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Abstract

Background: Dynamic prediction of patient mortality risk in the ICU with time series data is limited due to high
dimensionality, uncertainty in sampling intervals, and other issues. A new deep learning method, temporal convolu-
tion network (TCN), makes it possible to deal with complex clinical time series data in ICU. We aimed to develop and
validate it to predict mortality risk using time series data from MIMIC Il dataset.

Methods: A total of 21,139 records of ICU stays were analysed and 17 physiological variables from the MIMIC Il data-
set were used to predict mortality risk. Then we compared the model performance of the attention-based TCN with
that of traditional artificial intelligence (Al) methods.

Results: The area under receiver operating characteristic (AUCROC) and area under precision-recall curve (AUC-PR)
of attention-based TCN for predicting the mortality risk 48 h after ICU admission were 0.837 (0.824 -0.850) and 0.454,
respectively. The sensitivity and specificity of attention-based TCN were 67.1% and 82.6%, respectively, compared to
the traditional Al method, which had a low sensitivity (< 50%).

Conclusions: The attention-based TCN model achieved better performance in the prediction of mortality risk with
time series data than traditional Al methods and conventional score-based models. The attention-based TCN mortal-
ity risk model has the potential for helping decision-making for critical patients.

Trial registration: Data used for the prediction of mortality risk were extracted from the freely accessible MIMIC III
dataset. The project was approved by the Institutional Review Boards of Beth Israel Deaconess Medical Center (Bos-
ton, MA) and the Massachusetts Institute of Technology (Cambridge, MA). Requirement for individual patient consent
was waived because the project did not impact clinical care and all protected health information was deidentified.
The data were accessed via a data use agreement between PhysioNet, a National Institutes of Health—supported data
repository (https://www.physionet.org/), and one of us (Yu-wen Chen, Certification Number: 28341490). All methods
were carried out in accordance with the institutional guidelines and regulations.
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Introduction

The in-hospital mortality of patients in the intensive care
unit (ICU) is relatively high, ranging from 6.7% to 44.0%
worldwide [1, 2]. With the development of critical care
medicine, larger amounts of data help doctors to make
decisions; however sometimes this can be counterpro-
ductive, overwhelming the doctors. Thus, tools that help
doctors make decisions based on large amounts of both
monitoring results and clinical data are badly needed.

In the past, score-based models, such as simplified
acute physiology score (SAPS II), Acute Physiology and
Chronic Health Evaluation II (APACHE II), were com-
monly used in patient evaluations for prediction of mor-
tality risk [3, 4]. When applied to larger populations, the
diagnostic performances of score-based models are rela-
tively poor [1, 2, 5-8]. Recently, methods based on arti-
ficial intelligence (Al), including conventional machine
learning (ML) methods and deep learning methods, have
been applied to help doctors’ decision-making by pre-
dicting patients’ mortality risk [9-11]. Compared with
statistical score-based models, methods based on Al
usually have better model performance, which may be
related to the advantages of Al methods such as the abil-
ity to deal with complex non-linear relationships between
variables and patient outcome.

However, there are some limitations of the research
mentioned above. One of the most important problems
is that the repeated measured variables such as vital signs
to predict the mortality risk are replaced with statisti-
cal variables, such as maximum, and minimal. In ICU,
the overall trend and coupling of changes between dif-
ferent physiological variables may provide prognostic
information, which will also help to elevate the accuracy
of prediction model [12]. The ideal tool to help doctors’
decision-making requires optimum use of all the associ-
ated routine variables, especially time series data, to real-
ize dynamic prediction. However, due to the complexity
of the time series data, studies on dynamic prediction
using temporal clinical data are limited.

The challenges of predicting mortality risk in the ICU
were summarized by Ikaro et al. [12]: Firs, measurements
of time series data from each patient vary; moreover, the
time interval is irregular. Second, the chosen measure-
ments and the trends of time series data are coupled with
each other. In terms of time series models in deep learn-
ing, the Long Short-Term Memory (LSTM) [13] and its
derivatives Gated-Recurrent Unit (GRU) [14], have been
used to predict the mortality risk of ICU patients, which

achieved better area under receiver operating char-
acteristic (AUCROC) and area under precision-recall
curve (AUC-PR) than conventional score-based models.
However, because data are processed sequentially over
time, LSTM and GRU have the shortcomings such as
high computing load, time consumption, and hardware
requirements, as well as vanishing gradients, which result
in difficulties in dealing with big data and applying them
to clinical popularization. It is widely accepted that deep
learning also has other shortcomings such as low expla-
nation capability and larger computing. While the atten-
tion mechanism simulates the data processing of the
human brain, it is combined with LSTM or other deep
learning methods to improve computational efficiency
or interpretability [7, 15, 16]. However, the limitations
regarding inefficient, particularly when processing long
sequences, still exist due to characteristics of the method
itself. A better deep learning method that overcomes the
current limitations is urgently needed. Recently, a new
deep learning method, the temporal convolution network
(TCN), was developed, with the characteristics of paral-
lelism, fixed gradient, and smaller memory of training.
Furthermore, Bai et al. [17] reported that the TCN has
even better performance than LSTM or GRU. Developing
an attention-based TCN model may not only elevate the
interpretability and reduce the computation complexity
but also extend the clinical use due to its higher efficiency
for long sequences. Therefore, we aimed to develop an
attention-based TCN model to predict the in-hospital
mortality risk 48 h after admission in ICUs with time
series data and compare the model performances with
conventional ML methods, namely, random forest (RF),
logistic regression (LR), decision tree (DT) and support
vector machine (SVM).

Materials and Methods

Ethics and data extraction

Data used for the prediction of mortality risk were
extracted from the multi-parameter intelligent monitor-
ing in intensive care (MIMIC) database [18]. The pro-
ject was approved by the Institutional Review Boards
of Beth Israel Deaconess Medical Center (Boston, MA)
and the Massachusetts Institute of Technology (Cam-
bridge, MA). The requirement for individual patient
consent was waived because the project did not impact
clinical care and all protected health information was
deidentified [18]. The data were accessed via a data use
agreement between PhysioNet, a National Institutes of
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Health—supported data repository (https://www.physi
onet.org/), and one of us (Yu-wen Chen, Certification
Number: 28341490). All methods were carried out in
accordance with the institutional guidelines and regu-
lations. There were 61,532 records of ICU stays in Beth
Israel Deaconess Medical Center ICUs, including clini-
cal notes, physiological waveforms, laboratory meas-
urements, and nurse-verified numerical data [18]. The
exclusion criteria were as follows: any hospital admission
with multiple ICU stays or transfers between different
ICUs or wards, which would reduce the ambiguity of out-
comes associated with hospital admissions rather than
ICU stays; patients younger than 16; patients whose ini-
tial ICU stay was missing or less than 48 h; ICU events
with no events in the initial 48 h. As a result, a total of
18,094 were included in the final analysis. As shown in
Fig. 1, to avoid overfitting, we split the dataset into train-
ing set (15331patients, 17,917 ICU stays) and testing
set (2763 patients, 3222 ICU stays). Five fold cross vali-
dation was performed on the training set to determine
the model parameters. We obtained the best model
parameters after cross-validation on the training set and
obtained the scores of the model on the testing set.

Data preprocessing

Herein, we mainly focused on common and repeat-
edly measured variables in ICUs that were effective for
reflecting the disease status and efficacy of treatment.
We used 17 physiologic variables (shown in Table 1)
representing a subset from the Physionet/CinC Chal-
lenge 2012 [12]. Up to 17 variables were recorded at least
once during the first 48 h after admission. Not all vari-
ables were available in all cases. We used all raw values
for time series measurements included in the score. For
Glasgow Comma Score (GCS), we included GCS verbal
response, GCS motor response, GCS eye opening and
GCS total as different features. The rest of the variables
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Table 1 Physiological variables to predict the mortality risk of
patients in ICU

Sequence  Physiological variables Data type
number

1 Capillary refill rate Discrete value

2 Diastolic blood pressure Continuous value
3 Fraction inspired oxygen Continuous value
4 Glascow coma scale eye opening Discrete value

5 Glascow coma scale motor response  Discrete value

6 Glascow coma scale total Discrete value

7 Glascow coma scale verbal response  Discrete value

8 Glucose Continuous value
9 Heart Rate Continuous value
10 Height Continuous value
11 Mean blood pressure Continuous value
12 Oxygen saturation Continuous value
13 Respiratory rate Continuous value
14 Systolic blood pressure Continuous value
15 Temperature Continuous value
16 Weight Continuous value
17 pH Continuous value

included weight, height, temperature, respiratory rate
(RR), heart rate (HR), diastolic blood pressure (DBP),
Mean blood pressure (MBP), systolic blood pressure
(SBP), fraction inspired oxygen (FiO,), oxygen saturation
(OS), pH, glucose, and capillary refill rate (CRR). When
the value was more than three standard deviations away
from each individual mean value, it was removed. Twelve
of the variables were continuous and five discrete. All of
the time series variables were re sampled into hourly rate
starting from ICU admission. When there was a continu-
ous variable that was missing at a point in time, we filled
the data with the nearest neighbour value. When the
indicator had no record data during the observation time,

Training set
Split 1
Split 2
Split 3
Split 4
Split 5

Fig. 1 Data partition and verification

All Data

Testing set
Finding parameters

Final evaluation { Testing set
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we assumed that the nurse did not measure the attribute
and that the indicator was considered normal so that we
filled the data using the normal value of the attribute. For
discrete variables, we performed one-hot encoding. For
continuous variables, we performed Z-score normaliza-
tion to scale the feature values. Each patient’s record was
summarized into a visualization data matrix 59 x 48 for
48-h observation period as the input for deep learning.

Model construction for Attention-based TCN

In this work, we developed an attention-based TCN
model to predict the mortality risk of ICU patients
with time series and static data. The TCN is a convolu-
tional network, which is composed of causal convolu-
tion, diluted convolution, and residual connections. The
causal convolution makes the TCN a strict temporal
model, which uses data from time t and earlier in the
previous step to predict the status at time t, when model
trained. TCN allows the input of convolution to be sam-
pled at intervals to broaden the field of perception (i.e.,
to make the most of information) through the use of the
dilated convolution. The residual connections enable the
network to transmit information across layers, which
are usually used to train deep network. In addition, the
TCN adds dropout to each hole in the residual module
to achieve regularization. An attention mechanism was
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introduced into the TCN model to elevate the efficiency
and the interpretability.

The structure of the attention-based TCN model was
shown in Fig. 2. Patients’ raw data were pre-processed
as data flow for model in put; then, the TCN (Tempo-
ral Convolutional Network) [17] was directly applied to
process the ICU patient’s temporal data. The network
was similar to the basic structure of the literature [17].
In brief, the model consists of a stack of temporal atten-
tion convolutional networks. Each temporal attention
convolutional layer was composed of a one-dimensional
full convolution layer, self-attention layer and residual
layer. Feature extraction was carried out using a one-
dimensional causal full convolution layer, and the resid-
ual layer was used to deepen the convolution network.
The self-attention layer simulates the attention model of
human brain and makes the model focus on data relevant
to the predicted results. The number of attributes for
the patients was 59, so we set the convolution kernel to
3 and the stacked temporal convolutional attention layer
to 7. When the network layer was set to 7, the recep-
tive field of the network exactly covered all the patients’
input data. The patient’s vital signs data are extracted
by 7-level TCN and then connected to the attention
layer; finally, the mortality risk was predicted by a linear
layer. The implementation parameters of the TCN were

59 channels 48hours

Temporal
Convolution -
Layer

0000000600
0000000
aad

Temporal attention

Attention Layer

Temporal attention
convolution layer 2 to7

Fully connected layer
Mortality Risk

flatten Y R

convolution layer

59 Projected Spaces

59 feature

Fig. 2 The structure of the attention-based TCN model for prediction of mortality risk in ICU




Chen et al. BMC Anesthesiology (2022) 22:119

batch_size=32, dropout=0.2, kernel size=3, levels of
TCN=7, initial learning rate=0.02, number of hidden
units per layer =59, and optimization algorithm = Adam.
The loss function used is binary cross entropy:

1

b= ——
pro 1+ exp(—pred)

L=— Z label; x log (probl») + (1 — label;) x log(1 — prob;)

1

pred: prediction tensor with arbitrary shape.
label: target tensor with values in range [0, 1]. Must
have the same size as pred.

Non-time series model construction

We also predicted the mortality risk by non-time series
ML methods such as RF [19], LR, DT and SVM. Due to
the limitation of these ML methods, the in-put for these
models were not time series data but results of feature
extraction (statistical variables, such as the minimum,
maximum, average of the variables). Then the preproc-
essed data were used for model construction and evalu-
ation. For the machine learning models compared in
the experiments, the parameters were set through the

Table 2 The model parameters
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gridSearchCV method. The corresponding parameters
were shown in Table 2.

Model evaluation

Model performance was assessed by overall performance,
discrimination, and calibration. The overall performance
is determined by the F1 score. The F1 score is defined as
the harmonic mean of accuracy and recall, which consid-
ers both the precision and the recall equally. Discrimina-
tion is the capability to distinguish between those who
survival and those who do not 48 h after admission in
ICU by AUCROC and the area under the precision-recall
curve (AUC-PR). The AUC-PR is sensitive to the imbal-
anced distribution of the negative and positive data,
especially when there is an extreme small portion of posi-
tive data. Calibration is assessed by the Brier score via
calculating the averaged squared deviation between the
predicted probability and the actual outcome.

Statistical analysis

The statistical analyses were carried out using SPSS soft-
ware for Windows, V.19.0 (SPSS). Quantitative variables
were presented using basic descriptive statistics: mean
and SD (for normally distribution data), or median and
IQR (for nonnormally distribution data). Comparisons
among datasets were performed using the chi-square

Model

The parameter settings

Decision Tree (DT)

criterion ="gini"# The function to measure the quality of a split, supported criteria

# are “gini"for the Gini impurity

splitter ="best"# The strategy used to choose the split at each node

max_depth =None # The maximum depth of the tree

min_samples_split=2 # The minimum number of samples required to split an

# internal node

min_samples_leaf=1 # The minimum number of samples required to be at a leaf

# node

min_weight_fraction_leaf =0.0 # The minimum weighted fraction of the sum total
# of weights required to be at a leaf node

max_features =None # The number of features to consider when looking for the

# best split

random_state=None # It is the seed used by the random number generator
max_leaf_nodes=None # Grow trees with max_leaf_nodes in best-first fashion,

# if None then unlimited number of leaf nodes

class_weight=None # Weights associated with classes, if not given, all classes are
# supposed to have weight one

presort = False # The data is not presorted

support vector machine (SVM)

kernel ="rbf" # Specifies the kernel type to be used in the algorithm

#"rbf"is Gaussian kernel function
gamma ="auto” # Kernel coefficient for rbf’
probability =True # Whether to enable probability estimates

logistic regression (LR)

solver ="Ibfgs" # The optimized algorithm is “Ibfgs”

multi_class ="auto" # Determines the multi-class strategy if y contains more than
# two classes

penalty ="12"# Specifies the norm used in the penalization, the 12’ penalty is the
# standard used in SVC

Random forest (RF)

n_estimators = 100 # The number of trees in the forest
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test, Fisher’s exact test, or Kruskal-Wallis test. All sta-
tistical tests were two sided, and a P value less than 0.05
indicated statistical significance.

Results

Data distribution

Ultimately, there were 18,094 patients for analysis. The
patient demographics and characteristics of the three
datasets are presented in Table 3. There were no statis-
tically significant differences in age, sex, and ICU length
of stay between the groups. The mortality rate of our

Table 3 The baseline of patients in training and testing dataset

Variables Training Testing (1=2763) P
(n=15,331)

Age 67.3(54.0-78.8) 67.7(53.9-79.2) 0527

Sex (F/M) 6861/8470 1229/1534 0.791

ICU admission 0.014

Cccu 2071 380

CSRU 2768 572%

MICU 5919 1037

SICU 2654 455

TSICU 1919 319

survival/Death 12,910/2421 2389/374* 0.003

ICU length of stay 88.8 (63.7-149.9) 86.9 (62.5-147.0) 0.180

(hours)

Mean (SD) presented for normally distributed continuous variables, while
median (IQR) was given to those with non-normally distributed continuous
variable. Unless otherwise state n is as indicated in the column headings. The
portion of admission in different ICU was statistically compared with the training
dataset (*P<0.05). F female, M male, CCU Coronary Care Unit, CSRU Cardiac
Surgery Recovery Unit, MICU Medical ICU, SICU Surgical ICU, TSICU Trauma
Surgical intense care unit
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cohort was 15.4%. Although the mortality rate of patients
in the testing dataset was significantly lower than that of
the patients in the training datasets, the mortality rate of
patients in test dataset was similar to that of patients in
our whole cohort.

Model performance of time series and non-time
series models

We evaluated the new model in 3 aspects. First, we
compared the attention-based TCN with traditional
score-based methods; second, we compared the atten-
tion-based TCN with models which do not use time
series data; and finally, we compared the attention-
based TCN with LSTM that used time series data.
The purpose of the comparison with traditional ML
models was not to use complex models to compare
with simple model but to show that models based on
patient time series data are effective in improving the
accuracy of predictions compared to models not using
time series data. As shown in Tab 4 and Fig. 3 A, com-
pared with the statistical methods, Al methods had
larger AUCROC and AUC-PR, which indicated better
capacity of discrimination. However, the AUCROC and
AUC-PR of the attention-based TCN were smaller than
those of the non-time series ML methods, which also
had an acceptable discrimination ability. Furthermore,
compared with non-time series ML methods, the atten-
tion-based TCN had the highest sensitivity (67.1%) and
F1 score (0.46). Models with high specificity but lower
sensitivity resulting in missing patients who are poten-
tially at risk, which would violate our initial purpose of
helping doctors dynamically evaluate the mortality risk
of patients. For other time series methods, the sensitiv-
ity of the attention-based TCN was much higher than

Table 4 The performances of different ML models for prediction of in-hospital mortality in the test dataset

Methods Sens Spec F1 score Brier score AUCROC AUC-PR
Non-time series methods
DT 22.7% 96.9% 0.28 0.088 0.804(0.789-0.817) 0.381
LR 35.0% 96.8% 043 0.081 0.838(0.824-0.850) 0459
RF 25.1% 98.5% 0.36 0.077 0.865(0.853-0.877) 0.511
SYM 29.1% 97.9% 039 0.080 0.822(0.808-0.835) 0477
SAPS-II! 0.777 0376
APSAII’ 0.750 0357
OASIS' 0.760 0312
Time series methods
LSTM? 46.1% 0451
Attention-based 67.1% 82.6% 046 0.142 0.837(0.824-0.850) 0454
TCN

Statistical quantifications were demonstrated with 95% Cl, when applicable. ML machine learning, attention-based TCN attention-based Temporal Convolution
Network, LR Logistic Regression, SVM Support Vector Machine, SAPS Simplified Acute Physiology Score, APS Acute Physiology Score, OASIS Oxford Acute Severity of
lliness Score, !, data referring to Hrayr et al. Scientific Data.2017; 2, data referring to Ruo-xi Yu, et al. IEEE J Biomed Health Inform.2019
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that of model by LSTM (46.1%) based on the same
database [7], although there was only a small difference
in the AUC-PRs between them. This result indicated
that models developed by the attention-based TCN had
higher accuracy and a lower omission diagnosis rate
than those by LSTM, which may be related to the dif-
ference between the input variables. In terms of model
calibration, the Brier score of attention-based TCN was
higher than that of the other conventional ML models,
which may be associated with the high dimension of
time series data. Taking the purpose and clinical appli-
cation into consideration, due to the high sensitivity, F1
score and relative satisfied discrimination ability. Based

on these variables, the model performance of the atten-
tion-based TCN was the best among the listed methods
in Table 4.

Visualization of attention weights at different time
points

By visualizing the attention weights, we could clearly
see which variables and time points were considered
when predicting the risk of death. Typical heatmaps for
attention weights of non-survival and survival patients
were shown in Fig. 3 B and C. The larger portion of the
coloured area in the heatmap of non-surviving patient
suggest that the patient is instable. The values of the
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variables at time points represented by these coloured
areas contributed more than other factors to the patient’s
death. The time point with most of the coloured variables
may correspond to rescue in the clinical reality. In addi-
tion to good model performance, the attention-based
TCN method also has the potential advantage of better
interpretability.

Discussion

There are several score-based models for predicting the
mortality risk, such as SAPS [3], APACHE [20], OASIS
[21] and Sequential Organ Failure Assessment (SOFA)
[22]. All of these models use non-time series data and
are based on statistical methods (i.e., the input data
are static data or statistical data, such as comorbidities
and the minimum of systolic pressure in the first 24 h),
which make it impossible to predict the mortality risk in
the first 24 h or to update data for predicting long-term
mortality risk. Despite the AUCROC: of the score-based
models are satisfied, either the sensitivity or the specific-
ity was poor [23, 24]. It’s not surprising that these models
have been modified several times to improve their pre-
dictive performance since they initially being published
[25]. Recently, for representing the complex, non-linear
relationship between clinical variables and the outcome,
non-time series AI methods, such as Artificial neural
work (ANN), SVM, DT, RF, Naive Bayes, projective adap-
tive resonance theory (PART) and AutoTriage, were used;
demonstrating the ability to predict the mortality risk of
patients in ICUs [5, 11, 24, 26, 27] with relatively satis-
fied model performance. However, in these non-time
series methods, all the variables are static or extracted
from time series data, which makes it impossible to real-
ize dynamic prediction. The AUCROCs and AUC-PRs
of attention-based TCN model were larger than that of
conventional score-based models in the same database
according to Harutyunyan et al’s study [8]. It is a pity that
Harutyunyan et al. did not show the sensitivity and speci-
ficity of conventional models. Regardless of the slight
difference in AUCROCs and AUC-PRs among attention-
based TCN and other non-time series ML methods, the
sensitivity of attention-based TCN was much higher than
others. During decision-making in clinical work, doctors
should take medical history, physical examination and
trend of vital signs into consideration. The ideal model
for predicting mortality risk is to take both time series
and static clinical data into consideration; moreover,
simultaneously realize dynamic prediction. Furthermore,
due to the unstable status of ICU patients, sensitivity
seems to be more important than specificity, as missing
potential patients who are at risk may be fatal for them.
In brief, attention-based TCN method was preferable
to non-time series methods in predicting the mortality
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risk of ICU patients. In addition, Hao et al. [28] tried to
apply attention-based TCN to language models result-
ing a significant elevation of model performance, which
suggests attention-based TCN is a promising method for
sequence modeling.

Recently, Yu et al. [7], Harutyunyan et al. [8] and Song
et al. [16] combined two AI methods (including one
time series method) to predict the mortality risk of ICU
patients with large AUCROCs and AUC-PRs but lower
sensitivity (the variables and sensitivity were not pre-
sented in Harutyunyan’s study). Along with the low sen-
sitivity, there were other shortcomings in these studies.
First, Yu et al’s and Harutyunyan’s methods were based
on LSTM, which addresses time series data sequentially
from beginning to end, while TCN can perform paral-
lel processing by causal convolutions in the architecture
[17]. Due to the limitations of LSTM, attention-based
TCN methods would be more proper for higher dimen-
sions and amounts of data and require less in hardware,
which would be more suitable for clinical extension. Sec-
ond, Yu et al’s study included vital signs, namely, HR,
SBP and temperature, while ours included RR, HR, DBP,
MBP, SBP and temperature. Currently, MBP and DBP are
widely accepted as important predictors for ICU patients
[29-31]. Therefore, it may be insufficient to predict the
mortality risk without MBP and DBP. Moreover, some of
the variables, such as urinary output in Yu et al’s study,
are the sum or mean of clinical data in a set period time
and have a longer acquisition time interval than that of
vital signs. Vital signs in our study were more reasonable
and easier to obtain than those in Yu et al’s, while vari-
ables more frequently collected could help for dynamic
prediction. Third, Harutyunyan et al’s and Song et al’s
study focused on the algorithms, the clinical value was
slightly overlooked. Fourth, these three studies combined
an attention mechanism was mainly intended to elevate
the efficiency of computing rather than interpretabil-
ity. Moreover, we furtherly applied the attention-based
TCN to predict the patients’ mortality risk 48 h after
ICU admission in MIMIC IV (version 1.0) with the same
clinical variables and model parameters as that used in
MIMIC III. As shown in supplementary Table 1 and 2,
the AUC-PR, sensitivity, specificity and F1 score of mod-
els based on MIMIC IV were 0.470, 66.0%, 66.0% and
0.35, which were lower than but similar to those based
on MIMIC III. Our results suggested that the attention-
based TCN had acceptable generalization ability and
relatively satisfied robustness. In summary, our attention-
based TCN method also had the advantages of higher
efficiency, better interpretability and ease of promotion.

In Fig. 4, we present a diagram for the clinical use of
predicting the mortality risk of ICU patients by atten-
tion-based TCN methods. For a new critical patient, the
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Fig. 4 Diagrammatic view of the dynamic prediction of mortality risk in ICU patients by attention-based TCN. (A) Data flow and dynamic prediction
are briefly explained by timelines. (B) The instructions of predicting the mortality risk of a new critical patient during the treatment in ICU. T is
determined by patient’s main diagnosis and specific condition; P is defined as the prediction of mortality risk at different time point. H, high
mortality risk; L, Low mortality risk; IC, Intensive Monitoring and Intensive Treatment; IR, Intensive Monitoring and Routine Treatment

patient’s baseline information and monitoring data were
put into the attention-based TCN model as data flow
after automatically data preprocessing. Then the mortal-
ity risk was predicted at different time points according
to the patient’s specific condition (here we predict the
mortality risk 48 h after ICU admission). If the estimated
mortality risk is high, the patient will receive intensive
monitoring and intensive treatment; if the estimated
mortality risk is low, the patient will receive intensive
monitoring and routine treatment. In brief, the whole
process is Warning — Intervention — Warning — Inter-
vention— ...... — Patient outcome.

There are several limitations in this study. First,
although the variables in our study were routine, most
of them being time series, some more routine and fre-
quently collected variables would be helpful. New,
promising, and repeatedly measured variables should be
considered to help elevate the prediction accuracy in fur-
ther study. Second, clinical data are extracted from one
medical center, so the generalization ability of the model

and its possibility of clinical application is not validated.
Prospective multi-center studies should be carried out to
investigate the clinical value of combing TCN with atten-
tion mechanism to predict patient’s mortality risk using
temporal clinical data.

Conclusion

Attention-based TCN methods achieved better perfor-
mance in predicting mortality risk with time series data
than non-time series models, suggested that there might
be potential for decision-making in ICU by dynamic pre-
diction of mortality risk through continuous data flow.
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