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Background:HSPB1 belongs to the family of small heat shock proteins (sHSP) that have importance in protection
against unfolded protein stress, in cancer cells for escaping drug toxicity stress and in neurons for suppression of
protein aggregates. sHSPs have a conserved α-crystalline domain (ACD), flanked by variable N- and C-termini,
whose functions are not fully understood. Dominant missense variants in HSPB1, locating mostly to the ACD,
have been linked to inherited neuropathy.
Methods: Patients underwent detailed clinical and neurophysiologic characterization. Disease causing variants
were identified by exome or gene panel sequencing. Primary patient fibroblasts were used to investigate the ef-
fects of the dominant defective HSPB1 proteins.
Results: Frameshift variant predicting ablation of the entire C-terminus p.(Met169Cfs2*) of HSPB1 and amissense
variant p.(Arg127Leu) were identified in patients with dominantly inherited motor-predominant axonal Char-

cot–Marie–Tooth neuropathy.We show that the truncated protein is stable and bindswild type HSPB1. Bothmu-
tations impaired the heat stress tolerance of the fibroblasts. This effect was particularly pronounced for the cells
with the truncating variant, independent of heat-induced nuclear translocation and induction of global transcrip-
tional heat response. Furthermore, the truncated HSPB1 increased cellular sensitivity to protein misfolding.
Conclusion:Our results suggest that truncation of the non-conserved C-terminus impairs the function of HSPB1 in
cellular stress response.
General significance: sHSPs have important roles in prevention of protein aggregates that induce toxicity. We
showed that C-terminal part of HSPB1 is critical for tolerance of unfolded protein stress, andwhen lacking causes
axonal neuropathy in patients.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Charcot–Marie–Tooth disease (CMT) is a hereditary disorder of pe-
ripheral nerveswhere patients suffer from chronic and progressive distal
muscle weakness and sensory impairment as a result of demyelination
(CMT1) or axon degeneration (CMT2) [1]. When motor symptoms pre-
dominate, the term distal hereditary motor neuropathy (dHMN) may
be used, although genetic studies have shown that there is a significant
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overlap between CMT and dHMN [2]. The genetic heterogeneity of
inherited peripheral neuropathies is very large, with more than 60 dis-
ease genes known [3].

Cellular stress responses mediated by small heat shock proteins
(sHSP) are among the important pathways implicated in axon mainte-
nance, aswell as inmany stress-related physiological processes andma-
lignancies [4]. The human genome encodes genes for 10 sHSPs of which
three (HSPB1, HSPB3 and HSPB8) are disease genes for CMT2 or dHMN
[5–7]. In addition,HSPB5 variants causemyopathy and cardiomyopathy
[8]. The common feature of the sHSPs is an approximately 85 amino acid
stretch called the α-crystallin domain (ACD), which is bordered by N-
and C-terminal regions [9]. Dimerization, thought to be crucial for pro-
tein function, depends on symmetrical antiparallel pairing of the β7
strands of ACD [10,11]. The highly variable N- and C-termini have
evolved independently from the ACD andmay therefore be responsible
for specific functional and structural effects that differentiate sHSPs
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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from one another [12]. The C-terminus may be involved in chaperone
functions through dynamic conformational changes that regulate oligo-
meric organization or target protein binding [13,14]. An IxI/V domain of
many sHSP C-termini binds the β4/β8 groove of an ACD, which may be
important for oligomerization [15].

Ubiquitously expressed HSPB1 is a 205 amino acid protein with the
ACD located at residues 86–169. The most important function of HSPB1
is thought to be the protection of the cell against stress. The ability of
HSPB1 to bind and prevent the aggregation of misfolded proteins has
been demonstrated in vitro [16]. Presumably, client proteins bound
by HSPB1 can be transferred to ATP-dependent chaperones for active
refolding, or for proteolytic degradation. A plethora of potential binding
targets has been identified, including cytoskeletal components such as
actin and myosin, and proteins linked to acquired neurodegenerative
diseases such as synuclein, tau and β-amyloid [4,17,18]. Nuclear trans-
location of HSPB1 has been demonstrated upon heat stress in certain
cell types [19], suggesting a role in chaperoning nuclear proteins or reg-
ulation of gene expression.

Nearly 20 disease causing variants in HSPB1 have been described [6,
20–29]. They cause length-dependent, predominantly motor CMT2 or
dHMN, being among the most common causes of these disorders [3].
Most of the disease-associated variants are dominantly inherited mis-
sense variants, clustering in structures that are conserved in all sHSPs,
such as in the β7-strand of the ACD. Previous studies of different
HSPB1 missense variants have solely utilized overexpression systems
and identified pathways that may be affected in disease. Certain ACD
mutationswere associatedwith defective dimerization, increased chap-
erone activity, and improved heat stress tolerance [30]. Several studies
have found cytoskeletal abnormalities and axonal transport defects.
For instance, overexpression of HSPB1S135F or HSPB1P182L led to aggre-
gation and altered axonal transport of neurofilament [6,31,32]. These
mutants also displayed increased binding to tubulin, which led to stabi-
lization and altered dynamics of microtubules [33]. Furthermore, trans-
genic expression of HSPB1S135F or HSPB1P182L in mouse neurons
decreased the abundance of acetylated α-tubulin and induced severe
axonal transport defects [34].

Two variants that predicted truncation of the C-terminus of HSPB1
have been described but the stabilities of the putative truncated pro-
teinswere not investigated [26,27]. The diseasemechanisms of the pos-
tulated C-terminal truncations have remained obscure. C-terminal
missense variants producedmixed effects in vitro, including propensity
to aggregate for HSPB1P182S and decreased chaperone activity for
HSPB1R188W [35], whereas truncation of HSPB5 may impair oligomeri-
zation of that protein [36,37]. Here we describe new disease-causing
variants inHSPB1 in CMT2patients, one ofwhich leads to stable truncat-
ed HSPB1 lacking the entire C-terminus of the protein. To study themu-
tant proteins at their endogenous expression levels, we used primary
patient fibroblasts. We demonstrate that the stable truncated HSPB1
binds wild type HSPB1, suggesting a dominant-negative effect, and
strongly impairs the ability of the cells to cope with unfolded protein
stress. These data have importance for understanding the molecular
mechanisms behind axonal neuropathies and the chaperoning abilities
of HSPB1.
2. Materials and methods

2.1. Patients and sampling

Patients and their family members gave a written informed consent
to enroll in the study. Patients were clinically examined by the same
neurologist at the Helsinki University Central Hospital. Approval of the
studywas given by the hospital's ethical committee. DNAwas extracted
from peripheral blood by standard methods. Skin biopsies were taken
from volar antebrachium and fibroblast cultures were established.
ENMG and QST were performed by established methods [38].
2.2. Exome and gene panel sequencing

We screened a panel of neuropathy-associated genes as described
previously [29], with modifications in the panel including addition of
disease genes for hereditary spastic paraplegia (Supplementary table).
The target was designed with SureDesign software (Agilent Technolo-
gies, Santa Clara, CA, USA). Target enrichment and amplification was
done with HaloPlex Target Enrichment Kit (Agilent Technologies) ac-
cording to the manufacturer's instructions. For whole exome sequenc-
ing (WES) we used NimbleGen Sequence Capture method according
to themanufacturer's instructions. Sequencingwas done on aMiSeq se-
quencer. Genome alignment and variant calling were done by the pipe-
line developed at the Finnish Institute of Molecular Medicine [39].
2.3. NGS data filtering

Missense variant data of the exome and gene panel were filtered as
follows: 1) Exclusion of non-splice site changing variants in non-coding
regions, 2) exclusion of synonymous variants, 3) exclusion of variants
with frequency N0.005 in the 1000Genomes (www.100genomes.org)
or Exome Variant Server (EVS, http://evs.gs.washington.edu/EVS/),
and 4) exclusion of variants that scored b10 for deleteriousness with
the Combined Annotation Dependent Depletion (CADD) tool [40]. The
final variants were checked for frequencies in the Sequencing Initiative
Suomi (SISu, http://sisu.fimm.fi/), a database that contains exome data
from N3000 individuals of Finnish origin [41].

Insertion/deletion (indel) data were filtered by: 1) Exclusion of non-
splice site changing variants in non-coding regions and 2) exclusion of
variants found in dbSNP (http://www.ncbi.nlm.nih.gov/SNP/). In addi-
tion, some false positives on the gene panel data were excluded based
on variant calls being present in only one restriction fragment as evalu-
ated with Integrative Genomics Viewer (http://www.broadinstitute.
org/software/igv/home).
2.4. Sanger sequencing

Findings were confirmed by Sanger sequencing. The oligonucleotide
primers used for HSPB1 were ACCCGGTGTGTAATGTAACG and GCCTGA
GGCTTCCTTCCAC for exon 3, and AAGTTTCTGAGAGCCCAGACC and
ACAGGGAGGAGGAAACTTGG for exon 2.
2.5. Western blotting and antibodies

Whole-cell lysates were prepared by lysis in RIPA buffer (1×PBS, 1%
Nonidet-P-40, 0.5% sodium deoxycholate, 0.1% SDS). Non-reducing
Western blotting conditions were essentially as previously described
[30]: cells were suspended in 50 mM Tris–HCl (pH 8.0), 10% glycerol,
1% Nonidet P-40, 150 mM NaCl, 5 mM NaF, 5 μM ZnCl2, 1 mM Na3VO4,
10 mM EGTA and Complete Protease inhibitors (Roche, Basel,
Switzerland); lysed on ice for 10 min and cleared by centrifugation;
and then boiled for 5 min in non-reducing loading buffer (5× solution:
250 mM Tris–HCl pH 6.8, 10% SDS, 30% glycerol, 0.02% bromophenol
blue). For nuclear enrichment, cells were first homogenized by running
through a 22 G syringe needle 8–12 times in buffer containing 0.3M su-
crose, 1 mM EGTA, 5 mMMOPS, 5 mM KH2PO4 and Complete Protease
inhibitors at pH 7.4. Lysates were then centrifuged at 6500 rpm for
15 min at 4 °C; the supernatant was taken as the cytosolic fraction and
the pellet as the nuclear fraction. The nuclear fractionations were done
on non-treated cells and cells subjected to 45 °C for 1 h. SDS–PAGE
was performed by standard methods.

Antibodies usedwere: anti-HSPB1 (18284-1-AP; Proteintech, Chica-
go, IL, USA), anti-GAPDH, anti-histone H3, and anti-tubulin (#2118,
#4499 and #2146, respectively, Cell Signaling Technology, Danvers,
MA, USA).

http://www.100genomes.org
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Fig. 1. Pedigrees of the studied families. The DNA of the persons indicated by asterisk (*)
was studied, persons crossed with diagonal lines were deceased. Representative capillary
sequencing chromatograms are shown to the right. (A) In family A, the heterozygous de-
letion of a single adenine residue [c.505delA,HSPB1 (NM_001540.3)] is highlighted by the
vertical box. The deletion leads to a frame shift causing superimposed curves in the se-
quence that follows (arrow, note that sequencing direction is right to left). (B) In family
B, the heterozygous guanine to thymidine nucleotide change [c.380GNT, HSPB1
(NM_001540.3)] is indicated by the vertical box (arrow).
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2.6. Stress tolerance assays

To test heat tolerance, cultured fibroblasts were subjected to 45 °C
for 2 h after which the media was changed and the cells were returned
to normal conditions and followed for 48 h. To induceproteinmisfolding
stress, fibroblast media were supplemented with 20 mM canavanine
(Sigma Aldrich, St Louis, MO, USA) and the cells were followed for
48 h. Cell numbers and morphology were monitored and analyzed by
Cell IQ system (CM Technologies, Tampere, Finland). Each cell line was
cultured in duplicate wells and 50 regions per well were imaged every
second hour. Two-way ANOVA test was used for statistical analysis.

2.7. Immunocytochemistry

Immunocytochemistry to detect HSPB1 in cultured fibroblasts was
done as follows: The cells were fixed with paraformaldehyde, perme-
abilized with Triton X and stained using the same anti-HSPB1 antibody
as in Western blotting and with DAPI. Imaging was done with an
Axioplan 2 fluorescence microscope (Zeiss, Jena, Germany) and the
Axiovision 4.8.1.0 software. The cells were either non-treated or sub-
jected to heat stress at 45 °C for 1 h.

2.8. Gene expression analysis

Control and HSPB1ΔC-term patient fibroblasts were treated by expo-
sure to 45 °C for 30 min. Total RNA was extracted from treated and un-
treated cells, using three independent replicates. Gene expression
profiling of patient and control with and without treatment were car-
ried out at Functional Genomics Unit (Biomedicum Helsinki, Finland)
using an Illumina HumanHT-12 version 4 (Illumina, San Diego, CA,
USA) expression array. The data analysis consisted of data pre-
processing, quality analysis and detection of differentially expressed
genes between the study groups. All methods used were implemented
in the beadarray, limma, and BioMart packages of the Bioconductor pro-
ject [42–46]. The result sheets from GenomeStudio were loaded to R,
normalized, log2-transformed and background corrected. Additional
gene information was extracted from EnsEMBL using BioMart [45].
Matching was done via EnsEMBL gene names. Pathway analysis with
tests for statistical significance was done using DAVID Bioinformatics
Resources 6.7 [47,48].

3. Results

3.1. Clinical and neurophysiologic findings

Three patients from two unrelated families were studied. In family A
(Fig. 1A), the index patient (II-2) was the only affected member. Her
parents were both deceased, but they or her ten siblings did not have
any symptoms of muscle weakness; her older sister had developmental
delay but no neuropathy. In childhood the patient had difficulties in
skills requiring balance and in sports, but only in her thirties she started
to experience progressive symptoms and distal weakness of the feet.
Clinical picture was slowly progressive requiring first peroneal support
for distal muscle weakness, and after several yearsmore aids. At the age
of 65 the patient used two walking sticks, and could walk two kilome-
ters at most. She was otherwise healthy, but due to toe deformities sev-
eral operations had been performed. At neurological examination
muscle atrophy concentrated at distal muscles, and there was only vis-
ible contraction without movement at ankle and distally. Muscle weak-
ness was observed also proximally, especially in hip flexion. In hands,
milder distal atrophy and weakness were noted, however proximal
strength in arm abduction and elbow flexion was normal. Also sensory
disturbances were observed in the feet with distally impaired touch
and position senses. ENMG (electroneuromyography) showed marked
sensory and active motor axonal neuropathy with distal and lower leg
preponderance (Table 1). There was accentuation of needle EMG
(electromyography) and sural sensory response alterations compared
to ENMG carried out six years earlier. QST (quantitative sensory testing)
was done to investigate small fiber involvement. It showed severe alter-
ation of cold perception (A delta fibers) in addition to distinct alteration
of warm sensory perception (C fibers) and vibration perception (A beta
fibers) in the lower extremities, whereas only mild change in cold per-
ception was recorded in the upper extremity (Table 1).

In family B (Fig. 1B) the index male patient (II-1) developed slowly
progressive polyneuropathy symptoms starting at age 35. At age 63 he
moved slowly needing assistance of two walking sticks and peroneus
supports. In the arms there were atrophy and weakness in distal hand
muscles, but normal strength in proximal muscles. In lower limbs
there was no movement at ankles and also proximal strength was re-
duced, more in the right. Reflexes were absent. Vibration sense was ab-
sent in the legs. The ENMG showed marked motor axonal neuropathy
with distal preponderance. Therewas also diminished sensory response
in the left radial nerve indicating axonal neuropathy of A beta fibers, in
addition to decreased mixed nerve conduction velocity and decreased
response amplitude in the median nerve indicating involvement of A
alpha fibers. QST showed elevated warm sensation and vibration
thresholds in lower extremity indicating C and A beta fiber dysfunction
(Table 1).

In his younger sister (B:II-2) neuropathic symptoms began around
the same age. Her main symptomwas a sensation of stiffness and distal
weakness in the lower extremities requiring peroneal orthoses, and oc-
casional muscle cramps. Upon clinical examination at age 59, she was
unable to walk on her heels, but could briefly rise to her toes. In the
upper extremities,muscle strength, sensory testing and deep tendon re-
flexes were normal and no atrophywas noted. In the lower extremities,
mild atrophy of intrinsic foot muscles was noted. Great toe dorsiflexion



Table 1
Neurophysiological investigations of the patients. APB=abductor pollicis brevis, DPN=deep peroneal nerve, EDC=extensor digitorum communis, LE= lower extremity,MN=median
nerve, MUP= motor unit potential, RN = radial nerve, SN = sural nerve, SPN = superficial peroneal nerve, TN = tibial nerve, UE = upper extremity, UN= ulnar nerve.

Patient Age at
examination

Neurography
Motor fibers

Neurography
Sensory fibers

Needle EMG QST

A:II-2 65 MN normal but DPN decreased motor
conduction velocity and diminished
M-response amplitude.

Normal conduction velocity but
diminished amplitudes in upper and
lower extremity (RN, MN, UN, SN),
no response in SPN. Decreased mixed
nerve amplitude (MN).

Fibrillation activity in leg muscles with
distal preponderance, mild/moderate
neuropathic MUP alterations in the deltoid
and long finger extensor muscles, no
fibrillations. Fibrillation activity and severe
MUP alterations in the first interosseus
dorsalis muscle

UE: Mild change A
delta in the left
hand.
LE: Severe
alteration A delta
and distinct
alteration in
C-fibers and A beta
fibers.

B:II-1 63 Moderately decreased motor
conduction velocity, increased distal
motor latency, and diminished
M-response amplitude
(about 10% of normal, left MN).

Normal conduction velocity but
diminished sensory response (left RN).
Severely decreased mixed nerve
conduction velocity and diminished
response amplitude (MN).

Fibrillation activity, moderate loss of motor
units as well as motor unit potential
alterations (right APB and left EDC). The
left deltoid muscle was normal.

LE: C and A beta
fiber dysfunction.

B:II-2 59 Distal motor responses absent (DPNs)
or remarkably decreased (TNs).
UE: Normal

Normal Atrophy with no voluntarily activating
MUPs (feet); fibrillation, motor unit loss
and re-innervation (legs); slight motor unit
loss without fibrillation (thighs).
UE: Normal

Normal
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was clearly weakened, and ankle dorsi- and plantarflexion strengths
were reduced. There was also proximal muscle weakness in the lower
extremities, more pronounced on the right side. Lower limb deep ten-
don reflexes were missing. Sensation of touch and vibration were nor-
mal, but the sensation of pain was slightly pronounced bilaterally in
the legs. ENMG revealed signs of moderate distal motor axonal
polyneuropathy while QST was normal (Table 1). Four years earlier at
the age of 55, ENMG measured in another laboratory revealed only
slight signs of unspecific neuropathy as increased latencies and dimin-
ished persistencies of the lower extremity F- and H-waves as well as
slight fibrillation and MUP (motor unit potential) changes in the distal
leg muscles.
3.2. Genetic findings

The DNA of the index patient of family A was subjected to targeted
gene panel sequencing. Filtering of missense data left no variants with
frequency b0.005 in the SISu database butfiltering of indel data resulted
in a single previously unknown variant, heterozygous c.505delA in
HSPB1 (NM_001540.3). The variant was situated in the last exon
(exon 3) of the gene and was predicted to lead to a p.(Met169Cfs2*)
change, i.e. truncation of the entire C-terminus (HSPB1ΔC-term) of the
205 amino acid protein. The variant was confirmed by Sanger sequenc-
ing. The patient's older sister tested negative for the mutation but the
DNA of her parents or other siblings were not available for testing;
they were never formally evaluated for neuropathy and had not report-
ed symptoms. This suggested the possibility that the patient's mutation
had occurred de novo (Fig. 1A).

In family B, the index patient and his sister (II-2 in Fig. 1B)
underwent exome sequencing. Filtering left 159 shared heterozygous
variants, out of which three were in genes previously linked to neurop-
athy. The first was a c.2750ANC variant in KIF1A (NM_004321.6),
predicting a p.(His917Pro) amino acid change,whichwas found at a fre-
quency of 0.0015 in the SISu database, i.e. being a relatively common
polymorphism in Finland and unlikely to cause dominant disease.

The second was a c.684CNG variant in SCN9A (NM_002977.3),
predicting a p.(Ile228Met) amino acid change. This variant was pres-
ent with frequency of 0.0014 in SISu, and 0.0016 in European
Americans of the EVS. Despite being relatively common, this variant
has been previously suggested as a cause of small fiber neuropathy
[49–51] but has not been linked to axonal neuropathy. A possibility
exists that this variant could contribute to small fiber involvement
in patient B:II-1. However, no small fiber involvement was docu-
mented in patient B:II-2.

The third variant, c.380GNT in HSPB1 (NM_001540.3), predicting
a p.(Arg127Leu) amino acid change, was considered to be the patho-
genic variant in family B, because it was not found in any of the in-
vestigated SNP databases and a change from arginine to tryptophan
in the same codon has been previously described in a Belgian family
with dHMN [6], and in 4 Chinese families diagnosedwith CMT2 onset
between ages 35 and 60 where motor symptoms dominated over
sensory symptoms [28]. The variant was confirmed by Sanger se-
quencing and it segregated with the disease phenotype as the
index patient's healthy son and paternal uncle were both negative.
The father of the index patient had reported symptoms consistent
with neuropathy but was already deceased and thus unavailable for
the study (Fig. 1B).
3.3. Truncated HSPB1 protein is stable and binds wild-type HSPB1

Variants leading to premature stop codons exert dominant negative
effects only if the mRNAs escape nonsense-mediated decay and the sta-
ble protein is expressed. We assessed the stability of the truncated
HSPB1 by SDS–PAGE on lysates of primary patient fibroblasts. While
the HSPB1R127L fibroblasts had a similar amount of full-length HSPB1
protein compared to control fibroblasts, the HSPB1ΔC-term fibroblasts
showed two bands reacting with anti-HSPB1, corresponding to the
full-length and truncated proteins (Fig. 2A).

HSPB1 dimers are known to be resistant to protein denaturation but
are dissociated by reducing agents [30]. We tested the abilities of the
mutant proteins to form dimers in patient cells using non-reducing
Western blot (Fig. 2B). The control and HSPB1R127L fibroblasts showed
bands corresponding to the 27 kDa monomer and the ~50 kDa dimer.
However, in the overexposed blot the HSPB1ΔC-term fibroblasts showed
two additional bands between the normal size monomer and the
dimer. These bands presumably corresponded to dimers formed by a
wild type and a truncated protein, and by two truncated proteins, re-
spectively. The total abundance of wild type HSPB1 dimer was close to
the expected 25% if the HSPB1ΔC-term protein binds HSPB1WT protein in-
discriminately. No larger bands were detected above 50 kDa, consistent
with higher order multimers being susceptible to denaturation. These
results suggest that the HSPB1ΔC-term exerts a dominant negative effect
by binding the HSPB1WT protein thus strongly decreasing the abun-
dance of wild type dimer.



Fig. 2. Stability and dimerization of the truncated protein. Lysates from primary fibroblasts
were analyzed by Western blotting and immunodetection with anti-HSPB1 antibody.
(A) Shown is a representative blot form control (C), HSPB1R127L (P2) and HSPB1ΔC-term

(P1) fibroblasts. The wild type HSPB1 protein of 27 kDa size is detected in all samples. In
HSPB1ΔC-term fibroblasts an additional band about 23 kDa in size, corresponding to the
truncated protein, is observed. (B) Western blots under non-reducing conditions were
performed to detect HSPB1 dimers. At normal exposure the control fibroblasts (C1–3)
show a band at ~27 kDa corresponding to the wild type monomer and at ~50 kDa corre-
sponding to the wild type dimer. The HSPB1R127L fibroblasts (P2) are similar to wild type.
In HSPB1ΔC-term fibroblasts (P1), the ~27 kDamonomer and ~50 kDa dimer can be detect-
ed, but overexposure of the same blot shows two additional fainter bands (arrowheads)
corresponding to dimers formed by wild type and truncated protein or two truncated
proteins.
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3.4. Truncated HSPB1 impairs tolerance to heat without altering nuclear
translocation or gene expression

Next we assessed the effect of HSPB1 mutations on heat tolerance.
Continuous cellmonitoringwas used to observe the growth of thefibro-
blasts under normal conditions and after heat stress (Fig. 3A). Quantifi-
cation showed that the growth rates of patient and control fibroblasts
were equal at normal temperature (Fig. 3B). Cells were then subjected
to 45 °C for 2 h, washed and followed for a further 48 h. In HSPB1R127L

and HSPB1ΔC-term fibroblasts the proportion of cells dying from heat
stress was greater, and the growth rate after heat stress significantly
slower than in control fibroblasts (Fig. 4C). The impairment was more
severe in HSPB1ΔC-term than in HSPB1R127L fibroblasts.

HSPB1 is known to translocate to the nucleus upon heat stress [19].
We used immunocytochemistry and Western blotting to confirm the
nuclear translocation of HSPB1 (Fig. 4A). Since the HSPB1ΔC-term protein
can be discriminated from HSPB1WT protein on Western blot, we were
able to demonstrate that the truncated protein was enriched in the nu-
clear fraction upon heat stress (Fig. 4B).

As the HSPB1ΔC-term protein translocated to the nucleus, we asked
whether it interfered with the global gene expression response upon
heat stress by comparing the gene expression alterations in control
and HSPB1ΔC-term fibroblasts after a short heat treatment (30 min).
Pathway analysis of genes upregulated at least 25% showed that the
most significantly upregulated pathways were related to heat stress re-
sponse both in patient and control cells (Fig. 5) and that the most in-
duced genes in both cell lines were members of the heat shock
response pathway. This result suggested that the impaired heat toler-
ance of patient cells was not caused by lack of compensatory alterations
in gene expression.

3.5. Truncated HSPB1 impairs tolerance to unfolded protein stress

To investigate the cells' tolerance to protein misfolding, we treated
the fibroblasts with canavanine, a naturally occurring analog of L-
arginine that incorporates into proteins and induces misfolding [52].
With canavanine treatment, dying cells with rounded morphology
were observed. In the HSPB1ΔC-term fibroblasts (Fig. 6A), the number
of cells with normal flat morphology decreased, and the number of
dying (rounded) cells increased (Fig. 6B), significantly more compared
to HSPB1R127L and control fibroblasts. This experiment demonstrated
that the HSPB1ΔC-term variant impaired the ability of cells to cope with
unfolded protein stress.

4. Discussion

HSPB1 has emerged as a common causative gene in neuropathy, par-
ticularly when motor symptoms predominate [3]. The mechanisms of
action of HSPB1 and other sHSPs are under intense study because of
their roles in protein quality control and numerous other physiologic
processes [4,53]. Understanding cell survival mechanisms in stress are
important for many conditions such as neurodegeneration and cancer,
and HSPB1 is an example of a protein with major significance for
these processes. Cancer cells can for example escape drug-induced
stress by regulating HSPB1 [54] and Parkinson's disease-related protein
aggregation can be prevented by HSPB1 overexpression [55]. In this
study we have characterized the molecular consequences of two new
neuropathy-related HSPB1 variants in primary patient cells. The
HSPB1ΔC-term is of particular interest since the mutation precisely ab-
lates the C-terminus, whose function is poorly understood, but may be
critical for defining the specific functions of this particular sHSP.

Clinically, our patients displayed similar features as have been de-
scribed in earlier cases of HSPB1-related neuropathy. The symptoms
and signs supported a predominantly motor manifestation that was
stronger in the lower extremities. However, there was also a clear sen-
sory component, which was confirmed by ENMG and QST in two pa-
tients. In the third patient, sensory testing was normal but she was
examined at an earlier age than the others and the development of sen-
sory involvement later in her life is possible. The QST measurements
also indicated that small fiber involvement may be found in HSPB1-
related neuropathy. The motor-predominant phenotype with sensory
involvement of our HSPB1ΔC-term patient resembles the previously re-
ported p.(Glu175*) family [27].

Molecular consequences of several HSPB1 missense mutants have
previously been addressed in overexpression studies using either
immortalized cell lines or primary neuronal cells from rodents [30,31,
33,56]. The use of primary patient fibroblasts in our study adds new un-
derstanding of the in vivo consequences of mutant proteins in cells
expressing HSPB1 on physiologic endogenous levels, which is highly
relevant when studying dominant defects.We showed that the truncat-
ed HSPB1 was stable in the patient cells, suggesting that the c.505delA
mRNA had escaped nonsense-mediated decay, which is possible for
premature stop codons occurring in the last exon of a gene.

Under normal conditionsHSPB1 formsdimers and higher order olig-
omers up to 800 kDa in size. Oligomeric structure is regulated by post-
translational modifications [4]. The dimer has been suggested to be the
minimal structural unit of HSPB1 oligomers [57,58], and dimerization is



Fig. 3.Cell growth and survival after heat stress. The growth of thefibroblastswasmonitored under normal culture conditions. Then the cellswere subjected to 45 °C for 2 h (HS), followed
bywashing out of floating dead cells and automated cell monitoring for 48 h. (A) Representative images are shown for each condition in control, HSPB1R127L and HSPB1ΔC-term fibroblasts.
Based on cell morphology, the control and HSPB1R127L cells had mostly recovered 48 h after heat treatment. (B) Under normal conditions, cell growth of all three lines was identical.
(C) After heat stress (HS, arrow) cell survival and recovery of HSPB1R127L and HSPB1ΔC-term fibroblasts were worse than of control. The impairment was significantly more marked in
HSPB1ΔC-term fibroblasts compared to HSPB1R127L (P b 0.0001). Asterisks denotes significant differences compared to control fibroblasts *P b 0.01, **P b 0.0001 (two-way ANOVA).
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dependent on the ACD [11]. The previously discovered ACD mutant
HSPB1R127W showed decreased dimerization when overexpressed in
neuroblastoma cells [30]. In our HSPB1R127L fibroblasts, the amount
of HSPB1 dimer under non-reducing conditions was not reduced, al-
though the functionality of the dimer could have been affected. A possi-
ble explanation for the discrepancy is the different experimental setup
regarding the cell type and expression level of the mutant. However,
since HSPB1R127L and HSPB1WT are of identical size and indistinguish-
able on Western blot, we cannot exclude that most of the observed
~50 kDa dimer consists of HSPB1WT. In HSPB1ΔC-term fibroblasts we de-
tected bands corresponding to all possible combinations of HSPB1 di-
mers. This showed that HSPB1ΔC-term bound the wild type protein,
suggesting a dominant negative effect that could contribute to the
neuropathy phenotype. The effect of C-terminal truncations on HSPB1
dimerization have not been reported previously, but the overexpressed
C-terminal missense variant HSPB1P182L was similarly found to form
dimers with both itself and HSPB1WT [30]. However, overexpressed
HSPB1P182L in mouse primary cortical neurons formed insoluble intra-
cellular aggregates [31], which were not evident upon immunofluores-
cence in our fibroblasts. Therefore, the pathogenic mechanisms may
differ between truncations and missense variants of the C-terminus.

The functions of sHSPs converge on a themeof protection against ex-
ternal stress, e.g. heat, oxidative stress, heavymetals and ischemia. Heat
is a generalized stressor causing protein misfolding and derangements
to a host of functions, including direct effects on membranes, cytoskel-
eton and the cell cycle [59]. The 10 human sHSPs differ from the large



Fig. 4. Nuclear translocation of HSPB1. (A) Immunocytochemistry of primary fibroblasts
using the anti-HSPB1 antibody (green) showed that part of the cytoplasmic protein trans-
locates to the nucleus in 45 °C in control (WT), HSPB1ΔC-term and HSPB1R127L fibroblasts.
Nuclei are highlighted with dotted lines. Bars = 20 μm. (B) Nuclear enrichment was per-
formed on cells at 45 °C, followed byWestern blotting to detect HSPB1. HistoneH3 protein
was detected as a nuclear loading control, and GAPDH as a cytoplasmic loading control.
The abundance of HSPB1 was strongly increased in the nucleus (Nucl) compared to cyto-
plasm (Cyt) at 45 °C. Note that the HSPB1ΔC-term protein is detectable and concentrated in
the nucleus following heat stress, similar to the wild type protein.

Fig. 5. Gene expression changes in response to heat stress. Control and HSPB1ΔC-term (pa-
tient) fibroblasts were treated by exposure to 45 °C for 30min and a gene expression mi-
croarray was used to measure the alterations in gene expression between treated and
untreated cells. Genes that were upregulated by at least 25% in both control and patient
cells are shown and categorized into biological pathways. The results show that the
early transcriptional response to heat was not altered in the HSPB1ΔC-term fibroblasts. As-
terisk indicates p-value b 0.05.
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heat shock proteinsHSP70 andHSP90, since they do not have an ATPase
domain and cannot actively refoldmisfolded proteins. Instead, theymay
operate by bindingmisfolded proteins to keep them in a refolding com-
petent state [4]. HSPB1 binds denaturing proteins and prevents the for-
mation of toxic protein aggregates [53]. We demonstrated decreased
heat tolerance in the fibroblast lines fromboth patients, but the cell sur-
vival and recovery of cell morphology after the heat stress was signifi-
cantly worse for HSPB1ΔC-term cells. This suggested impairment in the
ability to copewith cellular stress, particularly for the truncating variant.

Nuclear translocation of HSPB1 at high temperature has been de-
scribed [19]. However, the function of the protein in the nucleus is not
known.We showed that HSPB1ΔC-term translocated to the nucleus in re-
sponse to heat treatment and thus the decreased heat stress tolerance of
the patient cells was not caused by defective nuclear translocation.
Moreover, expression of the same genes of the heat shock pathway
was induced in patient and control cells in response to 30 min of heat
treatment, indicating that the C-terminal truncation did not interfere
with the early induction of heat stress-related genes. HSPB1 may have
a chaperoning function of misfolded proteins in the nucleus instead of
directly regulating gene expression. The major morphological changes
and cell death observed in HSPB1ΔC-term fibroblasts after 2 h of heat
stress were likely caused by direct denaturing effects on proteins,
which the truncated HSPB1 was unable to counteract.

Tomore precisely pinpoint whether impaired stress tolerance in the
patient cells was specifically related to defective handling of misfolded
proteins, we treated cells with the arginine analog canavanine.
Canavanine incorporates into polypeptide chains in place of arginine
and induces protein misfolding [60]. The level of protein misfolding
induced by limited doses of canavanine is small compared to high
temperatures [61], and may resemble more closely what peripheral
neurons encounter during normal life. As expected, the effect of
canavanine on cellswasmilder and progressive in contrast to the imme-
diate severe consequences of the heat treatment. The HSPB1R127L fibro-
blasts behaved largely as control cells during canavanine treatment.
However, the HSPB1ΔC-term fibroblasts suffered significantly more
from canavanine than the control cells. Canavanine treatment was not
associated with nuclear translocation in either control or patient cells
(data not shown), which further suggested that the pathologic mecha-
nism was cytoplasmic rather than nuclear. Collectively, these results
provide evidence for the C-terminus of HSPB1 being necessary for the
protein's ability to protect cells against misfolded proteins either by di-
rect chaperoning function or through the diminished amount of HSPB1
dimer, independent of nuclear translocation.

A limitation of our study is the small sample size, as only one
HSPB1ΔC-term patient and two HSPB1R127L patients were identified.
Collectively the known HSPB1 variants account for a significant portion
of CMT2 and dHMN [3], but gathering large genetically homogeneous
cohorts is difficult because individual disease variants are rare. Further
studies with genetically similar patients may be needed to investigate
the range of clinical variability related to truncating and missense vari-
ants inHSPB1. Our study suggested that the truncated HSPB1ΔC-termwas
less tolerant to unfolded protein stress compared with the ACD mis-
sense variant HSPB1R127L. Interestingly, these molecular differences
did not correlate with the severity of the disease in our patients, who
all had rather late-onset of similar symptoms. Additional modifying
factors such as the genetic backgroundmay complicate the conclusions
regarding patient phenotype correlations, which is typical for the het-
erogeneous neuropathies.
5. Conclusion

We have shown that dominant HSPBR127L and HSPB1ΔC-term cause
peripheral neuropathy and impair the cell's tolerance to heat and/or



Fig. 6. Sensitivity to protein misfolding. The fibroblasts were exposed to canavanine and followed by continuous cell monitoring. Representative images are shown in (A) and quantifica-
tions in (B). After 24 h of canavanine treatment, HSPB1ΔC-termfibroblasts started to die (rounded cells, arrowheads) and after 48 h the samewas seen for control andHSPB1R127L fibroblasts.
Quantification showed that the number of cells with normal flatmorphology decreased in all cell lines but significantlymore in HSPB1ΔC-term fibroblasts. Conversely, the number of dying
(round) cells increased significantly more in HSPB1ΔC-term fibroblasts compared to the other cell lines. Asterisks denotes significant difference compared to control fibroblasts *P b 0.01,
**P b 0.0001 (two-way ANOVA).
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misfolded proteins. Accurate disease models are needed to fully under-
stand the pathogenesis of HSPB1-related neuropathy. Our study is the
first to use primary patient fibroblasts for this aim. An interesting future
possibility to investigate stress tolerance in neuronal cells is the devel-
opment of differentiated neurons from patient-derived induced plurip-
otent stem cells. Additionally, identification of new patients with the
same or similar mutations could allow more extensive testing of our
conclusions. Peripheral motor and sensory neurons may be exquisitely
sensitive to proteinmisfolding stress since they are post-mitotic and re-
quired to maintain cellular components over exceedingly large dis-
tances. When the stress response system is defective, exposure to
even subtle amounts of misfolded proteins or other stressors over a
life time could lead to the gradually progressive axonal degeneration
that is typical for patients with HSPB1mutations. Interventions that en-
hance cellular stress responses therefore offer attractive treatment
opportunities.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbacli.2015.03.002.
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