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Abstract

Virus–platelet interplay is complex. Diverse virus types have been shown to associate with

numerous distinct platelet receptors. This association can benefit the virus or the host, and

thus the platelet is somewhat of a renegade. Evidence is accumulating to suggest that

viruses are capable of entering platelets. For at least one type of RNA virus (dengue virus),

the platelet has the necessary post-translational and packaging machinery required for

production of replicative viral progeny. As a facilitator of immunity, the platelet also

participates in eradicating the virus by direct and indirect mechanisms involving presenta-

tion of the pathogen to the innate and adaptive immune systems, thus enhancing inflamma-

tion by release of cytokines and other agonists. Virus-induced thrombocytopenia is caused

by tangential imbalance of thrombopoeisis, autoimmunity, and loss of platelet function and

integrity.

Introduction

The historical view that platelets solely participate as pri-

mary facilitators in hemostasis and thrombosis is now out-

dated. Reminiscent of roles played by their evolutionary

counterparts in primitive organisms (Delvaeye and Conway

2009), it is now well-established that platelets directly mod-

ulate cells of the immune system through receptor-mediated

cell contact with leukocytes and pathogens. In combination

with these interactions, external stimuli induce secretion of

cytokines and other cell modulators from platelet α-granules
and dense granules to produce additional indirect effects on

the cellular immune response. Moreover, in contrast to the

bygone paradigms, the platelet proteome is not static.

Platelets inherit from antecedent megakaryocytes a reper-

toire of mRNAs and the necessary post-transcriptional

machinery to alter their protein composition (Schubert

et al. 2014). Platelets survey their local environment,

reacting dynamically to change, and are thus pivotally posi-

tioned during the defense against pathogens (Semple et al.

2011). Here, we focus on their complex interactions with

viruses.

Many excellent review articles are available that recog-

nize the importance of platelets in virology. In some cases,

these highlight the effects of specific virus types (Chabert

et al. 2015; Hottz et al. 2011), whereas others are more

general (Assinger et al. 2014; Zapata et al. 2014). The

ultimate message is that viruses trigger a complexity of

biochemical and cellular events, often resulting in dimin-

ished platelet count, altered vascular permeability, and con-

sequent bleeding diathesis. In this review, we revisit these

ideas and add a temporal aspect to the emerging model. We

speculate that platelets are more than immune modulators

and “innocent” bystanders in the host response to viral

infection and that, in the case of viruses with an RNA

genome, platelets initially participate as a viral ally.
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Virus Binding to Platelets

Platelets are not considered to be a primary host cellular

target in virology. Therefore, to identify the receptors that

bind viruses, other cell types are usually investigated. The

virus–cell interaction is the key initiating step in the virus

lifecycle and a logical target for development of antiviral

agents. Based on the knowledge of receptors presented on

typically studied cells, predictions can be made about

whether platelets express the necessary receptors to facilitate

specific virus interactions. To help explain platelet-related

pathology as a result of infection of certain viruses, direct

binding has been reported. Here we loosely divide these

interactions on the basis of two principal hemostatic diseases

in which direct virus–platelet interactions could logically be

involved: thrombocytopenia and hemorrhagic fever (HF).

Thrombocytopenic Viruses When a foreign particle, such

as a virus, binds directly to the platelet surface, it is reasonable

to speculate that consequent immune recognition leads to a

reduction in platelet count. Thus, virus-induced thrombocyto-

penia has been the rationale for investigating interactions

between viruses and platelets. Table 1 lists viruses that correlate

with thrombocytopenia without HF. Representing at least six

virus families, these viruses range broadly in structure and

genome organization and, with the exception of adenoviruses,

are surrounded by a lipid bilayer envelope that contains both

host cell- and virus-derived elements. Therefore, an adaptive

immune response as a result of viral infection of platelets may

involve both virus antigens and co-epitopes originating from

virus and host factors, resulting in a reduced platelet count.

Receptors on the platelet that associate with viruses have been

identified and include integrins α5β1, αIIbβ3, and α5β3; the
lectin, dendritic cell-specific intercellular adhesion molecule-

3-grapping non-integrin (DC-SIGN); Toll-like receptors

(TLRs) 2 and 4; coxsackie-adenovirus receptor (CAR); com-

plement receptor 2 (CR2); C-X-C chemokine receptor type

4 (CXCR4); C-type lectin domain family 2 (CLEC-2); chemo-

kine C-C motif ligand (CCL); and glycoprotein (GP) VI.

Co-receptor systems involving more than one virus–platelet

interaction may also exist, as in human immunodeficiency

virus (HIV). In some cases, the platelet receptor is unknown

(e.g., SARS-CoV).

A variety of methods have been used to establish specific

receptors. Early inhibition studies involving adenovirus used

purified matrix proteins, adenovirus penton base proteins,

and synthetic peptides. Results suggested the importance of

the α5 and β1/β3 integrins for infection of several cell lines

(Stevenson et al. 1997; Wickham et al. 1993). Immuno- and

electron microscopy studies have shown that platelet αIIbβ3
is also important for the binding of adenovirus (Gupalo et al.

2013). Further cellular studies implicated CAR (Bergelson

et al. 1997) in the virus–platelet association and identified

this receptor on platelets by flow cytometry and RNA isola-

tion (Othman et al. 2007). Additional studies using immuno-

inhibition and arginyl–glycyl–aspartyl (RGD) motif peptide

mimics confirmed the importance of α5 integrins in adeno-

virus binding to platelets; however, they failed to detect

CAR expression (Shimony et al. 2009).

Hepatitis C virus (HCV) is regularly associatedwith throm-

bocytopenia (Weksler 2007). Platelet glycoprotein GPVI has

been implicated in HCV–platelet interaction through peptide

and immuno-inhibition studies (Pugliese et al. 2004), purified

protein assays, and virus binding assays (Zahn et al. 2006) and

was shown to be important for infection and dissemination

(Ariede et al. 2015; Zahn et al. 2006). DC-SIGN has also been

demonstrated to be involved in HCV binding.

As in infection of other cell types, HIV has been shown to

associatewith platelets through avariety of cell-surface receptors

(Youssefian et al. 2002). Platelet DC-SIGN, as identified by flow

cytometry, western blotting, and PCR, can recognize and bind

pathogen-associated molecular patterns (PAMPs) on HIV

because immuno-inhibition results in decreased binding

(Boukour et al. 2006; Chaipan et al. 2006). Using similar

immuno-inhibition and flow cytometric approaches, CLEC-

2 was identified as a platelet receptor for HIV (Chaipan et al.

2006). Additional putative receptors for HIV on platelets also

include CXCR4, CCL3, and CCL5 (Flaujac et al. 2010).

Platelet integrins appear to serve as the main binding part-

ner because they contain the common RGD motif. Therefore,

the presence of integrin-binding sequences in several virus

families suggests that integrins are important for platelet asso-

ciation and signaling, with effects leading to thrombocytope-

nia. Viral envelope glycoproteins can serve as sources of

PAMPs and facilitate virus–platelet interaction via TLRs.

This is suggested as a mechanism for cytomegalovirus

(CMV)-induced thrombocytopenia. Evidence implicating

direct binding and consequent cell stimulation as a result of

CMV-encoded glycoproteinB and glycoproteinH interactions

with TLR2 (Boehme et al. 2006) on platelets or neutrophils has

been obtained from immunoprecipitation and immuno-

inhibition studies of co-transfected human embryonic kidney

and normal fibroblast cells, respectively (Assinger et al. 2014).

Platelets also have on their surface the complement recep-

tor type 2 (CR2), which functions as a receptor for Epstein–

Barr virus (EBV), as shown by cell and immuno-inhibition

techniques (Ahmad and Menezes 1997; Hutt-Fletcher 2007).

Whether this also protects the virus from complement-

mediated innate immune clearance is not known.

Platelets have one class of receptor for the Fc domain of

antibodies, FcγRIIA. Once virus-directed antibodies are

generated by the adaptive immune response, “bridged”
interactions can be facilitated by platelet FcγRIIA, as

demonstrated for influenza A virus (IAV) (Boilard et al. 2014).
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Making vaccine development difficult, some secondary viral

infectionmechanisms exploit antibody-dependent enhancement;

examples are dengue virus (DENV) and HIV (Guzman et al.

2013). Although antibody-bridged binding to platelets has not

been specifically documented for many viruses, it is reasonable

to speculate that such viral immune complexes commonly form

interactions with platelets. Similar to engagement of other

receptors on the platelet surface, these multivalent adducts

could crosslink the FcγRIIA, causing platelet activation.

Hemorrhagic Fever Viruses Whereas the bleeding pheno-

type inherent to thrombocytopenia is considered to be

Table 1 Viruses correlating with thrombocytopenia

Viruses that induce only thrombocytopenia (TCP) and not hemorrhagic fever (HF) are listed. Those viruses that have an RNA genome (red) and
are permissible to entry may be replicated by platelets. Viruses encoded by a DNA genome (green) cannot be replicated by platelets

αNβNmember of the integrin family, ACE2 angiotensin converting enzyme 2 receptor, CAR coxsackie-adenovirus receptor, CCL chemokine (C-C

motif) ligand, CD cluster of differentiation, CLEC-2 C-type lectin domain family 2, CMV cytomegalovirus, CR complement receptor, CXCR4 C-

X-C chemokine receptor type 4, EBV Epstein-Barr virus, E or ENV envelope, DC-SIGN dendritic cell-specific intercellular adhesion molecule-3-

grapping non-integrin, FcγRII Fc gamma receptor II, gp or g glycoprotein, GPVI platelet glycoprotein VI, HA hemagglutin,HCV hepatitis virus C,

HIV human immune deficient virus, HSP heparan sulfate proteoglycan, HSV herpes simplex virus, ND data not available in the literature, RGD
arginine–glycine–aspartic acid peptide sequence, SARS severe acute respiratory syndrome, TLR Toll-like receptor, VZV varicella zoster virus, ?
proposed platelet receptor based on indirect cell studies
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predominantly caused by loss of platelets, the effects on

hemostasis leading to virus-induced HF are typically far

more complicated (Zapata et al. 2014). HF is characterized

by the loss of blood homeostasis, leading to increased vascular

permeability and bleeding, which can progress to shock. The

causative agents of viral HF are enveloped RNA viruses from

four families: Flaviviridae, Bunyaviridae, Arenaviridae, and

Filoviridae (Table 2). These families contain well-known spe-

cies such as Ebola and DENV that are featured as “headline

news” because of the devastating and graphic illnesses these

epidemic pathogens can cause. Some of the viruses are espe-

cially difficult to experimentally manipulate because of their

biohazard classification level and, consequently, relatively

little is known about their biochemistry. Nevertheless,

receptors for viruses known to cause viral HF have been

identified. Interestingly, these are similar to those receptors

characterized for viruses as predominantly thrombocytopenic:

β1/β3 integrins, lectins, and TLRs. Therefore, it is not

surprising that HF viruses can also result in thrombocytopenia.

Using specific antibody inhibition and virological plaque-

forming assays, DC-SIGN and heparan sulfate proteoglycan

(HSP) were demonstrated to be important in DENV binding

to platelets (Hottz et al. 2013b; Simon et al. 2015) Interest-

ingly, additional binding sites were expressed by pretreating

platelets with the agonist thrombin (Simon et al. 2015).

Whether these are the same type of receptor is unknown.

Employing a transduced cell model of infection, DC-SIGN

has also been shown to be involved as a receptor in Ebola

virus infection (Alvarez et al. 2002). Mutagenesis, binding,

and RNA interference experiments have implicated Axl

(Shimojima et al. 2007) and Tyro3 (Hunt et al. 2011) in

Ebola’s complex cell engagement mechanism. These

observations suggest that multiple receptors are occupied in

the Ebola–platelet interaction. Interestingly, similar platelet

surface molecules may bind Lassa virus, as indicated by the

identification of DC-SIGN, Axl, and Tyro3 as receptors using

cell binding and infection assays (Shimojima et al. 2012). In

addition, the results of immunoblot and competition assays

involving purified virus suggested that α-dystroglycan is a

Lassa virus receptor (Cao et al. 1998). Neutralizing antibody

experiments have implicated β3 integrins in the interaction

between cells infected with hantavirus and platelets

(Gavrilovskaya et al. 1999; Gavrilovskaya et al. 2010).

Although cell and platelet receptors remain elusive for

some HF viruses, it is possible that a particular receptor

may function across an individual virus family.

Virus–Platelet Interactions with Moderate

Pathology Although virus–platelet interactions leading to

life-threatening effects are well-known, there are also a number

of viruses that bind to platelets without serious hematological

pathology. Predominately from the Picornaviridae family,

these non-enveloped RNA viruses cause enteric, throat, and

nasal infections. Although not directly confirmed as analogous

functional receptors for picornavirus on platelets, β1 and β3
integrins are known to facilitate interactions with receptors on

other cell types. Studies following surface expression of

mutated proteins in CHO cells and antibody inhibition studies

have identified integrin α2β1 as a binding partner for both

rotavirus and echovirus (Coulson et al. 1997; Fleming et al.

2011). Utilizing an antigenic inhibition model and CHO trans-

fection, members of the β1 and β3 integrin families were

shown to mediate parechovirus infection (Triantafilou et al.

2000). This suggests the potential for binding recognition

with the integrin known to be expressed on the platelet surface.

It is somewhat puzzling that thrombocytopenia is not induced

because engagement of these receptors by other viruses is

consistent with this outcome. Consequently, integrins may not

be the only common denominator resulting in this virus-

mediated hemostatic disorder.

Virus-Induced Platelet Activation Platelets circulate in a

resting state and are stimulated by ligand–receptor engagement.

It is clear that protein and carbohydrate receptors on the surface

of platelets bind viruses from many distinct families (Tables 1,

2, and 3). Indeed, it is not surprising that the interactions known

to exist between viruses and platelet receptors can facilitate

platelet activation. Interactions with DENV grown in culture

have been shown to induce platelet shape changes, as moni-

tored by atomic force and electron microscopy (Ghosh et al.

2008).DENVhas also been demonstrated to cause the exposure

of P-selectin and procoagulant phospholipid on the platelet

surface (Hottz et al. 2013b; Simon et al. 2015), and to initiate

apoptosis-like markers, including caspase activation and mito-

chondrial permeability changes (Hottz et al. 2013b), Similarly,

HIV can induce microparticle release and other hallmarks of

platelet activation (Wang et al. 2011) that are related to plasma

virus levels (Mayne et al. 2012). Differential response to plate-

let agonists in HIV-infected individuals points to functional

changes in platelets, with implications for thrombosis (Satchell

et al. 2010). Interestingly, additional studies further implicated

HIV treatment strategies in the development of hyper-

responsive platelets (Falcinelli et al. 2013; Gresele et al.

2012). Although the direct effect of virus binding on platelet

activation has not been studied extensively, outside-in signal-

induced platelet changes are probably a general characteristic,

regardless of the type of virus.

Virus Replication by Platelets

Entry Cell binding is the first step used by all viruses to

exploit the host’s cellular replication apparatus. Without
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Table 2 Hemorrhagic fever viruses with putative platelets interactions

Viruses that cause hemorrhagic fever (HF) are listed. All known HF viruses are RNA viruses and therefore if entry into platelets is permissible,

they can be replicated. Dengue virus is the only one for which evidence of platelet-mediated replication has been investigated. HF viruses that

interact with platelets span many virus families, as highlighted by the different colors. Some of these viruses are also known to induce

thrombocytopenia (TCP) and, although data is not available in the literature (ND) for each, it cannot be excluded
αNβN member of the integrin family, α-DG alpha-dystroglycan, Axl Axl receptor tyrosine kinase, DC-SIGN dendritic cell-specific intercellular

adhesion molecule-3-grapping non-integrin, DCIR dendritic cell immunoreceptor, G or GP glycoprotein, HSP heparan sulfate proteoglycan,

LSIGN liver/lymph node-specific intercellular adhesion molecule-3-grapping non-integrin, NPC1 cholesterol transporter Niemann-Pick 1, Tyro
tyrosine-protein kinase receptor, ? proposed platelet receptor based on indirect cell studies
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question, platelets have that binding capacity. The second step

in the virus lifecycle is cell entry. Two general mechanisms of

cell entry can be initiated upon contact between an animal virus

and a target host cell. Most viruses traverse the plasma mem-

brane using the endocytic machinery intrinsic to the cell,

whereby the virus is engulfed by a vesicular structure for

intracellular transport (Ghigo 2010). Within these endosomal

compartments, low pH typically induces the release of genetic

contents from the viral nucleocapsid. Based on microscopic

morphology and biochemistry, nearly a dozen viral endocytosis

mechanisms have been discerned (Cossart and Helenius 2014;

Mercer et al. 2010). A second entry mechanism is used exclu-

sively by enveloped viruses. After receptor-mediated cell sur-

face binding, both virus- and host-encoded (Derry et al. 2007)

proteins on the virus envelope can engage to form a conforma-

tional fusion complex that merges the envelope and plasma

membrane.

In contrast to the known interactions between viruses and

platelets, little evidence of platelet entry has been documented.

Immunogold electron microscopy revealed that purified HIV

is trapped within platelet endosomal structures (Youssefian

et al. 2002). Another entry mechanism was suggested by

colocalization of purified adenovirus with the surface-

connected channels of the platelet open canalicular system

(Stone et al. 2007). Purified IAV and platelets enabled obser-

vation by electron microscopy of the surface association and

uptake of virus-like particles into vacuolar structures (Danon

et al. 1959). Furthermore, virus-like particles have been

reported in the platelets of DENV-infected patients, although

these difficult experiments lacked confirmation of virus

(Noisakran et al. 2009). Electron microscopy has also been

used to demonstrate encephalomyocarditis virus (EMCV)

uptake by platelets in amurinemodel of infection (Koupenova

et al. 2014). To confirm their endocytic capabilities, purified

platelets have been shown to engulf Staphylococcus aureus
(Youssefian et al. 2002) and liposomes that were engineered

for drug delivery (Chan et al. 2015). Although viral entry

mechanisms are not known, molecular details following the

transfer of synthetic particles into platelets suggests that sev-

eral simultaneous endocytotic pathways are involved (Chan

et al. 2015). These pathways may have dynamin dependence

as a common aspect and involve caveolae- or clathrin-

mediated uptake (Mercer et al. 2010). Thus, observations of

virus uptake by platelets are supported by the availability of

entry mechanisms for other particle types.

Viral Protein Synthesis Platelets associate with both

DNA- and RNA-containing viruses. Assuming successful

entry and release of genetic material into the platelet, only

RNA viruses replicate because platelets are DNA transcrip-

tion incompetent. The list of RNA viruses with known or

suspected platelet interactions is extensive and highlighted

in Tables 1, 2, and 3. Platelets contain all of the post-

transcriptional apparatus necessary for potential assembly

Table 3 Virus–platelet interactions with moderate hemostatic effects

Mostly from the Picornavirus family, certain viruses have been reported to interact with platelets without inducing thrombocytopenia (TCP) or
hemorrhagic fever (HF). These interactions may be indicative of the role of platelets in the innate immune response

αNβNmember of the integrin family, CAR coxsackie-adenovirus receptor, ND data not available in the literature, TLR Toll-like receptor, VP virus

protein, ? proposed platelet receptor based on indirect cell studies
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of an infectious RNA virus. To demonstrate that platelets

can translate viral RNA, purified platelets inoculated with

purified DENV have been shown to produce viral nonstruc-

tural protein 1 (NS1), as detected by Western blot analysis

(Simon et al. 2015). Because the DENV single-stranded

RNA (ssRNA) must first be translated as a polyprotein, the

finding that NS1 had the predicted molecular weight of the

mature protein implied that the functional DENV protease

complex (NS2B/NS3) was also properly translated and

processed by the platelets (Simon et al. 2015). Thus,

platelets not only facilitate the initial step in the virus

lifecycle, specific surface engagement (Tables 1, 2, and 3),

but also have the means to allow penetration of the virus into

the cytoplasm and occupation of the platelet translational

mechanism.

Virus Replication Replication of viral genomic material

has been followed as a surrogate for functional virus-

encoded polymerase generation. In these studies, the

mRNAs of all four serotypes of purified DENV in combina-

tion with purified platelets were enhanced (Simon et al.

2015), which substantiated an earlier preliminary report

(Onlamoon et al. 2010). These studies were extended using

virus plaque formation assays in combination with a transla-

tion inhibitor and demonstrated that the virus is properly

assembled, resulting in production of infectious progeny by

platelets (Simon et al. 2015). Interestingly, platelet units

stored under blood bank operating conditions also produced

new DENV (Sutherland et al. 2016). A generalized model is

presented in Fig. 1, highlighting the emerging concept that

platelets could be a reservoir for permissive RNA viruses.

The concept is based on (1) significant literature

demonstrating that many types of virus bind directly to

platelets; (2) several studies showing platelet entry; and

(3) generation of infectious DENV progeny by platelets.

Although evidence suggests that platelets could be

recruited by RNA viruses as conspirators for replication, it

is conceivable that only platelet subsets can fulfill this role.

As an example, ~20 % of platelets are positive for DC-SIGN

(Hottz et al. 2013b) and may account for binding to HIV,

DENV, HCV, Ebola, and LASV, which are known to use

DC-SIGN for cell surface attachment (Tables 1, 2, and 3).

Furthermore, TLR2 is found on a subset of ~14 % of

platelets and is involved in at least the CMV interaction

(Boehme et al. 2006). Some platelet-interacting viruses are

known to use co-receptor systems, of which candidate

receptors are found on platelets. But, whether these too are

distributed as subpopulations, like DC-SIGN and TLR2, has

not been evaluated. Of these functionally distinct classes of

platelets, only some may be permissive to entry and replica-

tion after binding.

Platelet Immune Response Against Viruses

Platelets may initially harbor and replicate certain viruses

(Simon et al. 2015). But, as known facilitators and

modulators of the immune response to pathogen invasion

(Jenne and Kubes 2015), platelets also competently present

bound viruses to leukocytes for clearance. To enhance this

innate immune recognition, the association of viruses with

platelets induces the release of cytokines, which causes local

infiltration of immune cells. Many platelet surface molecules

mediate leukocyte cross-talk and have an essential effect on

viral infection. The modulation of platelet function by

viruses, leading to their ultimate involvement in innate and

adaptive immunity, is summarized in Fig. 2.

Toll-Like Receptors TLRs (Cognasse et al. 2015) are a

family of innate immune regulators that recognize

pathogen-associated molecular patterns (PAMPs), which

are markers associated with viruses, bacteria, and fungi

that lead to neutrophil-mediated pathogen destruction.

Known to recognize ssRNA, typical of many platelet-

interacting viruses (Tables 1, 2, and 3), platelet TLR7 was

identified as vital for EMCV clearance by platelets

(Koupenova et al. 2014). Interestingly, this receptor is

expressed within endosomes and its functional involvement

implies endocytosis of the virus by the platelet. Penetrance

of EMCV was TLR7 dependent, with activation of TLR7

resulting in the release of the α-granules that house

proinflammatory cytokines, leading to neutrophil aggrega-

tion, endothelial cell adhesion, and inflammation. The TLR7

platelet response was shown to contribute to host survival, as

EMCV levels decreased and there were no observable

prothrombotic events as a consequence of potential platelet

activation (Koupenova et al. 2014).

Unlike TLR7, TLR2 is expressed on the platelet surface.

CMV was found to associate predominately with the TLR2-

positive platelet subpopulation (Boehme et al. 2006). As seen

using flow cytometry, CMV induces rapid surface expression

of P-selectin, leading to the release of proinflammatory CD40

ligand and interleukin-1β cytokine from the platelets (Assinger

et al. 2014). CMV-induced TLR2 activation was confirmed by

antigenic inhibition and could be blocked by inhibiting

phosphoinositide 3-kinase signaling. Vascular endothelial-

derived growth factor (VEGF) is a proangiogenic cytokine

that is released by TLR2-induced platelet activation and

involved in endothelial migration, proliferation, and increased

vascular permeability (Assinger et al. 2014). To add further to

the many links reported between CMV and vascular disease

(Al-Ghamdi 2012; Bruggeman 2000), this TLR2-mediated

VEGF release can allow leukocyte recruitment to an athero-

sclerotic plaque, promoting growth (Holm et al. 2009).
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Integrins Consisting of a broad group of homologous

heterodimeric proteins (Bennett et al. 2009), cell surface

integrins are fundamental to the important platelet–leukocyte

connection. In addition to the role of integrins in facilitating

numerous direct platelet–virus interactions (Tables 1, 2, and 3),

they are also important in processes leading to immune clear-

ance of blood-borne viruses. One example is through the

recruitment of dendritic cells by the interaction of platelet

surface junctional adhesionmolecule-C (JAM-C) and dendritic

cell integrin αMβ2 (Langer et al. 2007). Trafficking of cytotoxic
T lymphocytes (CTLs) to sites of infection can be mediated by

platelet activation (Iannacone et al. 2005). In the case of hepa-

titis B virus (HBV), CTLs enter the liver parenchyma and

accumulate whereHBVmay reside and replicate. CTL activity

lowers the virus count, but unfortunately contributes to pro-

gression of liver damage (Iannacone et al. 2005).

The HIV-1 transactivator of transcription protein (Tat)

directly interacts with platelets, resulting in their activation

and degranulation (Wang et al. 2011). This mechanism

requires the β3 integrin and chemokine receptor CCR3 to

be expressed on the platelet surface. This involvement of

integrins was unambiguously demonstrated using a β3
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Fig. 1 Virus replication by platelets. Examples of virus receptors

present on the surface of the platelet are shown spanning the platelet

membrane. Examples of an enveloped virus (DENV binding to the

co-receptors DC-SIGN and HSP) and a non-enveloped virus (adenovi-

rus binding to CAR) are depicted. This receptor engagement triggers

mechanisms that can involve dynamin-dependent engulfment pro-

cesses, leading to entry into the platelet as an endosomal inclusion.

At least for DENV, which has an RNA genome unlike adenoviruses,

evidence is accumulating that suggests viral genomic material is

released from the nucleocapsid into the cytoplasm, where it is

translated by platelet ribosomal complexes or used as a template for

replication by the virus-encoded polymerase. Other virus-encoded

genes contribute to controlling the function of the cell or post-

translational modification of the viral proteins, including proteolytic

maturation if the viral genome is organized to produce a polyprotein.

The viral structural proteins and genome copies are then transported to

the platelet Golgi apparatus, where they are assembled and delivered to

the exterior by exosomal transport or possibly by cell disruption (not

shown). Platelet mitochondria are available for energy-demanding

aspects of the mechanism
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Fig. 2 Virus-induced platelet modulation leading to immune clear-

ance. Platelet receptor binding or possibly entry of the virus induces

outside-in platelet signaling, with morphological and biochemical

effects to the platelet. Typical platelet “activation” markers are

expressed, such as exposure of procoagulant phospholipid (proPL) as

measured by annexin V (Anx5) binding and P-selectin (CD62P). Plate-

let microparticles may be released. The proPL surface can propagate

the hypercoagulable state often induced by some of these viruses by

enabling assembly of clotting enzyme complexes, where neighboring

platelet surface PARs can be activated by thrombin (FIIa) in a

feedback-amplified manner to further promote platelet modulation.

Virus–platelet engagement has been shown to induce caspase activa-

tion and mitochondrial membrane potential changes indicative of an

apoptotic state, which similarly occurs for megakaryocytes (not shown)

with consequent reduction in thrombopoeisis. Virus-induced platelet

stimulation causes the release of α-granule and dense-granule contents.
This has profound stimulatory effects on all cells of the immune

system, orchestrating localized innate and adaptive responses against

virus invasion
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knockout mouse model (Wang et al. 2011). Virus-induced

platelet degranulation involves the release of

proinflammatory CD40 ligand, which promotes platelet–

monocyte complex formation via platelet P-selectin and

monocyte P-selectin glycoprotein ligand-1 (PSGL-1)

(Singh et al. 2014). This was demonstrated by injecting

wild-type mice with recombinant soluble CD40 ligand and

analyzing cell associations by flow cytometry. The platelet–

monocyte complexes derived from HIV-1 infected donors

exhibited enhanced adhesion to human brain microvascular

endothelial cells, suggesting a role for platelets in

HIV-associated neuroinflammation (Singh et al. 2014).

Selectins Although not as extensive as integrins, selectins are

also a family of cellular adhesion receptors. Selectins recog-

nize various carbohydrate structures found on opposing

surfaces. Platelets constitutively store P-selectin (i.e., CD62P)

in α-granules. In response to stimulus-induced activation,

P-selectin is transported to the platelet surface where it

mediates tethering to numerous cell types. Important to the

role of platelets in orchestrating the immune response, platelet

surface P-selectin mediates adhesion through association with

PSGL-1 found on the neutrophil surface. P-selectin on platelets

also interacts with PSGL-1 on a subset of Th1 leukocytes.

Thus, when binding of viruses to the platelet surface triggers

platelet activation and P-selectin expression on the surface,

innate immune clearance of the pathogen is facilitated.

Protease-Activated Receptors Hemostasis and inflamma-

tion are regulated and linked by protease-activated receptors

(PARs) (Rothmeier and Ruf 2012). Four PAR types have been

identified and are implicated both in virus replication (Aerts

et al. 2013; Khoufache et al. 2013; Sutherland et al. 2012) and

in the host innate response to viral infection (Antoniak et al.

2013). Enveloped viruses can assemble and activate coagula-

tion enzyme complexes directly on their surface, which medi-

ate PAR stimulation. Through these pathways, PAR1 and

PAR2 on human umbilical vein endothelial cells have been

shown to enhance HSV1 infection in vitro (Pryzdial et al.

2014). A similar mechanism may stimulate virus-bound

platelets, which express high levels of PAR1. A more recent

study showed that IAV induced platelet activation and aggre-

gation through platelet-surface PAR, which exacerbated acute

lung injury (Le et al. 2015). This injury was attributed to the

resulting massive inflammation through platelet-induced

recruitment of neutrophils to the lung.

Chemokine Receptors Chemokine receptors are members

of the G-protein-coupled receptor family, whose major

functions include cellular recruitment via chemokine recog-

nition. Several chemokine receptors (CCR1, CCR3, CCR4,

CXCR1, and CXCR4) bind to select ligands, resulting in

enhancement but not initiation of inflammatory pathways,

platelet aggregation, hemostasis, and thrombosis (Zarbock

et al. 2007). Activated platelets also secrete numerous

chemokines, such as CXCL7 and CXCL8. CXCL7 promotes

chemotaxis, adhesion to endothelial cells, and degranulation

of neutrophils (Schenk et al. 2002), whereas CXCL8 is

important in recruitment of neutrophils (Baggiolini et al.

1994). Active CD40L is secreted by platelets in response

to stimulation and binds endothelial CD40, eliciting chemo-

kine secretion and increasing the expression of adhesion

molecules on the endothelium (Henn et al. 1998).

Platelet α-granule contents have been shown to limit the

spread of HIV-1 in co-cultured T cells (Solomon et al. 2013).

CXCL4 (platelet activating factor) and CXCL7 are the most

abundant chemokines in the α-granules of platelets (Blair and
Flaumenhaft 2009). In particular, CXCL4 released by

activated platelets binds to HIV-1 major viral envelope glyco-

protein, gp120, proximal to the essential CD4-binding site

(Auerbach et al. 2012). The resulting steric inhibition reduced

HIV-1 infection by 80 % compared with non-activated

platelets using a HIV-1-sensitive cell line that uses reporter

gene constructs to quantify infection (Solomon et al. 2013).

CXCL4 stimulates neutrophil–endothelial cell attachment and

also acts as a co-stimulator of TNF in the release of neutrophil

secondary granules (Kasper and Petersen 2011), as further

means of enhancing localized immune cell influx.

The proinflammatory cytokine interleukin (IL)-1β is

synthesized by platelets as a precursor protein and cleaved by

caspase-1 to produce an active form that is released in

microparticles (Hottz et al. 2013b). DENV2 was shown to

induce IL-1β synthesis directly and secretion from platelets by

activating the assembly of a nucleotide-binding domain leucine-

rich repeat-containing protein (NLRP3) inflammasome, which

controls caspase-1 activity (Hottz et al. 2013a). Generally,

IL-1β is important in the acute-phase response, where proteins

such asC-reactive protein, complement components, and fibrin-

ogen are produced to destroy or containmicrobes (Morrell et al.

2014). Although aiding in the immune response, the IL-1β
released from platelets during DENV infection contributes to

increased endothelial permeability, thrombosis, and

dysregulated hemostasis (Hottz et al. 2013a).

Defensins Defensins are cationic antimicrobial peptides

that are key elements in the innate immune system. They

act on bacteria, enveloped viruses, and non-enveloped

viruses. There are many forms of these small 4–5 kDa

peptides, with human platelets expressing β-defensins
(hBD) 1, 2, and 3 (Kraemer et al. 2011; Tohidnezhad et al.

2011; Tohidnezhad et al. 2012). Immunofluorescence stud-

ies in vitro showed that the inclusion of a selective agonist of

neutrophils (phorbol 12-myristate 13-acetate) or platelet

PAR1 (thrombin receptor agonist peptide 1) induced
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secretion of an adhesive complex from neutrophils,

identified as a pathogen “snare.” The molecular networks

were identified as being composed of long uncoiled strands

of DNA and were named neutrophil extracellular traps

(NETs) (Brinkmann et al. 2004). NET release is induced

by β-defensin 1 secreted from activated platelets (Kraemer

et al. 2011). Although most NET involvement in pathogen

defense has been elucidated using bacteria, super-resolution

structured illumination microscopy revealed that HIV-1

virus particles are also captured by NETs (Saitoh et al.

2012). When these entrapped virus particles were extracted,

their infectivity was reduced as a result of highly enriched

levels of α-defensin and myeloperoxidase within the NETs.

In addition to HIV-1, hBD-2 is also known to inhibit

human respiratory syncytial virus (RSV) entry into human

lung epithelial cells, as followed by 35S-labeled RSV uptake

(Kota et al. 2008). It was also shown through electron

microscopy and buoyant density profiles that hBD-2, but

not hBD-1, disrupted the viral envelope, possibly because

the cationic nature of the peptide led to lipid destabilization

(Kota et al. 2008). HIV-1 induced hBD-2 and hBD-3 expres-

sion in human oral epithelial cells, which associated directly

with HIV-1 and neutralized infection in vitro (Quinones-

Mateu et al. 2003). IAV hemagglutinin and hBD-3 binding

also resulted in inhibition of epithelial cell infection (Leikina

et al. 2005). hBD-3 was shown to alter fusion between IAV,

sindbis virus, baculovirus, and synthetic target membrane by

crosslinking virus surface proteins (Leikina et al. 2005).

Although reasonable to speculate, it is not known whether

platelet-derived hBD-2 and hBD-3 mediate similar direct

antiviral effects.

Other Secreted Platelet Components Human donor plate-

let concentrates contain unknown antiviral activity that

reduced the viral titer of poliovirus 1, adenovirus 5, and

vaccinia virus by approximately 2.63 � 0.5 to 5.6 � 0.9

log units (Maurice et al. 2002). The same group also

observed platelet activation in all virus–platelet co-cultures

with epithelial monolayers (Vero cells); recent knowledge

(Flaujac et al. 2010) suggests that platelet releasate is the

antimicrobial factor(s) in these studies.

Defensins and cytokines are stored in platelet α-granules.
However, dense granule constituents such as adenosine

diphosphate (ADP) (Packham and Rand 2011),

polyphosphates (polyP) (Smith and Morrissey 2014), and

serotonin (Jedlitschky et al. 2012) also have immune-

modulating properties (Morrell et al. 2014). These have not

been as well characterized for a role in viral innate immunity

as those contained in α-granules. Nevertheless, the release of
platelet dense granule contents by viruses has been

investigated in CMV infection. This was mediated by plate-

let surface TLR2 occupation. Furthermore, inhibition of the

ADP receptor, P2Y12, identified ADP release as an impor-

tant trigger for secondary platelet activation (Assinger et al.

2014). Dendritic cells also express P2Y12 and their stimula-

tion increases antigen endocytosis and processing

(Vanderstocken et al. 2010), which could involve localized

platelet response to pathogen interactions. PolyP induces

proinflammatory responses by acting on the nuclear factor

κB (NF-κB) pathway in vascular endothelial cells (Bae et al.
2012). PolyP can also interact with chromatin-associated

nuclear proteins such as high mobility group box

1 (HMGB1) to amplify proinflammatory responses

(Dinarvand et al. 2014). Because HMGB1 is also secreted

by platelets (Maugeri et al. 2012), polyP warrants continued

study as a bridge between platelets and innate immunity,

especially in the context of complement, which is

suppressed by polyP (Wat et al. 2014) and could be a viral

survival mechanism.

Virus-Induced Thrombocytopenia

According to some estimates, approximately two-thirds of

acute thrombocytopenia cases are preceded by viral infec-

tion (Rand and Wright 1998). This strikingly high correla-

tion suggests mechanisms directly linking the virus to the

platelet, such as receptor-mediated binding (Table 1). In

contrast to viral thrombocytopenia, viral HF (Table 2) is

thought to be driven by severe suppression of innate immu-

nity and the resulting cytokine flood that counters systemic

virus replication. HF can also result in a reduced platelet

count, but through mechanisms indirectly involving

platelets, as detailed in excellent reviews elsewhere

(Feldmann and Geisbert 2011; Messaoudi and Basler 2015;

Zapata et al. 2014). Here, we overview five primary

pathways that simultaneously contribute to viral thrombocy-

topenia in the absence of HF: decreased thrombopoeisis,

direct and indirect virus interactions with platelets and

megakaryocytes (tipping the intricate balance between

thrombopoeisis and platelet clearance), altered platelet func-

tion, and virus-induced immune response against platelets.

Decreased Thrombopoeisis Viral infection results in pro-

duction of interferon, which has antiviral activity. However,

type I interferons can also inhibit megakaryocytes, resulting

in impaired platelet production (Rivadeneyra et al. 2015).

Megakaryocyte growth and differentiation is stimulated by

thrombopoietin (TPO), which is predominantly produced in

the liver (Giannini et al. 2002). Impaired liver function is

consequently detrimental to TPO production and the

resulting thrombocytopenia often suffered by chronic HCV

patients correlates with low TPO and attenuated

thrombopoeisis (Giannini et al. 2002; Wenzel et al. 2010).
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Direct impairment of platelet production as a result of

viral replication in megakaryocytes was observed in vitro for

HIV, HCV, DENV, and CMV (Basu et al. 2008; Crapnell

et al. 2000; Li et al. 1999; Sato et al. 2000; Sridharan et al.

2013). An increase in cell death via apoptosis and decreased

megakaryocyte differentiation are probable reasons for

reduced platelet production. For example, HIV infection of

megakaryocytes resulted in downregulation of the TPO

receptor c-Mpl (Gibellini et al. 2013), causing reduced sen-

sitivity to thrombopoeisis induction. To further investigate

this mechanism, umbilical cord blood hematopoietic pro-

genitor cells that were induced by TPO toward a megakar-

yocytic lineage in vitro have been used as a model for HIV

infection. The virus surface glycoprotein gp120 interacts

with CD4 on these cells (Gibellini et al. 2007), resulting in

specific protein and mRNA changes that elevate TGF-β1
levels and decrease tumor necrosis factor (ligand) superfam-

ily, member 13 (TNFSF13) levels. Both of these effects

contribute to inhibition of megakaryocytic proliferation

and promote apoptosis (Gibellini et al. 2007). Further evi-

dence supporting the concept that viral thrombocytopenia

involves attenuated thrombopoiesis comes from an elegant

humanized mouse model showing that DENV infection

reduces platelet production (Sridharan et al. 2013). Thus,

viral infection has the capacity to reduce thrombopoeisis by

direct effects on the megakaryocyte, conceivably involving

the same surface receptors for specific viruses that have been

identified on platelets and other cells (Tables 1, 2, and 3).

Direct Virus–Platelet Associations Activation of

platelets, degranulation, and recruitment of neutrophils and

dendritic cells contribute to phagocytosis of platelet

fragments by leukocytes. The final clearance of these poten-

tially virus-laden particles is in the spleen and liver

(Bondanza et al. 2001; Grozovsky et al. 2010; Koupenova

et al. 2014). CMV- or EMCV-mediated activation of

platelets via TLR2 or TLR7, respectively, enhanced the

interaction between platelets and neutrophils, resulting in

platelet clearance (Assinger et al. 2014; Koupenova et al.

2014). In a similar manner, hantavirus also induced platelet

activation and clearance by binding to platelet surface

integrins αvβ3 and αIIbβ3 (Gavrilovskaya et al. 2010). The

interaction of hantavirus with platelets also contributed to

viral dissemination and activation of endothelial cell

functions, thereby increasing vascular permeability

(Feldmann and Geisbert 2011; Gavrilovskaya et al. 2010).

Adenovirus correspondingly induces thrombocytopenia,

as seen when adenovirus gene therapy vectors are intrave-

nously administered to rhesus macaques and mice (Othman

et al. 2007; Wolins et al. 2003). Current literature indicates

that CAR mediates the binding of adenovirus to platelets,

enabling subsequent entry (Othman et al. 2007; Shimony

et al. 2009). The virus–platelet interaction is predominantly

localized to sites of intercellular complex formation, imply-

ing that CAR expression is enhanced in response to platelet

activation (Gupalo et al. 2011). Similar to the effects

reported for other viruses, platelet activation is probable

upon the initial association of adenovirus and platelet-

surface CAR.

The IAV envelope has neuraminidase activity that

cleaves sialic acid on the surface of platelets (Madoff et al.

1964). Removal of more than 15 % of total sialic acid on

rabbit platelets caused complete platelet clearance within 1 h

of administering 51Cr-labeled platelets into rabbits

(Greenberg et al. 1975). The removal of circulating platelets

was presumably caused by recognition of exposed terminal

galactose residues by scavenger cells expressing the

asialoglycoprotein receptor (Sorensen et al. 2009). This

adds to the repertoire of virus-clearance mechanisms that

can be facilitated through direct virus–platelet association.

Indirect Virus–Platelet Associations Platelets express Fc

receptors that allow recognition of immune complexes or

aggregated immunoglobulin. In addition to PAR-1 activa-

tion by thrombin, IAV can activate platelets through

low-affinity FcγRIIA signaling (Boilard et al. 2014). For

this to occur, IAV must be decorated with anti-IAV IgG.

Crossreactive antibodies resulting from immune recognition

of different IAV strains (H1N1 versus H3N2) was sufficient

to produce this effect. When wild-type mice (which do not

express FcγRIIA) and transgenic mice expressing human

FcγRIIA were challenged intravenously with a sublethal

dose of H1N1, there was a drop in circulating platelet

count in only the transgenic mice. This indicates that platelet

homeostasis is affected by the accessibility of Fc receptors

on platelets, supporting the link to pathogenic thrombocyto-

penia (Boilard et al. 2014).

Activation of endothelial cells has been implicated in

adenovirus-induced thrombocytopenia. In these studies, the

release of ultralarge von Willebrand factor (vWF) from the

Weibel–Palade bodies (Gupalo et al. 2011) was evaluated

using a murine model. Adenovirus induced thrombocytope-

nia in wild-type animals but, in sharp contrast, vWF knock-

out mice were protected from a reduced platelet count

(Gupalo et al. 2011). Thus, endothelial vWF could contrib-

ute in an indirect manner to virus-induced thrombocytopenia

by supporting platelet aggregation through interactions with

platelet surface GP1b, (the vWF receptor). Clearance of

these platelet aggregates is subsequently facilitated by

splenic macrophages or Kupffer cells in the liver (Othman

et al. 2007).

Systemic inflammation as a result of viral infection can

result in platelet interactions and increased clearance, as

demonstrated during IAV, rhinovirus, and CMV infections

(Bouwman et al. 2002). The mechanism involves mononu-

clear leukocytic release of CXCL4. DENV infection was
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used in a subsequent study and resulted in increased inflam-

mation, vascular permeability, and platelet aggregation and

activation (Yang et al. 1995).

Altered Platelet Function Thrombocytopenia can result

from virus activation of platelets or endothelial cells, which

induces cell–cell adhesion processes via expression of

integrin and selectin function (Zapata et al. 2014). The flip-

side is that inhibition of platelet aggregation can also result in

impaired platelet function. DENV infections have been

shown to stimulate platelet-directed IgM autoantibodies

that inhibit ADP-induced platelet aggregation (Lin et al.

2001). Although these autoantibodies have an effect on

immune clearance of platelets, they also affect the develop-

ment of HF. For hantavirus, this can include renal syndrome

resulting from defective platelet aggregation (Cosgriff et al.

1991). Other HF viruses such as Lassa virus, Junin virus, and

Ebola virus have inhibitors of platelet aggregation, but these

have not been identified (Cummins et al. 1989; Cummins

et al. 1990, Feldmann and Klenk 1996). Additionally, vac-

cinia virus causes impairment of platelet aggregation induced

by ADP, collagen, or thrombin (Bik et al. 1982). Ebola virus

infection also results in increased levels of type I interferons,

which downregulate platelet production and function

(Rivadeneyra et al. 2015; Villinger et al. 1999).

Virus-Induced Immune Response Against Platelets The

molecular relationship between autoantibodies against plate-

let proteins and viral infection is complex and not yet clearly

understood. Virus-induced thrombocytopenia typically

worsens as damage to the liver progresses and can deterio-

rate into a more severe clinical complication (Aref et al.

2009). Anti-platelet autoantibodies are linked to immune

thrombocytopenic purpura (ITP) (Liebman 2008). Second-

ary ITP can result from vaccines such as measles-mumps-

rubella (MMR) (incidence of 1 in 40,000 administrations) or

infections with homologous herpes family viruses,

hepatitis C, HIV, hantavirus, and severe acute respiratory

syndrome coronavirus (Goeijenbier et al. 2012; Liebman

2008).

Non-AIDS early HIV-1 infections can result in ITP

induced by autoimmune antibodies. Affinity purification of

circulating serum immune complexes in HIV patients

identified an anti-HIV IgG1 antibody that recognizes

amino acid residues 49–66 of the integrin β3 subunit that

induces platelet vessiculation (Nardi et al. 2001). The com-

plement pathway was ruled out in this reaction because

neither the F(ab0)2 fragment of the antibody raised against

integrin β3 residues 49–66 in wild-type mice nor treatment

with full-length antibody in C3-deficient mice could affect

platelet microparticle formation (Nardi et al. 2001). Perox-

ide generation was monitored through the use of an intracel-

lular fluorescent probe and revealed a novel mechanism by

which the autoantibody induced damage in platelets through

a NADPH oxidase peroxide-generating pathway (Nardi et al.

2001). Similar outside-in signaling events could be

generated by other virus-induced platelet autoantibodies.

ITP occurs in 20 % of HCV patients and is potentially

attributed to the presence of antibodies that are crossreactive

with HCV core envelope 1 protein and platelet β3 integrin

(Rajan et al. 2005; Zhang et al. 2009). The crossreactivity was

found by using the antibody specific for integrin β3 residues

49–66 to screen a phage-display peptide library (Zhang et al.

2009). The recognized peptides were then aligned with the

viral genome to define similarities. Thematched peptideswere

rationally designed as tools to inhibit the binding of

autoantibodies to platelets or to produce platelet antibodies

with functional effects (Li et al. 2005; Zhang et al. 2009). This

approach was similarly used to discover molecular mimics in

the HIV-1-encoded negative regulatory factor (nef) protein

(Li et al. 2005), both leading toward therapeutic design in

virus-induced thrombocytopenia.

Antibody crossreactivity between antiviral antigens and

platelet antigens has been demonstrated during DENV infec-

tion (Cheng et al. 2009). Pairwise sequence alignment analysis

programs were used to annotate homologous peptide

sequences between DENV NS1 and platelet protein disulfide

isomerase (PDI) (Cheng et al. 2009). This tool identified

several sequence homologies, of which amino acid residues

311–330 (P311–330) was the most dominant epitope

recognized by both anti-NS1 and anti-PDI, as determined by

ELISA (Cheng et al. 2009). The P311–330 antibodies

generated from hyperimmunized mice bound platelet PDI

and inhibited both thiol isomerase activity and platelet aggre-

gation induced by ADP (Cheng et al. 2009). The presence of

anti-platelet autoantibodieswith anti-DENVactivity inDENV

patient sera is associated with thrombocytopenia and the

severity of the disease during the acute phase of secondary

DENV infection (Saito et al. 2004). However, the direct impli-

cation of these crossreactive antibodies inDENVpathogenesis

has not yet been elucidated. The discovery that platelets can

translate and express NS1 (Simon et al. 2015) suggests that

viral antibodies might not be crossreactive with platelets, but

actually recognize the virus-encoded gene product expressed

on the platelet, further complicating vaccine development.

Conclusion

Associations between viruses and platelets can lead to

pathology. Viral infection often precedes thrombocytopenia

and, therefore, an understanding of the mechanisms that

facilitate virus–platelet interactions, their direct effect on

platelets, and indirect effects on the cellular environment

can lead to therapeutic control. This is a difficult challenge

because platelets also help to eradicate viruses by steering
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innate and adaptive immune responses. Thus, ideal thera-

peutic control of virus-induced thrombocytopenia can

discretely manage both the detrimental and positive involve-

ment of platelets in viral infection.

Take Home Messages

• Diverse virus families can bind to platelets,

resulting in mild to severe clinical outcomes.

• Virus–platelet interplay results in changes to innate

and adaptive immunity.

• Platelets replicate the RNA genome of permissive

viruses, which can contribute to pathology.
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