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Abstract: When changing surface wettability and nanostructure size, condensation behavior displays
distinct features. In this work, we investigated evaporation on a flat hydrophilic surface and
condensation on both hydrophilic and hydrophobic nanostructured surfaces at the nanoscale using
molecular dynamics simulations. The simulation results on hydrophilic surfaces indicated that larger
groove widths and heights produced more liquid argon atoms, a quicker temperature response,
and slower potential energy decline. These three characteristics closely relate to condensation areas
or rates, which are determined by groove width and height. For condensation heat transfer, when the
groove width was small, the change of groove height had little effect, while change of groove
height caused a significant variation in the heat flux with a large groove width. When the cold
wall was hydrophobic, the groove height became a significant impact factor, which caused no vapor
atoms to condense in the groove with a larger height. The potential energy decreased with the
increase of the groove height, which demonstrates a completely opposing trend when compared with
hydrophilic surfaces.
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1. Introduction

Both evaporation and condensation are common phase-change phenomena in daily life [1].
They are extensively used in various industrial fields, such as thermal management [2–6],
heat pipes [7–9], cooling water harvesting [10–12], and electrical devices [13,14]. Changing the surface’s
wettability is important in these applications, because different applications need distinct wettability
surfaces. With the development of ultrafine manufacturing technology, the size of microelectronic
devices, such as the integrated circuits inside cellphones and laptops, are becoming smaller and smaller.
Therefore, evaporation and condensation phenomena at the micronano scale have a large number of
applications in many aspects, and have become a widespread concern. Studying the heat transfer
mechanism at the nanometer scale can help with the rapid miniaturization of electronic equipment.

Molecular dynamics (MD) as a numerical calculation method can exhibit the evolution of the
interaction between atoms in the system over time at the nanoscale. Groups have conducted studies
regarding heat transfer involving evaporation and condensation at the micronano scale. For example,
Nagayama et al., [15] studied the effect of hydrophilic rectangular nanochannels on evaporation
rate. They found that the presence of nanostructures reduced the surface thermal resistance and
promoted the increase of the evaporation rate of ultrathin liquid film. Gao [16] quantitatively recorded
the condensation process of water vapor on flat and pillar-structured surfaces. Further studies
regarding the effect of the wettability on condensation and the phenomenon of heat transfer are needed.
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Hasan [17] investigated the effects of wettability (hydrophilicity and hydrophobicity) and surface
materials on the evaporation of thin liquids on flat plates. The results showed that the surface of
Al was the least effective in conducting heat, and Pt and Ag showed similar characteristics in both
wettability conditions. The hydrophilic surface was more conducive to heat transfer. Ou [18] simulated
the condensation of water vapor molecules on a mica substrate. Due to the inhomogeneity of the
mica surface, the condensed liquid film was divided into two distinct adlayers, which illustrated
that different wettability surfaces caused significant differences in condensation. Niu [19] studied
condensation heat transfer on flat surfaces with different wettabilities, and the results proved that
the condensation efficiency of a hydrophilic surface was higher than that of a hydrophobic surface.
Both [18,19] focused their attention on the influence of the wettability, and ignored the effect of the
microstructure. Hiratsuka [20] included three condensation modes by changing the interface wettability
and microstructure height, i.e., drop, film, and discharge. Wang [21] demonstrated the combined
effects of electric field strength and wettability on the condensation process. They found that the
condensation rate decreased with the increase of the electric field strength and the condensation heat
transfer was enhanced when the surface was more hydrophilic. Therefore, MD simulations have
received widespread attention, as they are regarded as a valid method to solve the problem of heat
transfer at the nanoscale.

All these papers refer to studies of either only the process of evaporation, or only the process
of condensation. However, many applications attempt to combine these two processes together,
such as the cooling of microelectronics [22], water desalination [23], and medical therapy [24,25].
Thus, triple-phase systems, which contain both evaporation and condensation, have received increasing
attention. Recently, studies focused on a process with rapid boiling and condensing or evaporating
and condensing processes. Yu [26] used MD to simulate the evaporation and condensation process of
liquid argon in a cuboid composed of two platinum surfaces. Li [27] investigated evaporation and
explosive boiling on a hydrophilic surface at two temperatures (130 and 300 K). Evaporation is more
conducive to heat transfer, but explosive boiling will result in less heat for the phase change heat
transfer. In addition, nanostructures promote condensation heat transfer, and the width of cuboid
nanostructures will affect the condensation heat transfer. There exists a certain width to achieve the best
performance of the condensation process. Yi [28] simulated the evaporation process of liquid argon film
on two temperature surfaces (150 and 300 K) and the condensation process after the wall temperature
dropped. They proved that the microevaporation process of the liquid film was consistent with that in
the macroprocess. Kuri [29] simulated evaporation and condensation in a confined nanospace bound
by a nanostructure in three different configurations for two different wall superheats, which were set
at 110 and 250 K. They compared the heat transportation from the hot wall to the cold wall at these
two heating temperatures with three nanostructured surfaces, and they demonstrated that the heat
transportation was less in the case of explosive boiling (250 K) compared with normal evaporation
(110 K). Liang [30] verified the Hertz–Knudsen Schrage equation by simulating the evaporation and
condensation of liquid argon on the surface of platinum. All these papers in this paragraph focused on
the dynamic movement of molecules and the influence of the heating temperature, and did not discuss
the effect of wettability on condensation.

Despite suggestions about heat transfer that were proposed in previous articles, an indepth study
of the dynamic and thermal mechanisms regarding evaporation and condensation at the nanoscale is
still lacking. Therefore, in this paper, by performing molecular dynamic simulation, we investigated
evaporation on a flat hydrophilic surface and condensation on both hydrophilic and hydrophobic
nanostructured surfaces at the nanoscale. The work is organized as follows: First, the simulation
model and computational details are presented. Then, the effects of nanostructure size on hydrophilic
and hydrophobic surfaces condensation are revealed. The results are further analyzed by snapshots
of the atom trajectories, the number of liquid atoms, temperature, potential energy, and heat flux.
Finally, the findings obtained from this work are summarized.
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2. Simulation Method

The molecular dynamics (MD) simulations were performed using the largescale atomic/molecular
massively parallel simulator (LAMMPS) package [31] to build a simulation system. The software of
OVITO (GmbH, Germany) was used to display the visual graphs of the system and the atomic motion
and to analyze the MD simulation results. As shown in Figure 1 with perspective and front views,
a solid flat plate made of copper was placed at the bottom of the system, which was the heat source.
Argon as a working fluid was divided into two states of liquid and vapor and placed on the bottom
plate and middle region, respectively. At the top of the system was a nanostructured plate also made
of copper, and this was the condensing wall. Face centered cubic (FCC) atoms were adopted to model
the walls at two ends and the liquid/vapor working fluid with a lattice of 3.615, 5.744, and 36.251 Å.
A periodic boundary condition was adopted in the x and y directions with sizes of 7.35 × 7.35 nm,
whereas a rebound condition was applied in the z direction of 62.2 nm, which ensured that the total
energy of the system did not change.
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Figure 1. Schematic diagram of the (a) perspective and (b) orthographic views of the simulation domain.

For the copper walls at the two ends of the system, the outermost two layers were defined as the
fixed wall, to prevent the atoms flying away and plate deformation, and the remaining layers were
treated as a thermostat with a heating temperature of 130 K and a cooling temperature of 85 K using the
Nosé−Hoover thermostat [32,33]. For the liquid argon atoms, the film thickness was 3.6 nm with the
number of 4739 atoms. For the dispersed vapor argons, they filled between the liquid film and the upper
wall, with the number of 338 atoms. When the liquid layer was heated by the heat source, evaporation
was triggered, and new vapor argons moved to the middle region to mix with the original ones. Finally,
when the vapor argons arrived at the cold wall, condensation occurred. Here, the nanostructure grooves
for vapor condensation had three different widths in the x-direction at 1.8, 2.4, and 3.2 nm, and for every
width, three different heights of 0.8, 1.8, and 2.8 nm in the z-direction were constructed.

The interactions between Cu–Cu, Ar–Ar, and Cu–Ar are all described by Lennard-Jones
12−6 potentials with a cutoff distance of 11.9 Å, expressed as

Vi j = 4ε
[
(σ/r)12

− (σ/r)6
]

(1)

where rij is the distance between particles i and j (Å), ε is the minimum potential value (eV), and σ is
the particle spacing when the potential is zero (Å). The method of adjusting ε to obtain the distinctive
wettabilities is widely adopted in MD simulations [34–38]. Therefore, in this work, two kinds of
wettability for the condensation were studied. When εCu-Ar is 0.0065 eV, it represents the hydrophilic
surface, and when εCu-Ar is 0.0025 eV, it represents the hydrophobic surface. In addition, the heated
wall is hydrophilic with εCu-Ar = 0.0065 eV.
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After preparation of the initial configurations and interaction force fields, three consequent stages
were performed. The first was the energy minimization, which used the conjugate gradient algorithm,
with the potential energy and force stopping tolerance of 1.0 × 10−5 eV and 1.0 × 10−6 eV/Å, respectively,
and the number of the steps was 10,000. Then, the system was equilibrated in a constant number of
atoms, volume, and temperature (NVT) ensemble at 85 K for 0.8 ns. At the end of this stage, the copper
plate and argon atoms were all stable at the uniform temperature, and their energy maintained a
constant value. Therefore, during this stage, the system reached the steady state, preparing for
evaporation and condensation in the next step. Thus, in the third stage, the temperature of the bottom
copper plate suddenly improved to 130 K to heat the liquid argon film. A constant number of atoms,
volume, and energy (NVE) ensemble was applied to the liquid and vapor argon atoms to ensure that
they only absorbed energy from the heated wall and released energy to the cold wall. The upper
nanostructured plate was the same as the second stage with a constant temperature of 85 K. In the third
stage, the system was run for 5 ns. Throughout the above three stages of simulations, the time step
was set to the same value of 1 fs, and the velocity Verlet algorithm was used to solve the Newtonian
motion equations for each atom. The positions and velocities used in analysis in this work were stored
and calculated every 1000 time steps.

3. Results and Discussion

3.1. Effect of the Nanostructure Size on Hydrophilic Surface Condensation

Figure 2 exhibits the trajectories of the atoms for the whole system, where the bottom flat plate was
set as the heat source, and the nanostructured plate with the groove width (w) of 1.8 nm and the height (h)
of 0.8 and 2.8 nm was set as the cold source. As the temperature of the bottom plate improved to 130 K,
the temperature difference between the copper and liquid argon atoms induced evaporation, which made
new vapor argon atoms move to the upper position. Due to the thickness of the liquid film at 3.6 nm,
130 K could not reach its explosive boiling temperature. Thus, only the phenomenon of evaporation was
observed, which was consistent with the conclusion in our previous paper [39]. The new heated vapor
atoms with higher energy were more active, resulting in drastic collisions in the middle region. With the
proceeding of evaporation, most liquid atoms were heated up. These active and high energy atoms
continuously transferred energy through the collision, promoting vapor atoms in the middle region to
move to the top plate. When they arrived at the nanostructured plate, they released the energy to the cold
wall and finally condensed on it. Therefore, from the snapshots of Figure 2, we found that the liquid film
gradually moved from the bottom plate to the top plate. As the two plates were hydrophilic, there was
always a layer of argon atoms on the top plate at 0 ns and bottom plate at 5 ns. The condensation was
simultaneously observed in the groove and the flat areas.
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From the snapshots of Figure 2, it was difficult to determine the effect of nanostructure size on
condensation. To quantitatively illustrate the influence of the distinctive groove heights and widths,
the numbers of liquid argon atoms (N) were computed, as shown in Figure 3. For all the situations,
the liquid atoms dramatically decreased before 2 ns, and then slowly increased in the remaining time.
That was because, in the initial stage (<2 ns), evaporation was the dominant factor, which resulted in
the phase transition from liquid atoms contacting the heated wall, while, with the vapor atoms moving
towards the cold wall, condensation became the dominant factor in the later stage (>2 ns). Therefore,
more vapor atoms condensed and even exceeded the number of vapor atoms from evaporation. On the
other hand, due to the different dominant factors in these two stages, the influence of nanostructure
size in the initial stage was negligible. Thus, although the groove heights were different, the numbers
of liquid atoms were nearly the same. However, for the condensation dominant part, the number
of liquid atoms had an obvious discrepancy. For these three groove widths, the number of liquid
atoms with higher groove height (h = 2.8 nm) was always larger than that with a lower groove height
(h = 0.8 nm). This is because a nanostructure with a higher groove height will have more condensation
areas, and thus faster condensation leads to more liquid atoms. With the increase of groove width,
we found that the differences between them were marginal. This indicated that width had little effect on
the number of liquid atoms compared to height. Thus, to achieve a more obvious condensation effect,
adjusting the height of the nanostructure was more efficient than adjusting the width. The number of
liquid atoms affected the temperature of the argon atoms. Therefore, the effect of nanostructure size on
temperature of all the argon atoms is discussed in the next part.

By comparing both Figures 3 and 4, the trends of the curves were exactly opposite, which indicated
that a larger number of liquid atoms induced a lower temperature, and, conversely, a smaller number
of liquid atoms caused a higher temperature. In fact, the variation of temperature was attributed to
the processes of both evaporation and condensation. When the heated source with 130 K suddenly
acted on the liquid film placed on it, the high temperature brought about the evaporation and the
argon atoms were heated up immediately. Thus, the temperature dramatically increased in the initial
stage. As the evaporated argon atoms moved towards to the cold wall and condensed on it, the cooling
effect came in to play, which made the temperature slightly decrease in the later stage. The reason for
these two stages having distinct rates of change was that only evaporation occurred in the first stage,
while both condensation and evaporation took place in the second stage. At the final state, with most
vapor atoms finishing the condensation, the temperature was nearly equal to the initial temperature.
For the influence of the groove height, a larger height brought more condensation area, which led
to faster condensation, finally inducing a significant temperature decline. From Figure 4, we found
that a larger groove height (h = 2.8 nm) always contained the fastest decline and lowest temperature.
The smaller groove height (h = 0.8 nm) exhibited the slowest decline. On the other hand, similar to the
number of liquid atoms, the groove width difference also had little effect on the temperature (Figure 4).
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Figure 3. The statistical number of liquid argon atoms with three groove heights; from left to right,
the groove widths are (a) 1.8, (b) 2.4, and (c) 3.2 nm on hydrophilic surfaces.
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Figure 4. The temperature of argon atoms with three groove heights; from left to right, the groove
widths are (a) 1.8, (b) 2.4, and (c) 3.2 nm on hydrophilic surfaces.

For further investigation of the effect of nanostructures on condensation, we calculated the
potential energy (E) between argon atoms and the cold wall (Figure 5). Fundamentally speaking,
the vapor atoms condensed on the cold wall were determined by the attractive potential energy
between the atoms and the substrate. The situation of condensation and the liquid atom numbers
on nanostructured surfaces were influenced by the potential energy. Therefore, the values of the
potential energy and its changes were the basic reasons for the variations of the other indicators
(the number of liquid atoms, the temperature, and the heat flux). In particular, for studies on the
nanoscale, the interaction between molecules becomes more significant. The specific phenomenon,
processes, and results are all dominated by potential energy. Therefore, the effect of the potential energy
is significant. In general, potential energy shows a trend of gradually increasing and then remaining
basically unchanged over time, no matter what the geometric parameters of the nanostructure are.
That is because the vapor atoms gradually arrive at a cold wall and condense on it, inducing the
number of absorbed atoms to be larger. Thus, the attractive potential increases with the more liquid
atoms on the cold nanostructured plate. When the groove and flat surfaces are both covered by
argon atoms, the potential energy will not continue to increase as before. Even if the vapor atoms
sequentially condense, because the distance between the condensed atoms and the cold wall is too
large, the attractive potential is basically negligible. With the increase of the groove height, the time
it takes to achieve full coverage of the surface also increases. Therefore, from the three curves in
Figure 5, we found that the potential energy reached stability more slowly if the groove height was
larger. Similarly, when the groove width increased, the time also increased. By comparing these three
graphs, we made these conclusions.
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Figure 5. The potential energy between argon atoms and the cold wall with three groove heights and
widths of (a) 1.8, (b) 2.4, and (c) 3.2 nm on hydrophilic surfaces.

Figure 6 demonstrates the condensation heat transfer on distinctive nanostructured surfaces by
calculating the heat flux (H) at the region near the cold wall by 1 nm. As the vapor atoms with high
temperature condensed on the cold wall to release heat, the heat flux began to decrease in the initial
stage. When the statistical region was covered by argon liquid atoms, this area began to absorb heat
through those atoms that continued to condense on the upper part of the liquid film. Thus, the heat
flux exhibited an increasing trend in the second stage. For a small groove width (Figure 6a), only if
the height was large enough (2.8 nm), did the heat flux show an obvious distinction compared with
other two heights. With the increase of the groove width (Figure 6a,b), the difference between larger
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heights (1.8 and 2.8 nm) became smaller, otherwise, the distinction of the small height (0.8 nm) was
dramatic. This phenomenon can be attributed to the competition of groove height and width, as to
which is the dominant factor. For example, when the groove width was small (1.8 nm), the height
did not affect the heat flux for smaller ones (0.8 and 1.8 nm), which indicates that the width was the
dominant factor. However, when the groove width became larger, a slight change in height caused a
significant variation in the heat flux, that is to say, the height became the dominant factor.
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Figure 6. The heat flux at the region near the cold wall by 1 nm with three groove heights and widths
of (a) 1.8, (b) 2.4, and (c) 3.2 nm on hydrophilic surfaces.

3.2. Effect of Nanostructure Size on Hydrophobic Surface Condensation

When the wettability of the cold wall was hydrophobic, the condensation behavior also changed.
The snapshots of the atom trajectories for the whole system with nanostructure hydrophobic surfaces
are shown in Figure 7. The initial stage was the same as the situation of hydrophilic surfaces, in which
only evaporation occurred and the vapor atoms collided with each other in the middle region. However,
when the vapor atoms arrived at the cold wall, a different phenomenon was exhibited. As seen in
Figure 7, from 2 ns, condensation can be observed. Differently to the simultaneous condensation in
both the groove and flat areas for the hydrophilic nanostructure surface, condensation favored the flat
areas for the hydrophobic one. For small groove height (Figure 7a), once the condensed liquid film
reached a certain thickness on the left and right flat areas, these two parts merged into one through the
middle groove. Although the condensation process was different for the hydrophilic surface, the final
state was similar. However, for the large groove height (Figure 7b), the condensation only proceeded
on the flat areas. There were no condensed liquid atoms in the groove until the end of the condensation
process. This is clearly distinct to the situation of the hydrophilic nanostructured surface. Therefore,
it is necessary to conduct research regarding condensation on hydrophobic surfaces.
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Figure 7. Snapshots of the atom trajectories for nanostructures with a groove width of 2.4 nm and
heights of (a) 0.8 and (b) 2.8 nm on hydrophobic surfaces.
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According to Figures 3 and 8, we found that the overall trends of the number of liquid atoms for
both hydrophilic and hydrophobic surfaces were similar. One of the distinctions was that the final
numbers of liquid atoms for hydrophobic surfaces were all smaller than those for hydrophilic surfaces,
at approximately 1600 vs. 2100. One reason is that the adsorption capacity of argon atoms for the
hydrophobic surface is weaker, which will be further discussed in the next part (the analysis of the
potential energy), and another reason is the lack of condensation in the groove areas. Both these factors
contribute to the decrease in the number of liquid atoms. The difference between the small groove
height (0.8 nm) and larger groove heights (1.8 and 2.8 nm) became more obvious with larger groove
width (Figure 8b,c). This was because the groove areas had no condensation with the larger height but
still condensed with the small height, which can be seen in Figure 7. Therefore, the groove height was
a significant impact factor for hydrophobic surface condensation.
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Figure 8. The statistical number of liquid argon atoms with three groove heights and widths of (a) 1.8,
(b) 2.4, and (c) 3.2 nm on hydrophobic surfaces.

The variation of temperature (Figure 9) was also opposite to the number of liquid atoms, which was
consistent with the conclusion drawn from the hydrophilic surface condensation. Thus, the primary
cause for the change of temperature was again the competition between evaporation and condensation.
However, with the different numbers of condensed liquid atoms with smaller and higher groove
heights, more obvious temperature distinctions were shown in the first stage (<2 ns). On the other
hand, as the hydrophobic surface had a weaker adsorption capacity of argon atoms, a slighter slope of
the temperature drop was included in the second stage (>2 ns), which was compared to the temperature
on hydrophilic surfaces (Figure 4). Therefore, the wettability had an important influence on the argon
temperature for the whole system.
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Figure 9. The temperature of argon atoms with three groove heights and widths of (a) 1.8, (b) 2.4,
and (c) 3.2 nm on hydrophobic surfaces.

With the increase of the condensed liquid atoms, the potental energy gradually increased and
then remained stable on the hydrophobic surface (Figure 10), which exhibited a similar trend to the
situation of the hydrophilic surface (Figure 5). Surprisingly, through comparing these two figures,
the potential energies showed completely opposite trends on two wettability surfaces with the increase
of groove height. To analyze the reason for this special phenomenon, the snapshots of the evaporation
and condensation process for the whole system were studied carefully. Finally, we found that for the
small groove height (h = 0.8 nm) with the three groove widths, the condensed argon atoms covered the
grooves and flat areas, which indicated that more atoms were absorbed on the cold wall, inducing



Nanomaterials 2020, 10, 1831 9 of 11

a higher attractive potential. With the increase of the groove height, the condensed atoms in the
groove areas were decreased, and no condensation was observed for the height of 2.8 nm. Therefore,
the potential energy decreased with the increase of the groove height.
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Figure 10. The potential energy between argon atoms and the cold wall with three groove heights and
widths of (a) 1.8, (b) 2.4, and (c) 3.2 nm on hydrophobic surfaces.

4. Conclusions

We investigated evaporation on a flat hydrophilic surface and condensation on both hydrophilic
and hydrophobic nanostructured surfaces at the nanoscale using a molecular dynamics simulation.
Copper was chosen as the heat and cold source. Liquid and vapor argon atoms as the media of
heat transfer were used to fill between these two walls. Eighteen types of cases (including nine on
two wettability surfaces) were designed on the cold wall to study the influence of wettability and
nanostructure size on condensation. The snapshots of the system, number of liquid atoms, argon
temperature, potential energy, and heat flux were exhibited and analyzed.

The simulation results on hydrophilic surfaces indicated that the whole process could be divided
into two stages with 2 ns as the boundary. Throughout the research period, both the evaporation and
condensation processes affected the number of liquid atoms and argon temperature, and determining
which process had become the dominant factor was crucial to the system. The larger groove width
and height increased the condensation area, inducing more liquid atoms and a quicker temperature
response. With the increase of the groove height and width, the potential energy reached stability
more slowly. For the condensation heat transfer, when the groove width was small, the change of
groove height had little effect, while still causing a significant variation in the heat flux with a large
groove width. Compared to previous similar studies, this was the first study to combine the variation
of height and width of the nanostructure to investigate the effect on condensation heat transfer. For the
hydrophilic nanostructured surface, both the height and width affected the condensation heat transfer.

If the cold wall became hydrophobic, the condensation behavior also changed. One of the
strongest distinctions was that the groove height became a significant impact factor, which caused
no condensation with a larger height. As the adsorption capacity of argon atoms for a hydrophobic
surface is weaker, this also provides new findings and conclusions. The final numbers of liquid atoms
for hydrophobic surfaces were all smaller than those for hydrophilic surfaces. The difference between
the small groove height and larger groove height became more obvious with a larger groove width.
More clear temperature distinctions were shown in the first stage (<2 ns), and a slighter slope of
temperature drop occurred in the second stage (>2 ns), when compared to the temperatures with
hydrophilic surfaces. The potential energies decreased with the increase of the groove height, which
showed completely opposing trends compared with those on hydrophilic surfaces. As far as we know,
there are no previous studies on condensation on hydrophobic nanostructured surfaces. Therefore,
this investigation has significant potential for industrial applications. To better apply this research
in practice, we will expand the surface from a single groove to a series of microstructures in our
future work.
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