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Colistin-resistance mediated by mobilisable and plasmid-bornemcr genes has emerged

worldwide, threatening the efficacy of colistin, a last resort antibiotic increasingly used

for treating human invasive infections by multidrug-resistant or extensively drug-resistant

Enterobacteriaceae. In this study, we report the first evidence ofmcr-1-mediated colistin

resistance in four multidrug resistant (MDR) out of 324 Salmonella infantis from the

Italian antimicrobial resistance (AMR) monitoring (2001–2017) in broilers and broiler

meat. Two were also Extended Spectrum Beta-Lactamases (ESBL)-producing isolates.

Characterization by whole genome sequencing (WGS), located mcr-1.1 on an incX4

plasmid. Phylogenetic analysis of these isolates with selected Italian S. Infantis previously

isolated from animals, meat and human clinical cases with unknown epidemiological

relationship, demonstrated that ESBL-producing, mcr-1-positive isolates belonged to

the emerging pESI-like-positive-ESBL-producing clone described in Italy in 2015.

Keywords: colistin resistance,mcr genes, ESBL (Extended Spectrum Beta-Lactamases), plasmids, whole genome

sequencing, Salmonella Infantis, broilers, broiler meat

INTRODUCTION

Colistin-resistance mediated by mobilisable and plasmid-bornemcr genes, has emerged worldwide
in humans and food-producing animals, threatening the efficacy of colistin, a last resort
antibiotic of the polymyxin family, increasingly used for treating human invasive infections by
multidrug-resistant or extensively drug-resistant Enterobacteriaceae (Poirel et al., 2017). Salmonella
enterica serovar Infantis represent one of the top five Salmonella serovars involved in human
infections in Europe and the most frequent serovar detected in broilers (45.6%) and broiler meat
(47.4%) (EFSA, 2017). The increasing incidence of S. Infantis infections may be complicated by the
spread of MDR strains, such as the recent spread of MDR, ESBL-producing S. Infantis in broiler
chickens, broiler meat and humans. It is characterized by the presence of a conjugative pESI-like
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megaplasmid, firstly described in Israel in 2014 (Aviv et al.,
2014), and then in Italy in 2015 (Franco et al., 2015) and more
recently reported in Switzerland (Hindermann et al., 2017) and
United States (Tate et al., 2017).

In this study we report the first evidence of mcr-1-mediated
colistin resistance in four multidrug resistant (MDR) S. Infantis,
with two of them being also extended-spectrum cephalosporin-
resistant (ESC-R) and ESBL-producing, isolated from broilers
and broiler meat samples in the frame of the Italian antimicrobial
resistance (AMR) monitoring. The four isolates were in-
depth characterized by whole genome sequencing (WGS) and
bioinformatics analysis, including phylogenetic relationships
with previously characterized Italian S. Infantis belonging to the
pESI-like positive, Extended Spectrum Beta-Lactamases (ESBL)-
producing clone emerged in Italy.

MATERIALS AND METHODS

Isolates
Four multidrug resistant (MDR) S. Infantis, displaying a colistin
MIC value ≥ 4 mg/L, were detected among 324 S. Infantis
isolates collected in the frame of antimicrobial resistance (AMR)
monitoring activities conducted from 2001 to 2017 by the
National Reference Laboratory for Antimicrobial Resistance
(NRL-AR) and screened for antimicrobial susceptibility. The four
S. Infantis isolates originated from broilers (n = 2) and broiler
meat samples (n= 2) (Supplementary Table 1).

Antimicrobial Susceptibility Testing of
Salmonella Isolates
Antimicrobial Susceptibility testing was performed as minimum
inhibitory concentration (MIC) determination by broth
microdilution, using the EU consensus 96-well microtitre plates
(Trek Diagnostic Systems, Westlake, OH, USA). The results were
interpreted according to epidemiological cut-offs included in
the Annex A of the EU Decision 2013/652/EU1. Escherichia coli
ATCC 25922 was used as Quality Control strain.

Molecular Characterization
PCR-screening ofmcr genes groups (mcr-1,mcr-2,mcr-3,mcr-4,
and mcr-5) in all the four S. Infantis and ESBL/AmpC genes in
the two ESC-R isolates (16092401-41 pESI IncX4 and 16092401-
42 pESI IncX4, Table 1), was performed as previously reported
(Franco et al., 2015; Rebelo et al., 2018).

For WGS, the genomic DNA was extracted using the
QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) following
the manufacturer’s protocol. Libraries were prepared for
Illumina pair-end sequencing using the Illumina (Illumina,
Inc., San Diego, CA) NexteraXT R© Guide 150319425031942
and sequenced in a MiSeq sequencer (Illumina platform). Raw
sequence data of the four isolates were submitted to the European
Nucleotide Archive2 under the accession numbers reported in
Table 1.

1http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:

32013D0652&from=IT.
2http://www.ebi.ac.uk/ena.

Raw reads quality was improved by trimming with
TrimmomaticPE v0.22 (Bolger et al., 2014) with the following
parameters: Q30 as minimum quality required for maintaining
a base from the beginning and from the end of the read and
windows size of 10 with Q20 as average quality. Processed
reads were “de novo” assembled using SPAdes v3.11.0 (Nurk
et al., 2013) with the default parameters and in parallel with
the plasmid-option in order to obtain only contigs from the
present plasmids. Molecular characterization was performed by
analyzing the assemblies with different bioinformatics tools: CGE
tools for the seven genes Multilocus Sequence Typing (MLST
1.83) to assign Sequence Types (STs), ResFinder 3.04 (Zankari
et al., 2012) for the genetic basis of AMR; BLAST v2.2.31 (Zhang
et al., 2000) for the identification of plasmid incompatibility
groups, plasmidMLST, pESI-like markers, fitness and virulence
genes, using CGE5 and Genbank (Supplementary Table 2)

databases as references.
Identification of important mutations in CcdB (toxin-

antitoxin system) was carried out by comparing the ccdB gene
of each isolate against the Genbank database using BLAST on-
line tool and compared with the aminoacid sequence of the CcdB
reference protein from E. coli and Salmonella spp. (Di Cesare
et al., 2016).

A Single-Nucleotide Polymorphisms (SNPs) tree was built
using CSI Phylogeny 1.46 (Kaas et al., 2014). Basically, raw
reads from the four isolates and 12 S. Infantis previously studied
(Franco et al., 2015) were aligned against the reference genome S.
Infantis SINFA (LN649235), using BWA v. 0.7.2 (Li and Durbin,
2009). The depth at each mapped position was calculated using
genomeCoverageBed (BEDTools v. 2.16.2), (Quinlan and Hall,
2010). SNPs were called using “mpileup” (SAMTools v. 0.1.18)
(Li et al., 2009). SNPs were filtered out if the depth at the SNP
position was not at least 10x or at least 10% of the average depth
for the particular genome mapping and if the mapping quality
was below 25 or the SNP quality was below 30, calculated by BWA
and SAMTools, respectively. The pruning distance was set at 10
bp. Then, all genome mappings were compared and all positions
where SNPs was called in at least one mapping were validated
in all mappings and ignored if fails validation. The validation
includes both depth and Z-score for the SNP filtering. Maximum
Likelihood tree was created using FastTree (Price et al., 2010),
based on a total of 412 informative SNPs (Figure 1) and edited
with iTOL7 (Letunic and Bork, 2016). Clusters separation was
performed as previously described (Kaas et al., 2014; Franco et al.,
2015).

RESULTS

Antimicrobial Susceptibility Testing of
Salmonella Isolates
All the four isolates were colistin-resistant (MIC value≥ 4mg/L),
MDR and two of them also ESC-R (both isolates displayed

3https://cge.cbs.dtu.dk/services/MLST/.
4https://cge.cbs.dtu.dk/services/ResFinder/.
5https://cge.cbs.dtu.dk/services/PlasmidFinder/.
6https://cge.cbs.dtu.dk/services/CSIPhylogeny/.
7http://itol.embl.de/.
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FIGURE 1 | Single-nucleotide polymorphism (SNP)-based phylogeny of 16

selected ESC-resistant, ESBL-producing, and ESC-susceptible Salmonella

Infantis mainly from broiler chicken, broiler meat, and humans in Italy

(2006–2017). Colors of the isolate ID indicate the sample host: red: human;

purple: broiler meat; blue: broiler chicken; pink: pig; green: guinea fowl. Full

purple dot: presence of the mutation D87G in the gyrA gene; empty purple

dot: presence of the mutation S83Y in the gyrA gene. Full green dot: presence

of blaCTX−M−1 ESBL gene; Empty green dot: presence of blaCTX−M−65

ESBL gene. Full light blue dot: presence of mcr-1.1. Numbers in the figure

indicate the number of SNPs difference between two isolates or between

clusters. Two clusters were identified based on the number of SNPs: Cluster

A, with a difference of 1-18 SNPs between the isolates, and Cluster B with a

difference of 7 SNPs between the isolates. Isolates of Cluster A and Cluster B

differed at least by 42 SNPs. Details of the 16 isolates are indicated in the

Supplementary Table 1.

cefotaxime and ceftazidime MICs values = 32 mg/L and 4
mg/L, respectively) (Table 1). All displayed fluoroquinolone
microbiological resistance (MIC 0.25 mg/L).

Molecular Characterization
PCR-screening ofmcr genes groups revealed that all isolates were
mcr-1 positive, while the two ESC-R isolates tested positive also
for blaCTX−M−1 gene.

Details of genomic characteristics of the four isolates analyzed
by WGS are reported in Table 1. All the four S. Infantis,
belonged to the Sequence Type (ST) ST32 and presented the
same point mutation (D87G) in gyrA (Table 1) associated
with fluoroquinolones resistance, similarly to the previously
characterized Italian pESI-like-positive ESC-R isolates (Figure 1)
(Franco et al., 2015). All isolates harbored: a pESI-like plasmid,
characterized by the presence of oriV from IncP, the ardA 2, pilL
3, sogS 9, and trbA 21 pMLST alleles of the IncI1 plasmid, genes
coding for different toxin-antitoxin systems (CcdB/CcdA and
PemK/PemI) and the specific markers associated with virulence,
enhanced colonization capability and enhanced fitness previously
described in pESI-like-positive S. Infantis in Italy (Franco et al.,
2015) (Table 1); an IncX4 plasmid harboring the mcr-1.1 variant

and the genes coding for the HicAB toxin-antitoxin complex,
located in the same contig.

The study of the protein CcdB, from the above described
toxin-antitoxin system, revealed that all four isolates had the
same aminoacid sequence and presented a tryptophan aminoacid
in position 99, as the E. coli CcdB reference.

Regarding the acquired AMR profiles, all presented a very
similar AMR accessory gene content (Table 1). All displayed
resistance to colistin mediated by the mcr-1.1 variant and
resistance to tetracycline, sulfamethoxazole and trimethoprim
mediated by the pESI-like borne tet(A), sul1 and dfrA14 genes.
The two ESC-R isolates presented the same phenotype and
harbored blaCTX-M-1 in pESI-like plasmid-derived sequences
according to the plasmid-SPAdes output. Similarly, the two
ESC-S isolates presented the same gene content including the
cmlA1 gene, mediating chloramphenicol resistance (Table 1).

Regarding the phylogenetic analysis, the two ESC-R, ESBL-
producing (blaCTX-M-1), mcr-1-positive, S. Infantis (isolates
1 and 2) were grouped in the same cluster (Figure 1, Cluster
A), differing only by 4 to 18 SNPs from seven pESI-like-
positive, blaCTX−M−1 S. Infantis belonging to the emerging,
ESBL-producing clone mainly detected in the Italian broiler
chicken industry and infecting humans (Franco et al., 2015). The
two ESC-S, mcr-1-positive, S. Infantis were part of a different
cluster (Figure 1, Cluster B), being 42 SNPs the minimum
difference with isolates of Cluster A. The isolates of Cluster A
were separated at least by 109 SNPs from the remaining five
isolates, four representing earlier animal strains circulating in
Italy, and one single human blaCTX−M−65-positive clinical isolate
detected in a patient hospitalized in Italy in 2014 (Franco et al.,
2015).

DISCUSSION

In the present study, we report for the first time the isolation
and characterization of four MDR S. Infantis containing both
pESI-like megaplasmid and IncX4 plasmid harboring mcr-
1.1. Additionally, two of them were ESBL producers and,
as already previously demonstrated (Franco et al., 2015), the
blaCTX−M−1 gene was located in pESI-like plasmids, as confirmed
by comparing their contigs containing blaCTX−M−1 with the
same plasmid region of the eight ESBL-producing (CTX-M-
1 type), pESI-like-positive S. Infantis previously investigated
and reported in Italy (Franco et al., 2015). The two isolates
were also within the same cluster (4–18 SNPs difference)
that included isolates from broiler chicken, broiler meat and
human clinical cases with unknown epidemiological relationship,
all belonging to the ESBL-pESI-like-positive S. Infantis clone
previously described in Italy (Franco et al., 2015). The four
isolates also presented plasmidic genes coding for multiple Type
II toxin/antitoxin modules, as already reported for clones of
other virulent serovars of S. enterica, differently from less-
pathogenic ones which harbor none or low numbers of these
genetic elements (De la Cruz et al., 2013; Lobato-Márquez
et al., 2015). Previous studies have demonstrated the central
role of these gene loci in bacterial adaptability in response

Frontiers in Microbiology | www.frontiersin.org 4 August 2018 | Volume 9 | Article 1880

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Carfora et al. mcr-1-Positive-ESBL-Producing-Salmonella Infantis in Broilers

to stress conditions and in the maintenance of plasmids or
genomic islands (Goeders and Van Melderen, 2014), therefore,
in pathogenic Salmonellas they could contribute to enhancing
their fitness inside eukaryotic cells, also supporting the ecological
success of certain clones, such as the pESI-like-positive-ESBL-
producing S. Infantis clone, as described by Aviv et al. (2014).
In particular, the CcdA-CcdB complex has been reported to
contribute to the maintenance of plasmids or genomic islands
by activation of post-segregational killing mechanisms of the cell
(Goeders and Van Melderen, 2014), unless specific amino acid
substitutions in the ccdB sequence known to compromise in vitro
the lethal effect of CcdB in the absence of antitoxin CcdA, are
present (Lobato-Márquez et al., 2015). Differently from other
Salmonella serovars (Di Cesare et al., 2016), in this study, the
sequence analysis of the ccdB gene in all the four isolates revealed
the presence of the tryptophan residue in position 99, described
as essential for the toxicity of CcdB in E. coli (Loris et al.,
1999).

Overall, these findings are of great concern, since this
clone, has genetic traits of enhanced virulence, MDR and
fitness in the intensive farming system, and it is often ESBL-
producing (all traits mediated by the conjugative pESI-like
plasmid). Additionally, we have demonstrated in this study that
it has the attitude to acquire additional extra-chromosomal,
transferable resistance to last-resort drugs like colistin (Poirel
et al., 2017). As resulted from theWGS analysis, the characterized
mcr-1.1 gene was harbored by another conjugative plasmid
(IncX4), already involved in transferable mcr-mediated colistin
resistance in Enterobacteriaceae and other Salmonella serovars
in Italy (Carattoli et al., 2017; Alba et al., 2018) and other EU
countries (Borowiak et al., 2017; Garcia-Graells et al., 2018).
These characteristics inevitably lead to a further reduction of
therapeutic options for invasive infections in humans, including
in case of ESBL-producing, MDR Salmonella strains transmitted
through the food chain. Our results highlight the need of
implementation of risk-management strategies and actions to be

taken in order to: a. drastically reduce the amount of colistin used
in broilers in Italy as recommended in food-producing animals
by the European Medicines Agency (EMA, 2016: target: below
5 mg/PCU, and ideally at 1 mg/PCU); b. reduce the overall
prevalence of S. Infantis, and especially of the new emerging
ESBL-producing, MDR clone, within the Italian broiler chicken
industry.
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