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Background. Non-small-cell lung cancer (NSCLC) is the most common malignant tumor among males and females worldwide.
Hypoxia is a typical feature of the tumor microenvironment, and it affects cancer development. Circular RNAs (circRNAs)
have been reported to sponge miRNAs to regulate target gene expression and play an essential role in tumorigenesis and
progression. This study is aimed at identifying whether circRNAs could be used as the diagnostic biomarkers for NSCLC.
Methods. The heterogeneity of samples in this study was assessed by principal component analysis (PCA). Furthermore, the
Gene Expression Omnibus (GEO) database was normalized by the affy R package. We further screened the differentially
expressed genes (DEGs) and differentially expressed circular RNAs (DEcircRNAs) using the DEseq2 R package. Moreover, we
analyzed the Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of DEGs
using the cluster profile R package. Besides, the Gene Set Enrichment Analysis (GSEA) was used to identify the biological
function of DEGs. The interaction between DEGs and the competing endogenous RNAs (ceRNA) network was detected using
STRING and visualized using Cytoscape. Starbase predicted the miRNAs of target hub genes, and miRanda predicted the
target miRNAs of circRNAs. The RNA-seq profiler and clinical information were downloaded from The Cancer Genome Atlas
(TCGA) database. Then, the variables were assessed by the univariate and multivariate Cox proportional hazard regression
models. Significant variables in the univariate Cox proportional hazard regression model were included in the multivariate Cox
proportional hazard regression model to analyze the association between the variables of clinical features. Furthermore, the
overall survival of variables was determined by the Kaplan-Meier survival curve, and the time-dependent receiver operating
characteristic (ROC) curve analysis was used to calculate and validate the risk score in NSCLC patients. Moreover, predictive
nomograms were constructed and used to predict the prognostic features between the high-risk and low-risk score groups.
Results. We screened a total of 2039 DEGs, including 1293 upregulated DEGs and 746 downregulated DEGs in hypoxia-treated
A549 cells. A549 cells treated with hypoxia had a total of 70 DEcircRNAs, including 21 upregulated and 49 downregulated
DEcircRNAs, compared to A549 cells treated with normoxia. The upregulated genes were significantly enriched in 284 GO
terms and 42 KEGG pathways, while the downregulated genes were significantly enriched in 184 GO terms and 25 KEGG
pathways. Moreover, the function analysis by GSEA showed enrichment in the enzyme-linked receptor protein signaling
pathway, hypoxia-inducible factor- (HIF-) 1 signaling pathway, and G protein-coupled receptor (GPCR) downstream signaling.
Furthermore, six hub modules and 10 hub genes, CDC45, EXO1, PLK1, RFC4, CCNB1, CDC6, MCM10, DLGAP5, AURKA,
and POLE2, were identified. The ceRNA network was constructed, and it consisted of 4 circRNAs, 14 miRNAs, and 38
mRNAs. The ROC curve was constructed and calculated. The area under the curve (AUC) value was 0.62, and the optimal
threshold was 0.28. Based on the optimal threshold, the patients were divided into the high-risk score and low-risk score
groups. The survival rate in the high-risk score group was lower than that in the low-risk score group. The expression of
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SERPINE1, STC2, and LPCAT1; clinical stage; and age of the patient were significantly correlated with the high-risk score.
Moreover, nomograms were established based on the risk factors in multivariate analysis, and the median survival time, 3-year
survival probability, and 5-year survival were possibly predicted according to nomograms. Conclusion. The ceRNA network
associated with NSCLC was identified, and the hub genes, circRNAs, might act as the potential biomarkers for NSCLC.

1. Introduction

Lung cancer is the leading cause of cancer-related mortality
worldwide [1]. More than 80% of lung cancer cases are
diagnosed as non-small-cell lung cancer (NSCLC) [2].
According to the histopathology, there are about 40% ade-
nocarcinomas, 25% squamous cell carcinomas, 10% lung
squamous cell carcinomas, large cell carcinomas, and sarco-
matoid carcinomas in NSCLC. The main manifestations of
NSCLC are cough, expectoration, hemoptysis, wheezing,
dyspnea, fever, and weight loss. Intrathoracic metastasis
may be accompanied by chest pain, pleural effusion, hoarse-
ness, superior vena cava obstruction syndrome, Horner syn-
drome, and dysphagia [3]. At present, lung cancer is mainly
screened by X-ray and chest computed tomography (CT).
The final diagnosis depends on exfoliative sputum cytology,
bronchoscopy, video-assisted thoracoscopic surgery, lung
biopsy, and surgical procedures for pathological examina-
tion [7]. As a result, most NSCLC patients are already in
an advanced stage at the time of detection, which seriously
affects the treatment of patients [4]. On the other hand,
although surgery is advocated in the early stage, and
radiotherapy, chemotherapy, targeted therapy, or combined
immunotherapy are advocated in the middle and late stages,
there are often some problems, such as recurrence after sur-
gery, gene mutation, and drug resistance after chemotherapy
and targeted therapy [5, 6]. Moreover, many patients cannot
tolerate the toxic effects and side effects, and the 5-year sur-
vival rate is still lower than 15% [7, 8]. Therefore, it is very
important to better understand the molecular mechanisms
underlying NCSLC and explore the potential biomarkers
for the diagnosis and treatment of NSCLC.

Hypoxia is an inherent feature of solid tumors because
of the imbalance between tumor cell proliferation rates
and vascular nutrient supply [9]. Increasing evidence has
revealed that hypoxia plays a critical role in tumor occur-
rence and development, including lung cancer [10]. For
example, under the hypoxic microenvironment, tumor cells
can undergo epithelial-mesenchymal transition (EMT), thus
increasing the degree of malignancy of the tumor [11]. Hyp-
oxia can enhance Wnt signal activity by stabilizing β-catenin
and changing its location in the nucleus, promoting prolifer-
ation, migration, invasion, and EMT of lung cancer cells, and
inhibiting apoptosis [12]. In addition, hypoxia also activates
PI3K/Akt and Wnt signaling in a HIF-2 α-dependent man-
ner, thereby enhancing the resistance of lung cancer cells to
chronic hypoxia-induced stress, inducing EMT of tumor cells
and increasing the malignancy of tumor cells [13]. Further-
more, the expression of mir-191 is upregulated after hypoxia
in NSCLC, which leads to a decrease in NFIA expression and
promotes the proliferation and migration of lung cancer cells
[14]. Under hypoxic conditions, autophagy enhances the

antiradiation ability of NSCLC by regulating the level of reac-
tive oxygen species (ROS), affecting the effect of radiotherapy
and leading to a poor prognosis of lung cancer [15]. Hypoxia
can also upregulate the level of galectin-3, thus enhancing the
activity of RhoA and significantly increasing the cell migra-
tion and invasion activity [16]. In particular, recent research
studies have found that hypoxia is associated with the
prognosis of cancers and can act as a target for treatment
[17, 18]. However, how hypoxia regulates NSCLC has not
been fully elucidated. Therefore, research studies focusing
on the molecular mechanism of hypoxia in the occurrence
and progression may contribute to the screening of novel
biomarkers for the diagnosis and treatment of NSCLC.

Circular RNAs (circRNAs) are a group of noncoding
RNAs derived from precursor mRNA back-splicing, and
they form a closed covalent circular structure [19]. circRNAs
are abundant in humans and have many biological functions
[20], including acting as “sponges” of miRNAs that regulate
gene expression at the posttranscriptional level [21]. Recent
studies have suggested that numerous circRNAs have been
reported to play an important role in the proliferation,
migration, and invasion of NSCLC cells [7]. For instance,
circ_0000284 [19] and circ_0074027 [22] have been
reported to promote NSCLC progression by increasing
CUL4B through sponging miR-335-5p and by upregulating
PD-L1 expression through sponging miR-337-3p, respec-
tively. Upregulated circular RNA vangl1 is involved in
NSCLC progression by inhibiting miR-195 and activating
Bcl-2 [23]. Besides, abnormal expression of circRNAs is
significantly associated with cisplatin resistance in NSCLC,
which provides a new therapeutic target for reversing cis-
platin resistance in NSCLC [24]. Song et al. have reported
that the host genes of circRNAs identified in cisplatin-
resistant NSCLC cell lines were involved in biological
processes and pathways contributing to cisplatin resistance
in NSCLC, indicating the therapeutic role of circRNAs in
NSCLC [24]. However, to our knowledge, circRNAs asso-
ciated with hypoxia in NSCLC have not yet been fully
explored.

Therefore, the current study was designed to explore
circRNAs in NSCLC associated with hypoxia, followed by
constructing a hypoxia-related ceRNA regulatory network
and investigating the potential prognostic biomarkers in
NSCLC via bioinformatic analysis. Thus, the results of this
study will enhance our understanding of the mechanisms
underlying hypoxia-related NSCLC and provide novel
insights into the diagnosis and treatment of NSCLC.

2. Materials and Methods

2.1. Data Acquisition and Processing. The circRNA expres-
sion profiles and transcriptome expression profiles were
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obtained from the GSE131378 dataset of the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The GSE131378 data-
set included 2 normoxia- and 2 hypoxia-treated A549 cells.
The RNA-sequencing (RNA-seq) data and paired clinical
information from 497 NSCLC samples and 49 standard
samples were obtained from The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/). The raw data
obtained from the Gene Expression Omnibus (GEO) data-
base was normalized using the affy R package for subsequent
analysis. To eliminate the system error and verify the reliable

data for the subsequent analysis, quality control (QC) of data
in this study was assessed by the principal component
analysis (PCA).

2.2. Screening of Differentially Expressed Genes (DEGs) and
Differentially Expressed circRNAs (DEcircRNAs). DEGs and
DEcircRNAs between normoxia-treated A549 cells and
hypoxia-treated A549 cells were screened using the DEseq2
R package with a cutoff value of jlog 2 ðFCÞj > 1 and a p
value < 0.05 (FC, fold change).
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Figure 1: Data processing. (a, b) The principal component analysis biplot of the transcriptome expression profiler between hypoxia-treated
A549 cells and normoxia-treated A549 cells. (c, d) The principal component analysis biplot of circRNA expression profiler between hypoxia-
treated A549 cells and normoxia-treated A549 cells.
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2.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Enrichment Analysis. GO
and KEGG enrichment analysis was performed using the
clusterProfiler R package. p < 0:5 was used as a threshold
to identify significant pathways. GO biological function
analysis consisted of biological process (BP), molecular func-
tion (MF), and cellular component (CC).

2.4. Gene Set Enrichment Analysis (GSEA). GSEA performed
the gene function analysis of DEGs. The function pathways
were assessed between the high- and low-expression groups

of DEGs. A threshold jlog 2 ðFCÞj > 1 and p < 0:05 were used
as the criteria.

2.5. Protein-Protein Interaction (PPI) Network Construction
and Hub Gene Identification. To further explore the interac-
tion among the DEGs and identify the hub genes, a PPI net-
work of DEGs was constructed using the Search Tool for the
Retrieval of Interaction Genes (STRING) database (http://
string-db.org/). The interaction network was constructed
with a threshold score > 0:7. The PPI network was analyzed
and visualized using Cytoscape software. The hub modules
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Figure 2: Identification of DEGs and DEcircRNAs in NSCLC cells. (a) Volcano plots of DEGs between hypoxia-treated A549 cells and
normoxia-treated A549 cells. (b) Heat map of DEGs between hypoxia-treated A549 cells and normoxia-treated A549 cells. (c) Volcano
plots of DEcircRNAs between hypoxia-treated A549 cells and normoxia-treated A549 cells. (d) Heat map of DEcircRNAs between
hypoxia-treated A549 cells and normoxia-treated A549 cells.
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were identified with a cutoff value degree > 5, and the hub
genes were identified with a cutoff value degree > 20.

2.6. miRNA of Target mRNA and Target circRNA of miRNA
Prediction. The miRNAs targeting hub genes were screened
using the Starbase online database (http://starbase.sysu.edu
.cn/) with criteria, including clipExpNum= 1, pancancerNum
= 1, and program = 1. Moreover, the target circRNAs of miR-
NAs were identified using miRanda online software with a
mirSVR score. The lower the score presented, the more reliable
the binding site.

2.7. circRNA-miRNA-mRNA (ceRNA) Network Construction.
The hypergeometric distribution test was used to assess
whether target miRNAs of DEGs were enriched in the
miRNA set of circRNAs. Then, the circRNA-miRNA-
mRNA network was constructed and visualized using Cytos-
cape based on the hypergeometric distribution test; p < 0:05.

2.8. Patients and Tissue Samples. Cancer tissues and adjacent
tissues of 5 patients with NSCLC who were surgically treated
in the Third Affiliated Hospital of Zunyi Medical University
from September 2019 to March 2020 were collected. All
patients were diagnosed with NSCLC by histopathological

examination and did not receive radiotherapy and chemo-
therapy before the operation. After collection, the specimens
were frozen in liquid nitrogen for later use. The study was
approved by the Ethics Committee of the Third Affiliated
Hospital of Zunyi Medical University, and written informed
consent was obtained from all patients or their guardians.

2.9. RNA Isolation and Quantitative Real-Time Polymerase
Chain Reaction (qRT-PCR). All cancer tissues and adjacent
tissues were lysed with TRIzol Reagent (Life Technologies-
Invitrogen, Carlsbad, CA, USA), and total RNA was isolated
following the manufacturer’s instructions. Then, the concen-
tration and purity of the RNA solution were quantified using
a NanoDrop 2000FC-3100 nucleic acid protein quantifier
(Thermo Fisher Scientific, Waltham, MA, USA Life Real).
The extracted RNA was reverse-transcribed to cDNA using
the SureScript First-Strand cDNA Synthesis Kit (Geneco-
poeia, Guangzhou, China) prior to qRT-PCR. The qRT-
PCR reaction consisted of 3μl of the reverse transcription
product, 5μl of 5x BlazeTaq qPCR Mix (Genecopoeia,
Guangzhou, China), and 1μl of forward and reverse primer
each. PCR was performed in a Bio-Rad CFX96 Touch™ PCR
detection system (Bio-Rad Laboratories, Inc., USA) under
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Figure 3: GO and KEGG functional enrichment analyses of DEGs. (a, c) The bubble plot exhibited the top 30 GO terms (top 10 BP, CC, and
MF) of the upregulated/downregulated DEGs. (b, d) The bubble plot exhibited the top 10 KEGG pathways of the upregulated/
downregulated DEGs.
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Figure 4: Continued.
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the following conditions: initial denaturation at 95°C for
1min, followed by 40 cycles that involved incubation at
95°C for 20 s, 55°C for 20 s, and 72°C for 30 s. The forward
primer of LPCAT1 was “ACCTGCCTAATTACCTTCA
AAC,” and the reverse primer of LPCAT1 was “TCCGCA
ATACCTATCTTCTCTC.” The forward primer of SER-
PINE1 was “GACTCCCTTCCCCGACTCCA,” and the
reverse primer of SERPINE1 was “CGGTCATTCCCAGG
TTCTCT.” The forward primer of STC2 was “GTGGGG
TGTGGCGTGTTT,” and the reverse primer of STC2 was
“TGGGAGGCTTCTGGATGG.” The forward primer of β-
actin was “TCCCTGGAGAAGAGCTATGA,” and the
reverse primer of β-actin was “AGGAAGGAAGGCTGGA
AAAG.” All primers were synthesized by Servicebio (Servi-
cebio, Wuhan, China). The β-actin gene served as an inter-
nal control, and the relative expression of 3 hub genes was
determined using the 2-ΔΔCt method [25]. The experiment
was performed in triplicate on independent occasions. Sta-
tistical differences in the 3 hub genes between the control
and NSCLC samples were detected by paired t-tests, using
GraphPad Prism V6 (GraphPad Software, La Jolla, CA,
USA), and the level of statistical significance was tested
and presented as ∗p < 0:05.

2.10. Statistical Analysis. The different expression of hub
genes simultaneously regulated by multiple circRNAs was
determined between standard samples and NSCLC samples
of pathologic stages using the one-way ANOVA. Survival
curves were performed using the survival R package to assess
the association between variables and survival. Candidate
variables with p < 0:05 were included in the multivariate
model. Independent prognostic factors were determined by
stepwise regression of multivariate Cox analysis based on

the Akaike Information Criterion (AIC) value. The risk
score was calculated and normalized using multivariate
Cox models. The pROC-R package was then used to create
the ROC curve and calculate the AUC and optimal threshold
values based on the risk score. NSCLC samples were divided
into a high-risk group and a low-risk group. Nomograms of
the median survival time and 3-/5-year survival probability
were constructed based on multivariate Cox models.

3. Results

3.1. Data Selected and Patients’ Characteristics. The circRNA
expression profiles and transcriptome expression profiles
were obtained from the GSE131378 dataset. To avoid the
system error and verify the reliable data for the subsequent
analysis, the data were assessed by PCA. The results showed
that differences between groups were more remarkable than
those within groups before and after data normalization
(Figures 1(a)–1(d)).

3.2. Identification of DEGs and DEcircRNAs in NSCLC Cells.
A total of 2039 DEGs and 70 DEcircRNAs were screened by
the DEseq2 R package using the criterion jlog 2 ðFCÞj > 1
and p < 0:05. The volcano plot map showed significant
differences and distribution of the fold change in DEGs
(Figure 2(a)) and DEcircRNAs (Figure 2(c)). The heat map
illustrated that there were 1293 upregulated DEGs and 746
downregulated DEGs in hypoxia-treated A549 cells compared
to normoxia-treated A549 cells (Figure 2(b), Table S1).
Moreover, there were 21 upregulated DEcircRNAs and 49
downregulated DEcircRNAs in hypoxia-treated A549 cells
compared to normoxia-treated A549 cells, as shown in
Figure 2(d) (Table S2).
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Figure 4: Function analysis of DEGs by GSEA. (a–c) The GSEA plots of GO terms (BP, CC, and MF) of DEGs. (d) The GSEA plots of
KEGG enrichment of DEGs. (e) The GSEA plots of Reactome enrichment of DEGs.
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3.3. GO and KEGG Functional Enrichment Analyses of
DEGs. To further explore the function of DEGs, GO enrich-
ment, including BP term, CC term, and MF term, was ana-
lyzed. We found that 284 GO and 42 KEGG pathways
were significantly enriched by the upregulated DEGs (Tables
S3 and S4). Furthermore, 184 GO and 25 KEGG pathways
were significantly enriched by the downregulated DEGs
(Tables S5 and S6). As shown in Figure 3(a), the first 30
GO terms for upregulation of DEGs included NADH
regeneration, extracellular structural tissue, cell-substrate

adhesion, neuronal projection guidance, response to hyp-
oxia, collagen-containing extracellular matrix, desmosomes,
extracellular matrix components, myositis, integrin complex,
monosaccharide binding, growth factor binding, collagen
binding, fibronectin-binding, integrin binding, splinter cell
cycle checkpoint, cell cycle DNA replication, nuclear chro-
mosome segregation, DNA integrity checkpoint, negative
regulation of cell cycle processes, nucleosome, condensed
chromosome kinesis, noncore complex, ribosome, DNA
helicase activity, nucleosome binding, protein binding

(a)
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Figure 5: PPI network construction and hub gene identification. (a) The PPI network of 206 DEGs. (b) The hub module with a threshold
connectivity degree > 5, and 10 hub genes with a threshold connectivity degree > 20.
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involved in protein folding, chromatin DNA binding, oxido-
reductase activity, and CH-OH group acting on the donor
(Figure 3(c)). Besides, the 10 KEGG pathways of the upreg-
ulated DEGs were as follows: fructose- and mannose-rich
metabolism, glycolysis/glycogenesis, biosynthesis of amni-
otic acid, HIF-1 signaling pathway, focal adhesion, carbon
metabolism, carbon metabolism in cancer, protein digestion
and absorption, ECM-receptor interaction, and bile secre-
tion (Figure 3(b)). The top 10 KEGG pathways for the
downregulated DEGs were as follows: systemic lupus erythe-
matosus-rich, alcoholism, cell cycle, DNA replication,
homologous recombination, Fanconi anemia pathway, viral
carcinogenesis, necrotizing disease, progesterone-mediated
oocyte maturation, and glutathione metabolism (Figure 3(d)).

3.4. Function Analysis of DEGs by GSEA. To further investi-
gate the function of DEGs, the DEGs were assessed by GSEA
with a threshold of jlog 2 ðFCÞj > 1 and p < 0:05. The results
of GSEA showed that the top 30 rich GO terms in the DEGs
with the highest enrichment score included enzyme-linked
receptor protein signaling pathway, regulation of anatomical
structure morphogenesis, cation transport, metal ion trans-
port, regulation of cell motility, cell surface, extracellular
matrix, cell-substrate junction, cell-substrate adherens junc-

tion, focal adhesion, signaling receptor activity, receptor
regulator activity, receptor-ligand activity, growth factor
binding, and cytokine receptor binding (Figures 4(a)–4(c)).
Ten KEGG pathways were enriched in the HIF-1 signaling
pathway, fructose and mannose metabolism, homologous
recombination, pentose and glucuronate interconversions,
tyrosine metabolism, glutathione metabolism, DNA replica-
tion, ascorbate, and alternate metabolism, porphyrin, and
chlorophyll metabolism, proteasome (Figure 4(d)). More-
over, the top 10 Reactome terms were enriched in signaling
by GPCR, GPCR downstream signaling, extracellular matrix
organization, degradation of the extracellular matrix, class
B/2 (secretin family receptors), glucose metabolism, collagen
formation, gluconeogenesis, snRNP assembly, and metabo-
lism of noncoding RNA (Figure 4(e)).

3.5. PPI Network Construction and Hub Gene Identification.
We analyzed the interaction between 2039 DEGs and
identified the hub genes by constructing a PPI network.
The unconnected nodes were removed, and the PPI network
included 206 nodes, and 551 edges were constructed
(Figure 5(a)). The following hub genes in the PPI network
with connectivity degree > 20 were identified: CDC45,
EXO1, PLK1, RFC4, CCNB1, CDC6, MCM10, DLGAP5,

Table 1: The top 10 upstream miRNAs targeted with hub DEGs of 6 hub modules were predicted using Starbase online software.

Gene symbol Ensembl gene ID miRNA targets

LOXL2 ENSG00000134013
hsa-miR-29c-3p, hsa-miR-29b-3p, hsa-miR-26a-5p, hsa-miR-1297, hsa-miR-26b-5p, hsa-miR-425-5p,

hsa-miR-29a-3p

STC2 ENSG00000113739
hsa-miR-488-3p, hsa-miR-181b-5p, hsa-miR-181a-5p, hsa-miR-613, hsa-miR-376c-3p,
hsa-miR-410-3p, hsa-miR-140-5p, hsa-miR-1-3p, hsa-miR-24-3p, hsa-miR-181c-5p,

hsa-miR-181d-5p, hsa-miR-206, hsa-miR-204-5p, hsa-miR-542-3p

SERPINE1 ENSG00000106366
hsa-miR-30e-5p, hsa-miR-30c-5p, hsa-miR-199a-5p, hsa-miR-181b-5p, hsa-miR-181a-5p,
hsa-miR-148b-3p, hsa-miR-152-3p, hsa-miR-181c-5p, hsa-miR-181d-5p, hsa-miR-30a-5p,

hsa-miR-148a-3p, hsa-miR-30b-5p, hsa-miR-30d-5p, hsa-miR-224-5p

SLC2A3 ENSG00000059804

hsa-miR-92b-3p, hsa-miR-181b-5p, hsa-miR-181a-5p, hsa-miR-194-5p, hsa-miR-107,
hsa-miR-146b-5p, hsa-miR-148b-3p, hsa-miR-26a-5p, hsa-miR-16-5p, hsa-miR-15a-5p,
hsa-miR-1297, hsa-miR-92a-3p, hsa-miR-203a-3p, hsa-miR-195-5p, hsa-miR-497-5p,
hsa-miR-152-3p, hsa-miR-301a-3p, hsa-miR-181c-5p, hsa-miR-181d-5p, hsa-miR-4262,
hsa-miR-216a-5p, hsa-miR-26b-5p, hsa-miR-103a-3p, hsa-miR-15b-5p, hsa-miR-367-3p,
hsa-miR-146a-5p, hsa-miR-148a-3p, hsa-miR-25-3p, hsa-miR-182-5p, hsa-miR-32-5p,

hsa-miR-363-3p, hsa-miR-542-3p, hsa-miR-424-5p

PFKFB4 ENSG00000114268

hsa-miR-186-5p, hsa-miR-137, hsa-miR-92b-3p, hsa-miR-214-3p, hsa-miR-16-5p, hsa-miR-15a-5p,
hsa-miR-92a-3p, hsa-miR-195-5p, hsa-miR-497-5p, hsa-miR-23a-3p, hsa-miR-128-3p,
hsa-miR-15b-5p, hsa-miR-367-3p, hsa-miR-25-3p, hsa-miR-23b-3p, hsa-miR-32-5p,

hsa-miR-363-3p, hsa-miR-424-5p

EGLN3 ENSG00000129521
hsa-miR-9-5p, hsa-miR-202-3p, hsa-miR-130a-3p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-454-3p,

hsa-miR-301a-3p, hsa-miR-519d-3p, hsa-miR-301b-3p, hsa-miR-130b-3p, hsa-miR-218-5p,
hsa-miR-93-5p, hsa-miR-106b-5p, hsa-miR-873-5p, hsa-miR-20b-5p, hsa-miR-106a-5p

NDRG1 ENSG00000104419
hsa-miR-9-5p, hsa-miR-133a-3p, hsa-miR-449a, hsa-miR-449b-5p, hsa-miR-1271-5p, hsa-miR-133b,

hsa-miR-182-5p, hsa-miR-96-5p

MT1X ENSG00000187193 hsa-miR-376a-3p, hsa-miR-376b-3p

PGK1 ENSG00000102144
hsa-miR-19a-3p, hsa-miR-19b-3p, hsa-miR-217, hsa-miR-143-3p, hsa-miR-96-5p,

hsa-miR-873-5p, hsa-miR-4770

ADM ENSG00000102144

hsa-miR-92b-3p, hsa-miR-181b-5p, hsa-miR-181a-5p, hsa-miR-26a-5p, hsa-miR-1297,
hsa-miR-92a-3p, hsa-miR-495-3p, hsa-miR-539-5p, hsa-miR-410-3p, hsa-miR-365a-3p,
hsa-miR-144-3p, hsa-miR-181c-5p, hsa-miR-181d-5p, hsa-miR-4262, hsa-miR-26b-5p,

hsa-miR-367-3p, hsa-miR-4465, hsa-miR-25-3p, hsa-miR-32-5p, hsa-miR-363-3p
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AURKA, and POLE2. Moreover, 6 hub connective modules
in the PPI network were identified with connectivity
degree > 5, and 10 hub genes were located in the most exten-
sive module of the six modules (Figure 5(b)).

3.6. ceRNA Network Construction. The ceRNA network was
constructed to perform further synthetic analysis of the role
of hub genes and circRNAs. Firstly, the miRNAs targeting
the hub DEGs of 6 hub modules were predicted (Table 1).
We then predicted the miRNAs targeting the DEcircRNAs
(Table 2). After identifying target miRNAs of DEGs, the
miRNA set of circRNAs was determined by the hypergeo-
metric distribution test. The ceRNA network was con-
structed based on the intersection of hub DEGs and
circRNAs, including 4 circRNA nodes, 14 miRNA nodes,
and 38 mRNA nodes in hypoxia-treated A549 cells
(Figure 6).

3.7. Correlation between Hub Genes and Clinicopathological
Characteristics. We further tested the expression of hub
DEGs between standard samples and NSCLC samples from
TCGA database. The results showed that the expression of
ADM, BIRC5, C1QL1, CCNA2, DKK1, FAM160A1,
HMGA2, HNRNPA2B1, HOXCB, NECTIN1, PPIH,
PRMT3, STC2, and ZWILCH was significantly increased
in NSCLC samples compared to standard samples
(Figure 7). Inversely, the expression of BHLHE40,
C11orf86, CCDC85A, CCND3, DKK3, ETV1, HECA,
ISOC1, KDM7A, LPCAT1, PAM, PEA15, PPP1R3B,
PTPRE, RASGEF1B, SLC12A2, SNAP25, and WSB1 was
strongly decreased in NSCLC samples compared to normal
samples (Figure 7). Furthermore, other hub DEGs showed
no significant difference between NSCLC samples and nor-
mal samples (Supplementary Figure 1). Furthermore, the

correlation between hub DEGs and NSCLC patients was
analyzed, and the results indicated that high expression of
CCDC85A, LPCAT1, PTPRE, SERPINE1, SNAP25, and

PRMT3
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Figure 6: The ceRNA network construction. The ceRNA network included 4 circRNA nodes, 14 miRNA nodes, and 38 mRNA nodes. Red
color represents circRNA nodes, green color represents miRNA nodes, and blue color represents mRNA nodes.

Figure 7: Correlation between hub genes and clinicopathological
characteristics. The association between hub gene expression
levels and clinical stage.
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TCFB1 was correlated with more prolonged survival
(Figures 8(c)–8(h)). Besides, clinical features, including age
and pathological stages, significantly affected the survival.
Patients aged less than 65 years showed more prolonged
survival, and patients diagnosed in the I/II stage showed
more prolonged survival than those diagnosed in the III/
IV stage (Figures 8(a) and 8(b)). However, gender and
other hub expression did not significantly affect NSCLC
(Supplementary Figure 2).

3.8. Nomogram Construction and Validation. Candidate
variables with a value < 0:1 on univariate analysis were
included in the multivariable model (Table 3). An ROC
curve was drawn using the pROC R package; the AUC value
was 0.62, and the optimal threshold was 0.28 (Figure 9(a)).
NSCLC samples were grouped into a high-risk group and a
low-risk group based on the risk score. Moreover, the sur-
vival rate showed a significant difference between the high-
risk and low-risk groups, and the high-risk group revealed
shorter 5-year survival rates (Figure 9(b)). NSCLC patients
were divided into high-risk score and low-risk score groups
based on the median risk score, and the number of NSCLC
patients with high-risk scores was less than the number of
NSCLC patients with low-risk scores (Figure 9(c), top
figure). The survival status map showed that the survival rate
in the high-risk and low-risk groups declined with time, and
most patients in the high-risk score group showed short
survival of less than 5 years (Figure 9(c), central figure).
Moreover, the heat map indicated that high expression levels
of SERPINE1, STC2, and LPCAT1, clinical stage, and age of
patients were significantly associated with high-risk scores

(Figure 9(c), bottom figure). Moreover, prognostic nomo-
grams were established based on the risk factors in multivar-
iate analysis, and the median survival time, 3-year survival
probability, and 5-year survival probability were predicted
according to the nomograms (Figure 9(e)).

3.9. Validation of the Expression of 3 Hub Genes in NSCLC
Patients. We further validated the expression of the 3
above-mentioned hub genes in clinical tissues using qRT-
PCR. High expression of SERPINE1 and STC2 in lung can-
cer tissues of NSCLC patients (n = 5) and low expression of
LPCAT1 in the NSCLC group were confirmed at the mRNA
level compared to those in the normal lung tissues (n = 5)
(Figure 10).

4. Discussion

Hypoxia is a typical feature of NSCLC. The molecular mech-
anisms involved in NSCLC have not yet been completely
clarified. In this study, we identified circRNAs using the
expression profiling of hypoxia-treated NSCLC cells and
constructed the ceRNA regulatory network to further reveal
the role of hypoxia in NSCLC. Additionally, we explored the
potential hypoxia-related biomarkers for predicting the
prognosis of NSCLC patients.

On comparing the expression profiling between hypoxia-
treated and nontreated NSCLC cells, we found 2039 DEGs.
To investigate the biological functions of these DEGs, we per-
formed GO, KEGG, and GSEA analyses. We found that the
upregulated DEGs were significantly enriched in response
to hypoxia and the HIF-1 signaling pathway, demonstrating
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Figure 8: Overall survival analysis of the hub genes, age, and clinical stage in NSCLC patients.
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that hypoxia did play an important role in NSCLC. Also, the
metastasis-associated protein 2 promotes the metastasis of
NSCLC by regulating the ERK/AKT and vascular endothelial
growth factor (VEGF) signaling pathways [26]. By regulating
the miR-29c/vascular endothelial growth factor (VEGF)
signaling pathway, PVT1 promotes angiogenesis in non-

small-cell lung cancer (NSCLC) [27]. Thus, these hypoxia-
related DEGs may also regulate the progression of NSCLC
via the ERK/AKT and VEGF pathways.

Furthermore, we explored the interactions of these DEGs
and identified ten hub genes, including LOXL2, STC2, SER-
PINE1, SLC2A3, PFKFB4, EGLN3, NDRG1, MT1X, PGK1,

Table 3: Univariate and multivariate analyses of the overall survival in TCGA dataset.

Row names Single coefficient
HR

(95% CI for HR)
Wald test Single z

Single
p value

Multicoefficient HR Multi z
Multi
p value

ADM -0.0026 1 (0.91-1.1) 0 -0.054 0.96 NA NA NA NA

Age 0.31 1.4 (1-1.9) 4.2 2 0.042 0.3 1.4 (1-1.8) 2 0.051

BHLHE40 0.22 1.3 (1.1-1.5) 8.5 2.9 0.0035 NA NA NA NA

BIRC5 -0.012 0.99 (0.86-1.1) 0.03 -0.18 0.85 NA NA NA NA

C11orf86 0.043 1 (0.97-1.1) 1.3 1.1 0.26 NA NA NA NA

C1QL1 -0.029 0.97 (0.91-1) 0.7 -0.84 0.4 NA NA NA NA

CCDC85A 0.088 1.1 (1-1.2) 4.2 2 0.041 NA NA NA NA

CCNA2 -0.019 0.98 (0.85-1.1) 0.07 -0.26 0.79 NA NA NA NA

CCND3 0.12 1.1 (0.97-1.3) 2.5 1.6 0.12 NA NA NA NA

CNKSR3 -0.015 0.98 (0.86-1.1) 0.05 -0.21 0.83 NA NA NA NA

DGAT2 0.096 1.1 (1-1.2) 3.9 2 0.049 NA NA NA NA

DKK1 0.0076 1 (0.95-1.1) 0.06 0.25 0.8 NA NA NA NA

DKK3 -0.0016 1 (0.89-1.1) 0 -0.027 0.98 NA NA NA NA

ETV1 0.031 1 (0.94-1.1) 0.46 0.68 0.5 NA NA NA NA

FAM160A1 0.058 1.1 (0.94-1.2) 0.95 0.98 0.33 NA NA NA NA

FAM81A 0.05 1.1 (0.95-1.2) 0.94 0.97 0.33 NA NA NA NA

HECA 0.13 1.1 (0.96-1.4) 2.2 1.5 0.14 NA NA NA NA

HMGA2 -0.0095 0.99 (0.94-1) 0.14 -0.38 0.7 NA NA NA NA

HNRNPA2B1 0.089 1.1 (0.88-1.4) 0.67 0.82 0.41 NA NA NA NA

HOXC8 0.0016 1 (0.94-1.1) 0 0.05 0.96 NA NA NA NA

ISOC1 0.041 1 (0.88-1.2) 0.23 0.48 0.63 NA NA NA NA

KDM7A 0.063 1.1 (0.91-1.3) 0.59 0.77 0.44 NA NA NA NA

LPCAT1 0.15 1.2 (1-1.3) 8.3 2.9 0.004 0.11 1.1 (0.99-1.2) 1.9 0.062

NECTIN1 -0.02 0.98 (0.89-1.1) 0.16 -0.4 0.69 NA NA NA NA

PAM 0.1 1.1 (0.95-1.3) 1.7 1.3 0.19 NA NA NA NA

PEA15 0.17 1.2 (0.99-1.4) 3.4 1.8 0.065 NA NA NA NA

PPIH 0.053 1.1 (0.88-1.3) 0.34 0.58 0.56 NA NA NA NA

PPP1R3B 0.04 1 (0.91-1.2) 0.35 0.59 0.56 NA NA NA NA

PRMT3 0.068 1.1 (0.91-1.3) 0.63 0.8 0.43 NA NA NA NA

PTPRE 0.17 1.2 (1-1.4) 5.9 2.4 0.015 NA NA NA NA

RASGEF1B 0.094 1.1 (0.97-1.2) 2.3 1.5 0.13 NA NA NA NA

SERPINE1 0.15 1.2 (1.1-1.3) 11 3.4 8e-04 0.12 1.1 (1-1.2) 2.5 0.012

Sex -0.19 0.83 (0.6-1.1) 1.3 -1.2 0.25 NA NA NA NA

SLC12A2 0.0078 1 (0.89-1.1) 0.02 0.13 0.9 NA NA NA NA

SNAP25 0.069 1.1 (0.99-1.2) 3.1 1.8 0.078 NA NA NA NA

Stage 0.3 1.3 (1.1-1.7) 6.6 2.6 0.01 0.38 1.5 (1.2-1.8) 3.2 0.0015

Status 21 1e + 09 (0-Inf) 0 0.012 0.99 NA NA NA NA

STC2 0.098 1.1 (1-1.2) 4.7 2.2 0.03 0.11 1.1 (1-1.2) 2.4 0.014

TGFBI 0.071 1.1 (0.98-1.2) 2.4 1.6 0.12 NA NA NA NA

TMEM132B -0.016 0.98 (0.91-1.1) 0.19 -0.43 0.66 NA NA NA NA

WSB1 0.13 1.1 (0.97-1.3) 2.4 1.5 0.12 NA NA NA NA

ZWILCH -0.034 0.97 (0.81-1.2) 0.14 -0.37 0.71 NA NA NA NA
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and ADM. LOXL2 is associated with the progression of lung
adenocarcinoma [28] and poor prognosis of NSCLC [29].
Mir-504 can also inhibit the proliferation and invasion of
NSCLC cells by targeting LOXL2 [30]. Stc2/Jun/Axl signal
activation can mediate the acquired resistance of lung cancer
patients to EGFR tyrosine kinase inhibitors [31]. Serpine1 is
upregulated in mesenchymal lung cancer cells and promotes
cell invasion [32]. Abnormal serpine1 DNA methylation
participates in EMT of ovarian cancer induced by carbo-
platin [33]. Also, serpine1, as an oncogene of gastric adeno-
carcinoma, promotes tumor cell proliferation, migration,
and invasion by regulating EMT [34]. Slc2a3 promotes gly-
colysis and provides energy for gastric cancer cell prolifera-
tion [35]. Pfkfb4 is a biomarker for predicting the poor
prognosis of gastric cancer patients [36]. It can promote lung
adenocarcinoma progression through phosphorylation and
activation of transcription coactivator SRC-2 [37]. Egln2
DNA methylation and expression interact with HIF1A to
affect the survival of early NSCLC [38]. Increased expression
of NDRG1 in NSCLC is associated with advanced T stage

and inadequate angiogenesis [39]. Mtlx can promote the
migration and invasion of spc-a-1sci and PC-9 lung cancer
cell lines [40]. GBP1 promotes erlotinib resistance in NSCLC
through the PGK1-activated EMT signaling pathway [41].
Rab11-FIP2 inhibits the growth of NSCLC by regulating
the ubiquitination of PGK1 [42]. Thus, these essential genes
can affect the development of NSCLC by affecting the prolif-
eration, migration, invasion, and drug resistance of cancer
cells and then affect the survival and prognosis of NSCLC
patients.

Meanwhile, we identified XX DEcircRNAs between
hypoxia-treated and nontreated NSCLC cells and con-
structed a ceRNA regulatory network, including 4 circRNAs,
14 miRNA, and 38 mRNAs. These four circRNAs may act as
endogenous sponges of the corresponding miRNAs to
regulate the expressions of corresponding mRNAs to fur-
ther affect NSCLC. Moreover, we found that CCDC85A,
LPCAT1, PTPRE, SERPINE1, SNAP25, and TCFB1 in the
ceRNA network were significantly correlated with NSCLC
patients’ survival on univariate Cox analysis. To further
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Figure 9: Nomogram construction and validation. (a) The ROC curve for risk prediction. (b) Survival curve for the high-risk score and low-
risk score groups. (c) Top figure: the risk score curve. Middle figure: the survival status map. Bottom figure: the heat map of prognostic risk
factors (SERPINE1, LPCAT1, STC2, clinical stage, age, and risk score) levels. (d) Nomogram for the median survival time prediction of
NSCLC patients. (e) Nomogram for the 3-year and 5-year survival probability prediction in NSCLC patients.
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Figure 10: Altering expression of 3 hub mRNAs in NSCLC. qRT-PCR analysis of (a) SERPINE1, (b) STC2, and (c) LPCAT1 expression in 5
pairs of NSCLC samples, ∗p < 0:05, data are shown as the mean ± SD.
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obtain more robust biomarkers for predicting the prognosis
of NSCLC patients, we performed multivariate Cox analysis
and found that SERPINE1, STC2, and LPCAT1 were inde-
pendent risk factors for NSCLC. Serpine1 is the most closely
related gene with invasion, which can be used to evaluate the
importance in the invasion and metastasis of NSCLC [43].
Stc2 can be used as an independent prognostic factor to
predict the overall survival rate of NSCLC patients [44].
The acquired resistance of lung cancer patients to EGFR
tyrosine kinase inhibitors is mediated by reactivation of
the stc2/Jun/Axl signal [31]. Lpcat1 promotes brain metas-
tasis of lung adenocarcinoma by upregulating the PI3K/
Akt/myc pathway [45].

Finally, we constructed a related risk score that divided
NSCLC patients into high- and low-risk groups to accurately
predict their clinical outcomes based on the features of SER-
PINE1, STC2, and LPCAT1.

In conclusion, for the first time, we constructed the
ceRNA regulatory network in NSCLC associated with hyp-
oxia and identified SERPINE1, STC2, and LPCAT1 as
potential prognostic biomarkers for NSCLC. Further funda-
mental in vitro and in vivo experiments are needed to
provide more solid evidence for our study. Our findings
increase our knowledge of the molecular mechanisms
involved in hypoxia-related NSCLC and guide the discovery
of new therapies for NSCLC.

Data Availability

The data are obtained from GEO and TCGA databases.

Conflicts of Interest

The authors declare no conflict of interests, financial or
otherwise.

Acknowledgments

This research was supported by grants from the Science and
Technology Bureau Project of Zunyi City (Zunshi Kehe
[2019]146 ,[2019]167, [2020]8, [2020]104, and [2020]123).

Supplementary Materials

Supplementary Figure S1: the expressions ofCNKSR3,
DGAT2, FAMB1A, SERPINE1, TGFB1, and TMEM132B in
the ceRNA network showed no significant difference between
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significant difference of survival between groups divided by
gender or expression of ADM, BHLHE40, BIRC5, C1QL1,
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DEGs in hypoxia-treated A549 cells compared to normoxia-
treated A549 cells displayed in the heat map. Supplementary
Table S2: 21 upregulated DEcircRNAs and 49 downregulated

DEcircRNAs identified in hypoxia-treated A549 cells com-
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S3 and S4: upregulated DEGs were significantly enriched into
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