndRNN 10 NA 87.00

[94]
Bern Barcelona

Filtering, Normalization TensorFlow 1D-CNN – Softmax

91.80

99.00
Bonn

[83]
CHB-MIT

Filtering PyTorch 1D-PCM-CNN 5 Softmax NA
Clinical

[95] CHB-MIT MIDS, WGAN NA 1D-CNN – Softmax 84.00

[96] Clinical Down-Sampling,
PSD, FFT NA 1D-CNN 4 Sigmoid 86.29

[97] CHB-MIT Filtering TensorFlow 1D-CNN 4 Softmax NA

[99] Bern Barcelona Filtering, DA NA 1D-CNN 10 NA 89.28

[100] Bonn Normalization
Keras

1D-CNN 10 Softmax 98.67
TensorFlow

[101] Clinical
Filtering, Normalization,

Segmentation, resampling
strategies

NA Deep ConvNet 10 Softmax 80.00

[84] Clinical
Down-Sampling,

Filtering, DA

Keras

CNN-BP 5 Sigmoid NATensorFlow

Matlab

[98] Clinical Filtering, DWT NA

1D-CNN
–

Sigmoid

NALSTM RF

GRU SVM

[105] CHB-MIT Filtering, Montage
Mapping Matlab DRNN – MLP NA

[110] Bonn Filtering NA LSTM – Softmax 100

[106] Bonn Filtering

Keras

LSTM

3

Softmax 100TensorFlow 5

Matlab 10

[107] Bonn Windowing Keras LSTM 10 Sigmoid 91.25

[108] Bonn Filtering

Keras

LSTM

3

Softmax 100TensorFlow 5

Matlab 10

[109] Freiburg Filtering, Normalization NA LSTM 5 Softmax 97.75

[102]
CHB-MIT

Windowing NA ADIndRNN 10 NA 88.70
Bonn

[103] Bonn Autocorrelation Keras GRU – LR 98.00

[111] Bonn DWT Keras RNN – LR 98.50

[112] Freiburg Segmentation, DA,
Stockwell Transform

Matlab
Bi-LSTM – Softmax 98.91

TensorFlow

[104] TUH TCP NA ChronoNet – Softmax 90.60

[113] Clinical Windowing NA AE with
EM-PCA – GA 93.92

[114] Bonn Filtering, HWPT, FD Matlab AE – Softmax 98.67

[120] Clinical Down-Sampling,
Filtering, Normalization TensorFlow AE – Sigmoid NA

[121] CHB-MIT STFT NA SSDA – Softmax 93.82

[115] Bonn Normalization Matlab DSAE – LR 100
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[116] TUH Different Methods
Toolkits

SDA – LR NA
Theano

[117] Bonn Filtering NA SAE – SVM 100

[122] Bonn Normalization NA SSAE – Softmax 100

[118] CHB-MIT Scalogram Theano Wave2Vec – Softmax 93.92

[136] CHB-MIT DA, STFT PyTorch CNN-AE 5 Softmax 94.37

[123] Clinical Filtering, CWT,
Feature Extraction NA SAE – Softmax 86.50

[124] Bonn Taguchi Method NA SSAE – Softmax 100

[125] Clinical Dimension Reduction,
ESD NA DeSAE – Softmax 100

[126] Bonn DWT NA SAE – Softmax 96.00

[119] CHB-MIT Different Methods NA mSSDA – Softmax 96.61

[127] Clinical PCA, I-ICA Matlab SSAE – Softmax 94.00

[128] Bonn Windowing Matlab SAE – Softmax 88.80

[129] Clinical DWT Matlab DBN – – 96.87

[130] Clinical Normalization, Feature
Extraction Theano DBN –

LR

NASVM

KNN

[133] CHB-MIT Image Based
Representation NA 2D-CNN-LSTM – – –

[131] Clinical Filtering TensorFlow ST-GRU
ConNets – – 77.30

[132]
CHB-MIT

STFT, 2D-Mapping NA 3D-CNN with
Bi GRU

– – 99.40
Clinical

[134] CHB-MIT Visualization NA 2D-CNN-LSTM – Softmax 99.00

[135] Clinical ECoG Filtering NA 1D-CNN-LSTM 5 Sigmoid 89.73

[138]
CHB-MIT

Channel Selection NA CNN-AE
5 Different

Methods 92.00
Bonn 10

[139] Bonn Windowing NA 1D-CNN with
Bi LSTM

–
Softmax 99.33

Sigmoid 100

[140] Clinical Mapping Theano
ASAE-CNN

– LR 68.00
AAE-CNN

[137] CHB-MIT STFT PyTorch CNN-AE 5 Softmax 96.22

[141] SCTIMST
Noise reduction with

BM3D, Skull stripping,
Segmentation,

Keras
2D-CNN 5 Sigmoid NA

TensorFlow

[142] Clinical MRI Different Techniques NA 2D-CNN 5 Softmax NA

[143] Clinical MRI Filtering, ICA, BCG, GLM,
MCS NA ResNet – Softmax

NA
Triplet

[144] Clinical Datasets Different Methods NA 2D-CNN – SVM NA

[145] Clinical MRI Scaling Down NA 3D-CNN 5 Softmax 89.80

[146] Clinical MRI Connectivity Feature
extraction NA 2D-CNN – – –

[147]

Kaggle
ROI, Normalization, AAL,

CNNI, Down-sampling,
NNI (3D images)

TensorFlow

2D-ResNet

– Sigmoid 98.22
2D-VGG

Clinical MRI
2D-Inception V3

3D-SVGG-C3D

[148] Clinical MRI OSEM, DA TensorFlow DAC – Tanh NA
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