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Abstract

Magnetic resonance imaging (MRI) is an increasingly important tool for the diagnosis and 

treatment of prostate cancer. However, interpretation of MRI suffers from high inter-observer 

variability across radiologists, thereby contributing to missed clinically significant cancers, 

overdiagnosed low-risk cancers, and frequent false positives. Interpretation of MRI could be 

greatly improved by providing radiologists with an answer key that clearly shows cancer locations 

on MRI. Registration of histopathology images from patients who had radical prostatectomy to 

pre-operative MRI allows such mapping of ground truth cancer labels onto MRI. However, 

traditional MRI-histopathology registration approaches are computationally expensive and require 

careful choices of the cost function and registration hyperparameters. This paper presents 

ProsRegNet, a deep learning-based pipeline to accelerate and simplify MRI-histopathology image 

registration in prostate cancer. Our pipeline consists of image preprocessing, estimation of affine 

and deformable transformations by deep neural networks, and mapping cancer labels from 
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histopathology images onto MRI using estimated transformations. We trained our neural network 

using MR and histopathology images of 99 patients from our internal cohort (Cohort 1) and 

evaluated its performance using 53 patients from three different cohorts (an additional 12 from 

Cohort 1 and 41 from two public cohorts). Results show that our deep learning pipeline has 

achieved more accurate registration results and is at least 20 times faster than a state-of-the-art 

registration algorithm. This important advance will provide radiologists with highly accurate 

prostate MRI answer keys, thereby facilitating improvements in the detection of prostate cancer on 

MRI. Our code is freely available at https://github.com/pimed//ProsRegNet.

Keywords

Image registration; radiology-pathology fusion; MRI; Histopathology; prostate cancer; deep 
learning

1. Introduction

Prostate cancer is the second leading cause of cancer death and the most diagnosed cancer in 

men in the United States, with an estimated 33,330 deaths and 191,930 new cases in 2020 

(American Cancer Society 2020). Diagnosis, staging, and treatment planning of prostate 

cancer is increasingly assisted by magnetic resonance imaging (MRI) (Turkbey et al., 2012); 

Verma et al. (2012). The Prostate Imaging Reporting and Data System (PI-RADS) Weinreb 

et al. (2016) was developed to standardize the acquisition, interpretation, and reporting of 

prostate MRI. Despite the widespread adoption of PIRADS, the performance of MRI still 

suffers from high levels of variation across radiologists Sonn et al. (2019), reduced positive 

predictive value (27-58%) Westphalen et al. (2020), low inter-reader agreement (k = 

0.46-0.78) Ahmed et al. (2017), and large variations in reported sensitivity (58-96%) and 

specificity (23-87%) Ahmed et al. (2017). It also has been shown that high interobserver 

disagreement in prostate MRI significantly affects prostate biopsy practice including 

aborting planned biopsy and reduced number of region of interest samples Rosenzweig et al. 

(2020). One major barrier to improvement in MRI interpretation is the lack of a pathologic 

reference standard to provide radiologists detailed feedback about their performance. Image 

registration Shao et al. (2016) of the pre-surgical MRI with histopathology images after 

surgical resection of the prostate (radical prostatectomy) addresses this issue by enabling 

mapping of the extent of cancer from the ground-truth histopathology images onto the MRI. 

Such mapping allows side-by-side comparison of the histopathology and MRI images, 

which can be use in the training of radiologists to improve their interpretation of MRI. 

Furthermore, accurate cancer labels achieved by image registration may facilitate the 

development of radiomic and deep learning approaches for early prostate cancer detection 

and risk stratification on pre-operative MRI Cao et al. (2019); Lovegrove et al. (2016); Wang 

et al. (2018); (Bhattacharya et al., 2020).

Several MRI-histopathology image registration approaches have been developed to account 

for elastic tissue deformation occurred during histological preparation inducing tissue 

fixation, sectioning, and mounting on histologic slides. Turkbey et al. developed patient-

specific 3D printed molds for the resected prostate that are designed based on the pre-
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operative MRI and allow sectioning of the prostate in-plane with the same slice thickness as 

MRI Turkbey et al. (2011). A radiologist will first carefully segment the edge of the prostate 

gland as well as indicate areas of suspected prostate cancer. From this segmentation, a 3D 

volume will be created, which is then imported into a modeling software to create a 

personalized mold such that the orientation of the prostate specimen is aligned with the 

original MRI to guide the gross sectioning of the ex vivo prostate to have exact slice 

correspondences with the MRI Priester et al. (2014). Several approaches Losnegård et al. 

(2018); Rusu et al. (2019); Wu et al. (2019) rely on patient-specific 3D printed molds to 

establish better histopathology and MRI slice correspondences in order to improve the 

registration of MRI and histopathology images. While some approaches work directly with 

MR and histopathology images alone, others require additional steps including a separate ex 
vivo MRI of the prostate Wu et al. (2019), fiducial markers Ward et al. (2012), or advanced 

image similarity metrics Chappelow et al. (2011); Li et al. (2017). Several pipelines have 

been developed for direct integration of MR and histopathology images by 3D 

histopathology volume reconstruction Losnegård et al. (2018); Rusu et al. (2019); Samavati 

et al. (2011); Stille et al. (2013), but most are time-consuming, computationally expensive, 

and can suffer from partial volume effects and artifacts due to large spacing between images.

Typically, a geometric transformation can be parameterized by either a few (affine) or a large 

number of (deformable) variables. Previous automated MRI-histopathology registration 

approaches estimate variables that encode geometric transformations by optimizing a cost 

function for tens or hundreds of iterations (Goubran et al., 2013, 2015); Rusu et al. (2017). 

Therefore, this optimization process is computationally expensive and can take several 

minutes to finish. Moreover, the estimated transformation is often sensitive to the choice of 

hyperparameters (e.g., the number of iterations and the cost function), making traditional 

registration approaches complex to set up and reducing their generalization.

To address this important gap, this paper presents a deep learning based pipeline for efficient 

MRI-histopathology registration. In the past few years, deep learning has been successfully 

used in many medical image registration problems. A deep learning based registration 

network can be considered as a function that takes two images, a fixed image and a moving 

image, as the input and directly outputs a unique transformation without requiring additional 

optimization. Many deep learning approaches (Balakrishnan et al., 2018, 2019); Dalca et al. 

(2018); Ghosal and Ray (2017); Krebs et al. (2019); Yang et al. (2017); Zhang (2018) 

assume that the fixed and moving images have already been aligned by affine registration 

and only focus on the deformable registration. However, the affine registration of MRI and 

histopathology images of the prostate is challenging since they are considerably different 

modalities while having different contents. Therefore, prior deformable registration 

approaches cannot be directly used for MRI histopathology registration where affine 

registration is a necessity due to large geometric changes of the prostate during histological 

preparation. Rocco et al. proposed a multi-stage deep learning framework (CNNGeometric) 

that can handle both affine and deformable deformations of natural images Rocco et al. 

(2017). Inspired by their study, we developed the ProsRegNet registration pipeline for affine 

and deformable registration of the MRI and histopathology images. Our registration pipeline 

includes preprocessing and postprocessing modules, and the registration network that 

estimates an affine transformation at the first stage and a more accurate thin-plate-spline 
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transformation at the second stage. Some other deep learning registration approaches can 

also jointly estimate the affine and deformable transformations de Vos et al. (2019); Shen et 

al. (2019). Similar to our ProsRegNet approach, the approach developed in de Vos et al. 

(2019) used a feature extraction network followed by a parameter estimation network. 

Unlike our approach, their model lacked the feature matching component which has been 

shown to increase the generalization capabilities of registration networks to unseen images 

Rocco et al. (2017). In our study, we will show that our ProsRegNet registration network 

trained with images from one cohort generalizes well to unseen images from other cohorts. 

Moreover, the models developed by (de Vos et al., 2019); Shen et al. (2019) were trained in 

an unsupervised manner using the normalized cross correlation, which can be unsuitable for 

MRI-histopathology registration as the intensities are not correlated. To our knowledge, we 

are the first to apply deep learning to the problem of MRI-histopathology registration of the 

prostate. We will demonstrate that our deep learning registration pipeline can achieve better 

registration accuracy than the state-of-the-art RAPSODI approach Rusu et al. (2020) while 

being much more computationally efficient and easier to use for non-experts users.

This paper has the following major contributions:

• We are the first to use deep learning to solve the challenging problem of 

registering MRI and histopathology images of the prostate.

• We avoid the shortcomings of multi-modal similarity measures for MRI-

histopathology registration by training our registration network with mono-

modal synthetic image pairs in an unsupervised manner using a mono-modal 

dissimilarity measure. During the testing, we applied our network to multi-modal 

image registration as the network has learned how to solve image registration 

problems irrespective of the image modalities.

• We improved the stability of the training by parameterizing the transformations 

using the sum of an identity transform and the estimated parameter vector scaled 

by a small weight.

• We trained our network with a large set of MRI and histopathology prostate 

images and evaluated our approach relative to the state-of-the-art traditional and 

deep learning registration methods.

• Our code is one of the very few freely available MRI-histopathology registration 

codes.

2. Materials and methods

2.1. Data acquisition

This study approved by the Institutional Review Board at Stanford University included 152 

subjects with biopsy-confirmed prostate cancer from three cohorts at different institutions. 

The first cohort consists of 111 patients who had a pre-operative MRI scan and underwent 

radical prostatectomy at Stanford University. The excised prostate was submitted for 

histological preparation and we used a patient-specific 3D printed mold to generate whole-

mount histopathology images that had slice-to-slice correspondences with the MRI. Experts 
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determined the correspondences between T2-weighted (T2-w) MRI and histopathology 

slices. The prostate, cancer, urethra, and other anatomic landmarks on histopathology 

images were manually segmented by an expert genitourinary pathologist. Two hundred fifty-

seven anatomic landmarks visible on both MRI and histopathology images, e.g., benign 

prostate hyperplasia nodules and ejaculatory ducts were chosen for a subset of 12 subjects 

from the first cohort. The second cohort consisted of 16 patients from the publicly available 

“Prostate Fused-MRI Pathology” dataset in The Cancer Imaging Archive (TCIA) [dataset] 

Madabhushi and Feldman (2016). Each patient had an MRI along with digitized 

histopathology images of the corresponding radical prostatectomy specimen. Each surgically 

excised prostate specimen was originally sectioned and quartered resulting in four images 

for each section. The four images were then digitally stitched together to produce a 

pseudowhole mount section. Annotations of cancer presence on the pseudo-whole mount 

sections were made by an expert pathologist. Slice correspondences were established 

between the individual T2-w MRI and stitched pseudo-whole mount sections by the program 

in Toth et al. (2014) and checked for accuracy by an expert pathologist and radiologist. The 

third cohort consisted of 25 patients from the publicly available TCIA “Prostate-MRI” 

dataset [dataset] Choyke et al. (2016). Each patient had a preoperative MRI and underwent a 

radical prostatectomy. A mold was generated from each MRI, and the prostatectomy 

specimen was first placed in the mold, then cut in the same plane as the MRI. The data was 

generated at the National Cancer Institute, Bethesda, Maryland, USA between 2008-2010. 

For all of the three cohorts, the prostate on each MRI scan was manually segmented and 

used in the registration procedure. The prostate segmentation serves to drive the alignment 

while the urethra and other anatomic landmarks were only used to evaluate the registration. 

We summarized details of datasets from the above three cohorts in Table 1.

2.2. State-of-the-art RAPSODI registration framework

We briefly summarize the state-of-the-art RAPSODI (Radiology pathology spatial open-

source multi-dimensional integration) framework for the registration of MRI and 

histopathology images Rusu et al. (2020). The RAPSODI approach assumes known slice 

correspondences between MRI and histopathology images, and starts with 3D reconstruction 

of the histopathology specimen by registering each histopathology slice to its adjacent slice. 

The purpose of the 3D reconstruction of the histopathology volume is to initialize the 

histopathology slices in the registration with the MRI. Then 2D rigid, affine and deformable 

transformations between each histopathology image and the corresponding T2-w MRI slice 

are estimated iteratively using gradient descent. The rigid and affine registrations use the 

prostate masks as the input and the sum of squared differences as the cost function. The 

deformable registration uses the images masked by the prostate segmentation as the input, 

free-from deformations as the deformation model and the Mattes mutual information as the 

cost function. Early stopping is used in the deformable registration to prevent overfitting. 

Compared to our deep learning registration approach, RAPSODI requires significant user 

input including careful choice of similarity metric and registration hyperparameters such as 

step size, and the number of iterations. The RAPSODI approach has been shown to be 

highly accurate and we will compare it with our deep learning registration pipeline.
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2.3. Deep learning ProsRegNet pipeline

We propose the ProsRegNet (Prostate Registration Network) pipeline to register T2-w MRI 

and histopathology images, which consists of image preprocessing, transformation 

estimation by deep neural networks, and postprocessing, as shown in Fig. 1.

2.3.1. Preprocessing—Mounting of tissue sections on glass slides can produce several 

significant artifacts, including tissue shrinkage, in-plane rotation and horizontal flipping, that 

will affect alignment with the corresponding MR images. We manually corrected for the 

gross rotation angle and determined whether horizontal flipping was present for each 

histopathology slice, as shown in IA in Fig. 1. We applied the same rotation and flip 

transformations to the binary mask of the prostate, cancer regions, urethra, and other regions 

of the prostate in the histopathology slice. A bounding box around the prostate mask was 

applied to extract prostate slices from the T2-w MRI, as shown in IB in Fig. 1. We 

normalized the intensity of each cropped MRI slice from 0 to 255. The histopathology and 

MRI images were multiplied by the corresponding prostate masks to facilitate the 

registration process. The resulting images IA and IB were then resampled to 240×240 before 

feeding into the registration neural networks. This preprocessing procedure has been applied 

to images going through the CNNGeometric and ProsRegNet networks.

2.3.2. Image registration neural networks—Both ProsRegNet and CNNGeometric 

registration networks consisted of feature extraction, feature matching, and transformation 

parameter estimation and utilized a two-stage registration architecture (see Fig. 2). In the 

first stage, an affine transformation was estimated to align the two images globally. In the 

second stage, the affine transformation is used as an initial transform to facilitate the 

estimation of a more accurate thin-plate spline (TPS) transformation. There are two major 

differences between our ProgRegNet model and the prior CNN Geometric model. First, our 

ProgRegNet model used image intensity differences to train the registration networks in an 

unsupervised manner, while CNNGeometric used a loss based on point location differences 

in a supervised training. Second, our ProsRegNet model improved the stability of the 

training by parameterizing the transformations using the sum of an identity transform and 

the estimated parameter vector scaled by a small weight, while CNNGeometric directly used 

the estimated parameter vector.

We use the same feature extraction and regression networks as in Rocco et al. (2017). The 

inputs to the geometric matching networks are a moving image IA and a fixed image IB. 

Those two images were passed through the same pre-trained feature extraction convolutional 

neural network (ResNet-101 He et al. (2016) network cropped at the third layer) to produce 

the corresponding feature maps fA and fB, respectively. Each feature map is an image of size 

(w, h) whose value at each voxel is a d-dimensional vector, where d is the number of 

features. The feature maps fA and fB were fed into a correlation layer followed by 

normalization. The correlation layer combines fA and fB into a single correlation map cAB of 

the same size. At each voxel location (i, j), cAB(i, j) is a vector of length wh whose k-th 

element is given by:
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cAB(i, j, k) = fB(i, j)T fA(ik, jk) (1)

where k = h( jk 1)+ik. The correlation map cAB was normalized using a rectified linear unit 

(ReLU) followed by a channel-wise L2-normalization. The resulting tentative 

correspondence map fAB was passed through a regression network to estimate parameters of 

the geometric transformation between IA and IB. The regression network consisted of two 

stacked layers, where each layer begins with a convolutional unit and is followed by batch 

normalization and ReLU. A final fully connected (FC) layer regresses the parameters of the 

geometric transform, as shown in Fig. 3.

The output of the regression network (θ) is a vector of 6 elements when performing affine 

registration. Unlike Rocco et al. (2017) that directly use θ = (θ1 , … ,θ6) as the affine 

matrix, we propose to use αθ + θId
aff, where α is a small number and θId

aff is the parameter 

vector for identity affine transform. To be more specific, the affine transformation associated 

with θ is given by:

ϕθ(x, y) =
1 + αθ1 αθ3
αθ4 1 + αθ5

x
y +

αθ3
αθ6

(2)

where (x, y) is any spatial location, and we choose α = 0.1 in this paper.

Using αθ + θId
aff instead of α as the affine matrix guarantees that the initial estimate of ϕθ 

during the network training is close to the identity map and thus improves the stability of our 

registration network. We parameterize the nonrigid transformations using a thin-plate spline 

grid of size 6x6 instead of 3 × 3 in Rocco et al. (2017) for more accurate registration. This 

requires θ to be a vector of 2 × 6 × 6 = 72 elements. Similarly, we use αθ + θId
aff instead of θ 

to parameterize the nonrigid transforms, where θId
aff is the parameter vector for the identity 

thin-plate spline transform.

Unlike Rocco et al. (2017) that uses the differences between the original and deformed 

coordinate locations (location matching error) as the loss function, we define the loss 

function as the sum of squared differences (SSD) between the fixed and the deformed image 

(since IA and IB are from the same modality during the training):

loss(θ) = ∑
i = 1

W
∑
i = 1

H
‖IA(i, J) − IB ∘ ϕθ(i, j)‖2

(3)

where ϕθ is the transformation parameterized by θ, and W and H are the width and height of 

the images. Since all MR and histopathology images have been masked during the 

preprocessing, our SSD cost can quickly drive the registration process during the training.

2.3.3. Postprocessing—After affine and deformable image registrations, the 

histopathology images and the prostate, urethra, anatomic landmarks, and cancer labels on 

the histopathology images were mapped to the corresponding MRI slices using the estimated 
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composite (affine + deformable) transformation. Although the histopathology images were 

resampled to have a size of 240×240, the deformed histopathology images still have the 

same size as the original histopathology images since we applied the estimated composite 

transformation directly to the original high-resolution histopathology images. For 

visualization purposes, sampling artifacts in the deformed images were removed by binary 

thresholding to set the intensity of pixels outside the prostate to be zero.

2.4. Training dataset

Since the ground truth spatial correspondences between the MRI and histopathology images 

are lacking, we trained our neural networks using uni-modal image pairs generated by 

synthetic transformations (Fig. 4). For each 2D image IA, we applied a simulated 

transformation ϕ to deform it into the image IB. The 3-tuple (IA, IB, ϕ) will be used as one 

training example. The transformation ϕ can be either an affine transformor a thin-plate spline 

transform. To guarantee the plausibility of the simulated transformations, the variables used 

to parameterize the transformations were randomly sampled from bounded intervals. When 

simulating the affine transformations, the rotation angle ranged from −10 degrees to +10 

degrees, the scaling coefficients ranged from 0.8 to 1.2, the shifting coefficients were within 

5% of the image size, and the shearing coefficients were within 5%. When simulating the 

thin-plate-spline transformations, the movement of each control point was within 5% of the 

image size. We chose these intervals as they represent typical transformation ranges we 

observed when using RAPSODI and were shown to be sufficiently wide to cover the 

transformations observed in our diverse patient cohorts. For the training, we used 1,390 MRI 

and histopathology images and the corresponding prostate masks of 99 patients from Cohort 

1. Prostate masks were used to train the affine registration network and masked MRI and 

histopathology images were used to train the deformable registration network. Although our 

registration neural network was trained with image pairs of the same modality, we will show 

that it can be generalized to the multi-modal registration of MRI and histopathology images 

for all three cohorts.

2.5. Experiments

We trained the neural networks on the NVIDIA GeForce RTX 2080 GPU (8GB memory, 

14000 MHz clock speed). We used an initial learning rate of 0.001, a learning rate decay of 

0.95, a batch size of 64, and the Adam optimizer Kingma and Ba (2017), for which both the 

affine and deformable registration networks were trained with 50 epochs. For each 

deformation model, the network with the minimum validation loss during the training was 

used in the testing.

In total, we experimented with three different approaches for registration of MRI and the 

corresponding histopathology images: the traditional RAPSODI registration framework 

Rusu et al. (2020) (RAPSODI), a prior deep learning registration framework developed by 

Rocco et al. Rocco et al. (2017) (CNNGeometric), and our deep learning ProsRegNet 

pipeline (ProsRegNet), We tested the RAPSODI approach on the Intel Core i9-9900K CPU 

(8-Core, 16-Thread, 3.6 GHz (5.0 GHz Turbo)) and tested the CNNGeometric and 

ProsRegNet approaches on the GeForce RTX 2080 GPU. In total, we used datasets of 53 
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prostate cancer patients (12 from Cohort 1, 16 from Cohort 2, and 25 from Cohort 3) to 

evaluate the performance of the above three registration approaches.

2.6. Evaluation metrics

The Dice coefficient, the Hausdorff distance, and the mean landmark error were used to 

evaluate the alignment accuracy for the deformed histopathology and the corresponding 

MRI images. The Dice coefficient measures the relative overlap between MA and MB, which 

is given by:

CD = 2 ∣ MA ∩ MB ∣
∣ MA + MB ∣ (4)

where MA denotes the deformed histopathology prostate mask, MB denotes corresponding 

MRI prostate mask, and denotes the cardinality (number of elements) of a set.

The Hausdorff distance measures how close the prostate boundaries are defined in A and B, 

which is given by:

dH = max sup
a ∈ MA

inf
b ∈ MB

‖a − b‖ sup
b ∈ MB

inf
a ∈ MA

(5)

where ∥·∥ is the standard L2 metric, sup represents the supremum, and inf represents the 

infimum.

The mean landmark error measures the accuracy of point-to-point correspondences found by 

image registration. Let ϕ denote the resulting transformation from image registration. Our 

experts labeled N landmark pairs in the fixed T2w MRI and the moving histopathology 

image, denoted by (p1 , p’1 ),…, (pN , p’N). Then the mean landmark error for the resulting 

transformation ϕ from image registration is given by:

dL = 1
N ∑

i = 1

N
‖pj − ϕ(pi)‖ (6)

We used an identical approach to evaluate the distance between urethra segmentation on 

MRI and the corresponding deformed urethra segmentation on histopathology images 

(urethra deviations). All evaluation measures were computed on a slice by slice basis in 2D 

and averaged across several slices to obtain per patient measures.

3. Results

Fig. 5 shows the training loss and validation loss curves of the ProsRegNet affine and 

deformable registration networks. From this Fig., we can see that the validation loss has 

converged at 50 epochs for both networks and there is no issue of overfitting. We also notice 

that we had a slight unrepresentative sample for the training and we except better 

performance if the networks were trained with a larger dataset.
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To evaluate the plausibility of the estimated geometric transformations, we used each of 

them to deform a 2D grid image. By investigating all deformed grid images, we conclude 

that the composite transformations estimated by our ProsRegNet network are smooth and 

biologically plausible. Fig. 6 shows a typical deformed grid image from each cohort.

3.1. Qualitative alignment accuracy

Fig. 7 shows the registration results of three patients with large cancerous regions (one from 

each cohort). The prostate boundaries on the MRI and the histopathology sections appeared 

well aligned for all three subjects, suggesting that the ProsRegNet pipeline achieved accurate 

global alignment of the prostate. Anatomic regions of the prostate on the MR and the 

histopathology images were also well aligned. Accurate alignment of anatomic regions 

indicates that the ProsRegNet pipeline has achieved promising alignment of local prostate 

features. The results in Fig. 7 demonstrate that our ProsRegNet pipeline generalizes across 

cohorts even if they were not part of the training, showing accurate registration for images 

from different cohorts acquired by different protocols. Our accurate alignment of the 

histopathology and MRI images suggests that we can carefully map the cancer labels in the 

histopathology images to the corresponding MRI slices using the estimated transformations.

3.2. Quantitative results

We evaluated various measures to assess the quality of alignment between the 

histopathology images and corresponding MRI slices. Those measures assess the overall 

alignment of the prostate (Dice coefficient), the distance between the prostate boundaries 

(Hausdorff Distance), and anatomic landmark deviation. Moreover, we also evaluated the 

execution time of the RAPSODI, CNNGeometric, and ProsRegNet approaches. Fig. 8 shows 

the box plots of the Dice Coefficient, Hausdorff distance, urethra deviation, and computation 

time of different approaches for all three cohorts. The results show that there is no 

significant difference (p-value > 0.05) between the Dice coefficient and the urethra deviation 

of the RAPSODI and ProsRegNet approaches for all three cohorts. Our ProsRegNet 

approach achieved significantly lower (p ≤ 0.05) Hausdorff distance than the RAPSODI 

approach for the second and the third cohorts. Our ProsRegNet approach has achieved 

significantly higher Dice coefficient and lower Hausdorff distance than the deep learning 

CNNGeometric approach for all three cohorts. Also, there is no significant difference 

between the urethra deviation of all three approaches for all cohorts. Notice that both our 

ProsRegNet and the CNNGeometric deep learning approaches were at least 20x faster to 

register the images than the iterative optimization performed by RAPSODI. In summary, the 

ProsRegNet pipeline has achieved better alignment near the prostate boundary than the 

RAPSODI approach while being several orders of magnitude faster, and it has also achieved 

better alignment of the overall shape and boundary of the prostate than prior CNNGeometric 

deep learning approach.

Table 2 summarizes the Dice coefficients for the whole prostate, Hausdorff distances for the 

prostate boundary, urethra deviations, and anatomic landmark errors after registration for the 

three cohorts. The results show that both the ProsRegNet and RAPSODI approaches have 

achieved a higher Dice Coefficient than the prior CNNGeometric approach. The high Dice 

coefficient indicates that our ProsRegNet pipeline can accurately align the overall shape and 
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edges of the prostate for all of the three cohorts. The results also show that the ProsRegNet 

pipeline achieved a lower Hausdorff distance than both the RAPSODI and CNNGeometric 

approaches. The low Hausdorff distance implies that our ProsRegNet pipeline can have a 

small registration error of no more than 2mm near the prostate boundary. No significant 

differences were found between the RAPSODI, ProsRegNet, and CNNGeometric 

approaches in terms of urethra deviation and landmark error. The urethra deviation and 

landmark error indicate that our ProsRegNet pipeline has an average registration error of no 

more than 3mm inside the prostate. It is notable that the average running time of the 

ProsRegNet and CNNGeometric approaches was 1-4 seconds, compared to 31-264 seconds 

of the state-of-the-art RAPSODI approach and compared to running times of 120-750 

seconds reported for other traditional approaches Li et al. (2017); (Losnegård et al., 2018).

3.3. Alignment of prostate cancers

One major goal of MRI-histopathology registration is to map the ground truth cancer labels 

from the histopathology images onto MRI. Here, we evaluate the accuracy of different 

approaches for registering cancerous regions using patients from the first cohort and the 

second cohorts. For the first cohort, two body imaging radiologists with more than five years 

of experience manually labeled regions of clinically significant prostate cancer on T2-w 

MRI of 35 patients. The following exclusion criterion was applied to handle inconsistency 

between the radiologists’ and pathologists’ annotations: (1) the size of two cancer labels of 

the same region differs by more than 100%, (2) there is no overlap between two cancer 

labels of the same region, (3) cancer labels are too tiny (less than 25 pixels). For the second 

cohort, the authors of the dataset have provided cancer labels on MRI by performing 

landmark-based registration of MRI and histopathology images. Table 3 shows the Dice 

coefficient and Hausdorff distance between cancer labels from the radiologists’ or landmark-

based registration and cancer labels achieved by each of the registration approaches. The 

results show that ProsRegNet achieved better alignment of the prostate cancer boundaries 

(Hausdorff distance) than RAPSODI and CNNGeometric for both cohorts. Although 

CNNGeometric achieved slightly higher Dice coefficient than RAPSODI and ProsRegNet 

for the second cohort, our ProsRegNet approach achieved the highest Dice coefficient for the 

first cohort. In summary, our ProsRegNet approach has achieved comparable or better 

alignments of cancerous regions relative to CNNGeometric and RAPSODI. Notice that the 

accuracy of our analysis may be compromised by inconsistency between the radiologist’s 

cancer labels and the pathologists’ cancer labels (first cohort), and also errors in landmark-

based registration (second cohort).

3.4. Other training schemes

In this section, we investigate two additional training schemes, one for ProsRegNet and the 

other one for CNNGeometric. For the first training scheme, we trained both the affine and 

deformable registration networks of ProsRegNet directly by the prostate masks of 99 

patients from the first cohort and tested the performance on 53 patients from three cohorts 

(see Table 4). Compared to results presented in Table 2, training and testing ProsRegNet 

with only prostate masks has improved the alignment of prostate boundaries, with Dice 

coefficient increased by 0.4%-1.0% and Hausdorff distance decreased by 13.4%-18.7%. 

However, this training scheme has also deteriorated the registration results inside the 
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prostate, with urethra deviation increased by 13.5%-25.7% and landmark error increased by 

24.6%. Those results show that training the ProsRegNet model with masked MRI and 

histopathology images facilitates the alignment of features inside the prostate. Since 

alignment of features inside the prostate is more important than alignment of the prostate 

boundaries, we do not recommend training and testing ProsRegNet only on the prostate 

masks.

For the second training scheme, we investigated the efficacy of training a multi-modal deep 

learning network on MRI-histopathology image pairs pre-aligned by RAPSODI. We chose 

the CNNGeometric model over the ProsRegNet model since the SSD loss function used by 

the ProsRegNet model cannot be directly used for multi-modal registration. Again, we 

trained the CNNGeometric model on MRI-histopathology image pairs of 99 patients from 

the first cohort and evaluated its performance using 53 patients from three cohorts (see Table 

4). shows the registration results of the multi-modal CNNGeometric network for the three 

cohorts. Compared to results in Table 2, the performance of the multi-modal CNNGeometric 

model is worse than the uni-modal ProsRegNet model for both the global and local 

alignment of the MRI and histopathology images. One factor that compromised the 

performance of the multi-modal CNNGeometric is that the MRI-histopathology image pairs 

used in the training are from RAPSODI registration and therefore do not have perfect spatial 

correspondences.

4. Discussion

Accurately aligning MRI with histopathology images provides a detailed answer key 

regarding precise cancer locations on MRI. As such, it has tremendous potential for 

improving the interpretation of prostate MRI and providing labeled imaging data to establish 

and validate prostate cancer detection models based on radiomics or machine learning 

methods Metzger et al. (2016). In this paper, we have developed the novel ProsRegNet deep 

learning approach for 2D registration of MRI and histopathology images. It is challenging to 

directly train a multi-modal network for registering MR and histopathology images due to 

the lack of either an effective loss function for unsupervised learning or MRI-histopathology 

image pairs with accurate spatial correspondences for supervised learning. We tackled this 

problem from a different perspective by training a uni-modal ProsRegNet network which 

learns how to combine high-level features in the MRI and histopathology images to solve 

image registration problems. The trained ProsRegNet network has the capabilities to solve 

uni-modal registration problems in the context of MRI and histopathology images and thus 

can be used to register the two modalities in a multi-modal manner. Our experiments and 

results provide empirical evidence that, although our ProsRegNet was trained with pairs of 

images from the same modality, it can be generalized to achieve very accurate MRI-

histopathology registration. This paper is the first attempt to apply deep learning to the 

registration of MRI and histopathology images of the prostate.

Our study is the largest prostate MRI-histopathology registration study, using 654 of pairs of 

histopathology and MRI slices of 152 prostate cancer patients from three different 

institutions and MRIs from three different manufactures. The wide range of parameters of 

synthetic transformations used during the training allowed ProgRegNet to accurately cover 
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large affine and deformable transformations observed in three different cohorts, which 

include MR images acquired with or without using an endorectal coil, as well as 

histopathology images acquired as whole mounts, quadrants or at low resolution. We showed 

that our ProsRegNet pipeline achieved a very high Dice coefficient (0.96-0.98), a very low 

Hausdorff distance (1.7-2.0mm), a relatively low urethra deviation (2.4-2.9mm) and a 

relatively low landmark error (2.7mm) compared to results reported in previous studies 

Chappelow et al. (2011); (Kalavagunta et al., 2015); Li et al. (2017); Losnegård et al. (2018); 

Park et al. (2008); Reynolds et al. (2015); Ward et al. (2012); Wu et al. (2019). Moreover, in 

a direct comparison of the state-of-the-art RAPSODI pipeline Rusu et al. (2020), we showed 

that ProsRegNet achieved slightly better performance while being 20x-60x faster. This 

allows our ProsRegNet approach to execute the histopathology-MRI registration in real-time 

interactive software, otherwise not possible with any previous method. By significantly 

speeding up the registration process, our approach can help to create a large dataset of 

labeled MRI using ground-truth histopathology images which is crucial for the training of 

prostate cancer detection methods on pre-operative MRI using machine learning.

Even recent deep learning cancer prediction studies Cao et al. (2019); Sumathipala et al. 

(2018) that use histopathology images as the reference, rely on cognitive alignment 

(mentally projecting the histopathology images onto the MRI) to create cancer labels on 

MRI. This time-consuming labeling is inaccurate and biases the labels towards visible extent 

of cancer on MRI (known to underestimate the real size of cancer Piert et al. (2018) and 

missing MRI-invisible lesions). Our ProsRegNet pipeline allows the efficient creation of 

labels on MRI with accurate borders, including MRI invisible lesions. In addition, once 

trained, our deep learning network is parameter-free when registering unseen pairs of MRI 

and histopathology images, alleviating the need of modifying registration hyperparameters, 

e.g. step size, number of iterations. By making the registration set up less complicated, our 

approach is more accessible to non-expert users than the traditional methods.

Although this study demonstrates promising results for MRI-histopathology registration, 

there are some limitations related to human input: prostate segmentation on MRI and 

histopathology images, gross rotation and flip of the histopathology images and identifying 

slice-to-slice correspondences. Our team is working on developing methods to automate 

these steps, yet they are beyond the scope of the current study. Nonetheless, our proposed 

work simplifies the registration step without requiring manual picking of landmarks or 

complex selection of features for multifeature scoring functions Chappelow et al. (2011); Li 

et al. (2017); Ward et al. (2012).

We have shown that our deep learning pipeline can achieve fast and accurate registration of 

the histopathology and MRI images. Accurate registration could improve radiologists 

interpretation of MRI by allowing side-by-side comparison of MR and histopathology 

images. Indeed, we use these side-by-side comparisons in a multidisciplinary prostate MRI 

tumor board at our institution. Accurate registration also allows mapping of the ground truth 

extent and grade of prostate cancer from histopathology images onto the corresponding 

preoperative MRI. Such accurate labels mapped from histopathology images on MRI will 

help develop and validate radiomic and machine learning approaches for detecting cancer 

locations within the prostate based on MRI to guide biopsies and focal treatment.
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5. Conclusion

We have developed a deep learning pipeline for efficient registration of MRI and 

histopathology images of the prostate for patients that underwent radical prostatectomy. The 

performance of the deep neural networks for aligning the MRI and histology is promising 

and slightly better than state-of-the-art registration approaches. Compared to traditional 

approaches that require significant user input (e.g., careful choice of registration parameters) 

and considerable computing time, our pipeline achieved very accurate and efficient 

alignment with less user input. The ease of use and speed make our pipeline attractive for 

clinical implementation to allow direct comparison of MR and histological images to 

improve radiologist accuracy in reading MRI. Furthermore, this pipeline could serve as a 

useful tool for image alignment in developing radiomic and deep learning approaches for 

early detection of prostate cancer.
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Fig. 1. 
Proposed pipeline for registration of MRI and histopathology images. The yellow rectangle 

highlights the prostate in the MRI slice. The preprocessed images IA and IB represent the 

moving and the fixed images, respectively. Images IA and IB are fed into the image 

registration neural network to estimate θ that represents the affine and nonrigid 

transformation parameters. Cancer labels (the red outlines) in the histopathology slice are 

then deformed into the MRI slice using the estimated transformations.
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Fig. 2. 
Two-stage registration framework using deep neural networks (Rocco et al., 2017). The first 

stage estimates an affine transform that globally aligns the two images. The second stage 

uses the affine transform as initialization to determine a thin-plate spline transform. 

Composing the two transforms gives the resulting correspondence map between IA and IB.
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Fig. 3. 
Regression network for estimating transformation parameters from the correspondence map 

fAB Rocco et al. (2017).
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Fig. 4. 
Generating training dataset by applying known transformations. IA is the original image, ϕ is 

either an affine or thin-plate spline transform, and IB is the deformed image by applying ϕ to 

IA. Each tuple (IA, IB, ϕ) is considered as one training example.
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Fig. 5. 
Training loss and validation loss curves of ProsRegNet affine and deformable registration 

networks.
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Fig. 6. 
Typical deformed grid images from ProsRegNet registration.
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Fig. 7. 
Registration results for three different subjects (one from each cohort) using the proposed 

ProsRegNet deep learning registration pipeline. The MRI slices were chosen as the fixed 

images. (Left) MRI, (Middle) registered histopathology image, (Right) MRI overlaid with 

registered histopathology image. Cancer labels from the histopathology images were 

mapped onto MRI using estimated transformations from image registration.
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Fig. 8. 
Box plots of different measures for the RAPSODI, CNNGeometric, and ProRegNet 

registration approaches of three cohorts. SS: statistically significant (p ≤ 0.05), NS: not 

significant (p > 0.05).
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Table 3

Accuracy of the RAPSODI, CNNGeometric, ProsRegNet approaches for aligning cancerous regions.

Dataset
Registration

Approach
Dice

Coefficient
Hausdorff

Distance (mm)

Cohort 1 RAPSODI 0.624 (± 0.12) 6.02 (± 2.78)

CNNGeometric 0.610 (± 0.11) 5.70 (± 2.22)

ProsRegNet 0.628 ( ± 0.10) 5.42 (± 2.32)

Cohort 2 RAPSODI 0.573 (± 0.13) 5.42 (± 2.00)

CNNGeometric 0.575 ( ± 0.12) 5.34 (± 2.14)

ProsRegNet 0.563 (±0.14) 4.87 (±1.53)
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