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Introduction
With major advances in cancer treatment, the National Cancer 
Institute expects cancer survivorship to reach 21.7 million by 
2029 (1). However, cancer treatment is often associated with 
severe long-lasting neurotoxic side effects. Cancer-related cog-
nitive impairment (CRCI) is a major neurotoxicity of the plati-
num-based drug cisplatin, widely used in treating numerous 
cancers (2). CRCI profoundly affects patient quality of life and is 
characterized by subtle to moderate cognitive deficits, including 
impaired processing speed, memory, executive functioning, and 
attention (3, 4). Reported cognitive deficits affect up to 75% of 
patients treated with chemotherapy for cancers outside the ner-
vous system (4). There are no FDA-approved drugs to mitigate 
these deficits. Our current understanding of the mechanisms 
underlying CRCI and their impact on cognition is limited, due 
to the multifactorial origins of CRCI (5). A better understand-
ing of these mechanisms is essential for developing therapeu-

tic approaches and improving survivors’ quality of life. Here, 
we present evidence that in the central nervous system (CNS), 
cisplatin increases levels of the potent signaling molecule sphin-
gosine-1-phosphate (S1P) that contributes to CRCI development 
through activation of S1P receptor subtype 1 (S1PR1). Mechanis-
tically, cisplatin-induced S1P formation is mediated by Toll-like 
receptor 4 (TLR4). Our findings bridge gaps in our understand-
ing of the molecular mechanisms underlying CRCI and identi-
fy a target for therapeutic intervention with functional S1PR1 
antagonists. Importantly, 2 functional S1PR1 antagonists are 
already FDA approved for multiple sclerosis treatment: FTY720 
(Gilenya, Novartis) and ozanimod (Zeposia, Celgene). Notewor-
thily, several preclinical studies suggest that FTY720 does not 
negatively interfere with the therapeutic activity of chemothera-
peutics, including cisplatin, and also possesses anticancer activ-
ity by blocking tumor growth and metastasis (6–8). Moreover, 
we previously demonstrated in various human cancer cells that 
FTY720 does not alter the cytotoxic efficacy of platinum-based 
drugs, taxanes, and proteasome inhibitors (9). Building on a 
compelling preclinical platform, future clinical trials are need-
ed to assess the anticancer effects of S1PR1 antagonists given 
alone or in combination with chemotherapy. Repurposing these 
drugs to prevent CRCI would be a ground-breaking shift toward 
enhancing patient quality of life in cancer treatment.

Cancer-related cognitive impairment (CRCI) is a major neurotoxicity affecting more than 50% of cancer survivors. The 
underpinning mechanisms are mostly unknown, and there are no FDA-approved interventions. Sphingolipidomic analysis 
of mouse prefrontal cortex and hippocampus, key sites of cognitive function, revealed that cisplatin increased levels of the 
potent signaling molecule sphingosine-1-phosphate (S1P) and led to cognitive impairment. At the biochemical level, S1P 
induced mitochondrial dysfunction, activation of NOD-, LRR-, and pyrin domain–containing protein 3 inflammasomes, and 
increased IL-1β formation. These events were attenuated by systemic administration of the functional S1P receptor 1 (S1PR1) 
antagonist FTY720, which also attenuated cognitive impairment without adversely affecting locomotor activity. Similar 
attenuation was observed with ozanimod, another FDA-approved functional S1PR1 antagonist. Mice with astrocyte-specific 
deletion of S1pr1 lost their ability to respond to FTY720, implicating involvement of astrocytic S1PR1. Remarkably, our 
pharmacological and genetic approaches, coupled with computational modeling studies, revealed that cisplatin increased S1P 
production by activating TLR4. Collectively, our results identify the molecular mechanisms engaged by the S1P/S1PR1 axis in 
CRCI and establish S1PR1 antagonism as an approach to target CRCI with therapeutics that have fast-track clinical application.
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this article; https://doi.org/10.1172/JCI157738DS1). We previous-
ly showed that 2 chemotherapeutic agents, paclitaxel and borte-
zomib, cause dysregulation of de novo sphingolipid metabolism 
in the spinal cord that led to development of chemotherapy-in-
duced neuropathic pain, another major cancer-treatment neuro-
toxicity (9, 11). These earlier findings prompted us to examine the 
effects of cisplatin on sphingolipid metabolites in the CNS. Two 
separate experiments using liquid chromatography–electrospray 
ionization–tandem mass spectrometry (LC-ESI-MS/MS) analy-
sis of multiple sphingolipid species in the prefrontal cortex (PFC) 
and hippocampus, key centers of cognition, revealed a significant 
increase only in the bioactive signaling molecule S1P (Figure 1, E 
and F), with reductions of its precursor sphingosine (Supplemen-
tal Figure 2). There were no significant changes in the levels of 
ceramide and its de novo biosynthetic pathway precursor, dihy-

Results and Discussion
A cisplatin treatment protocol was utilized to induce CRCI in 
tumor-free male and female mice (10). Consistent with a previ-
ous report (10), 2 weeks after the last dose of cisplatin, a battery of 
behavioral tests examining multiple aspects of cognitive function 
(T-maze and novel object-place recognition test [NOPRT], long-
term hippocampal memory; puzzle box test, executive function) 
revealed that mice developed cognitive deficits (Figure 1, A–D). 
Mice receiving cisplatin took more trials to reach criterion in the 
T-maze (Figure 1A), were less likely to recognize a novel object in 
the NOPRT (Figure 1B), and showed memory and executive func-
tion impairments in the puzzle box test during difficult challenge 
(Trial 10, Figure 1C). These results were not due to reductions in 
overall activity or motivation to escape a noxious stimulus (Sup-
plemental Figure 1; supplemental material available online with 

Figure 1. Cisplatin increased S1P in the CNS, leading to cognitive impairment that was attenuated by S1PR1 functional antagonists. (A–D) Cispla-
tin-treated mice (Cis, n = 8) showed learning, memory, and problem-solving impairments in the T-maze (A), NOPRT (B), and puzzle box test (C and D). 
FTY720 administered in conjunction with cisplatin attenuated cognitive deficits in both male (n = 8/group) and female mice (n = 7/group) (A–D). (E and F) 
Sphingolipidomics performed in WT CRCI male mice in 2 separate experiments revealed that cisplatin increased S1P in the hippocampus (HC) (n = 6/group) 
(E) and in the PFC (n = 6/group) (F). (G and H) S1PR1 was found expressed in the hippocampus (G) and PFC (H), placing the receptor in proximity to its 
ligand (n = 6/group). Significance tested with 2-tailed, unpaired Student’s t test. (I–L) The beneficial effects of FTY720 were extended to another function-
al S1PR1 antagonist, ozanimod, which attenuated cognitive impairment in the T-maze in both male (n = 8/group) (I) and female mice (n = 7/group) (J). The 
beneficial effects of FTY720 were lost in both male (n = 6–12/group) (K) and female (n = 7–12/group) (L) mice with astrocyte-specific deletion of S1pr1 (n = 
7–8/group). Data are presented as mean ± SEM. *P < 0.05 vs. Veh; †P < 0.05 vs. Cis; by 2-tailed, 1-way ANOVA with Dunnett’s test (A–D), 2-tailed, unpaired 
Student’s t test (E and F), or 2-tailed, 2-way ANOVA with Bonferroni’s test (I–L). ♂, males; ♀, females.
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(13), marking these cells as a prime target for S1P via S1PR1. We 
used conditional knockout mice in which the entire S1pr1 open 
reading frame was deleted in astrocytes (Supplemental Figure 6) 
(17) to examine whether astrocyte-specific S1PR1 had a role in 
the pharmacological effects of S1PR1 antagonists. We previously 
confirmed that S1pr1 deletion is restricted to the CNS (11). When 
compared with control littermates, mice with astrocyte-specific 
deletion of S1pr1 developed CRCI to the same extent as wild-type 
(WT) mice, but completely lost their responsiveness to the bene-
ficial effects of FTY720 (Figure 1, K and L). These data strongly 
suggest that blocking S1PR1 signaling in astrocytes is necessary 
for the pharmacological effects of FTY720, identifying astro-
cytes as a primary cellular target for S1PR1 antagonism.

The molecular mechanisms whereby S1P contributes to CRCI 
are unknown. We previously reported that direct S1PR1 activation 
in the CNS with highly selective S1PR1 agonists forms peroxyni-
trite (18), a powerful nitrating agent, and activates the NOD-, LRR-
, and pyrin domain–containing protein 3 (NLRP3) inflammasome 
(19). Peroxynitrite nitrates mitochondrial manganese superoxide 
dismutase (MnSOD) at Tyr-34 via an Mn-catalyzed process that 
inactivates the enzyme by more than 80% and results in mito-
chondrial dysfunction (20, 21). In contrast, NLRP3 is critical for 
formation of interleukin 1β (IL-1β) and IL-18, inflammatory cyto-
kines with known roles in cognitive impairment (22, 23). As mito-
chondrial dysfunction and neuroinflammation in the CNS are 2 

drosphingosine, nor in sphingomyelin or glycosylceramides (Sup-
plemental Figures 2 and 3). These data suggest that cisplatin treat-
ment does not stimulate de novo sphingolipid biosynthesis, but 
rather activates sphingosine kinase, the enzyme that forms S1P.

S1P is the ligand for the G protein–coupled receptor S1PR1 
that we found expressed in the PFC and hippocampus, plac-
ing the receptor in proximity to its ligand (Figure 1, G and H). 
Cotreatment of mice with cisplatin and the functional S1PR1 
antagonist FTY720 significantly attenuated CRCI (Figure 
1, A–D), with no adverse effect on anxiety-like behavior and 
locomotor activity (Supplemental Figure 1). Similar cognitive 
improvements were also observed with another functional 
S1PR1 antagonist, ozanimod (Figure 1I), which is approved for 
the treatment of multiple sclerosis and has improved selectivi-
ty and a more desirable clinical safety profile than FTY720 (12). 
The beneficial effects observed with FTY720 and ozanimod 
were confirmed in female mice (Figure 1, D and J, and Supple-
mental Figure 1). Cisplatin, FTY720, and ozanimod did not have 
long-term effects on estrous cycling in female mice.

In the brain, S1PR1 is highly expressed in glia relative to neu-
rons (13) and glial cells have been implicated in CRCI develop-
ment (14). S1PR1 activation on glia facilitates release of inflam-
matory and neuroexcitatory substances, whereas activation on 
neurons increases neuronal excitability (15, 16). In the CNS, 
astrocytes express much higher S1PR1 levels than microglia 

Figure 2. FTY720 attenuated CRCI by dampening MnSOD nitration/inactivation and NLRP3-mediated neuroinflammation, while increasing neuropro-
tective IL-10. Cisplatin induced an increase in MnSOD nitration (A) and deactivation (B) in the mouse hippocampus, which were attenuated by coadmin-
istration with FTY720. FTY720 also attenuated the increased expression of NLRP3 (C), cleaved caspase 1 (C), and IL-1β (D) in the mouse hippocampus 
following cisplatin. FTY720 administration increased neuroprotective IL-10 (E) in the hippocampus (n = 6/group). (F–I) Cisplatin-induced NLRP3 activation 
is functionally linked to CRCI, as global NLRP3–knockout (Nlrp3–/–, F and G, n = 7–8/group) mice or mice receiving i.c.v. infusion of the NLRP3 inhibitor 
MCC950 (H and I, n = 7/group) do not develop CRCI. Data are presented as mean ± SEM. *P < 0.05 vs. Veh; †P < 0.05 vs. Cis; by 2-tailed, 1-way ANOVA with 
Dunnett’s test (A–D, H, and I) or 2-tailed, 2-way ANOVA with Bonferroni’s test (F and G).

https://www.jci.org
https://doi.org/10.1172/JCI157738
https://www.jci.org/articles/view/157738#sd
https://www.jci.org/articles/view/157738#sd
https://www.jci.org/articles/view/157738#sd
https://www.jci.org/articles/view/157738#sd
https://www.jci.org/articles/view/157738#sd
https://www.jci.org/articles/view/157738#sd


The Journal of Clinical Investigation   C O N C I S E  C O M M U N I C A T I O N

4 J Clin Invest. 2022;132(17):e157738  https://doi.org/10.1172/JCI157738

can be activated by several different ligands, including group 9/10 
transition metals, nickel, cobalt, and cisplatin (35, 36). This acti-
vation of TLR4 is independent of the myeloid differentiation fac-
tor 2 (MD-2) coreceptor and activates nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB), increases formation 
of IL-1β and IL-18, and leads to oxidative stress and cell death (35). 
The molecular mechanisms whereby cisplatin activates TLR4 are 
unknown. Cisplatin binds histidine residues (37) and H456 and 
H458 are located on the protein-protein interface of the homodi-
mer, based on the crystal structure of the activated homodimer of 
the human TLR4–MD-2 complex (PDB: 3FXI) (38). Several stud-
ies showed that, along with H431, these residues form a cluster of 
6 histidines in the TLR4 homodimer that may direct dimerization 
via binding to group 9/10 transition metals (36, 39). Our mod-
eling of the H456/H458 cisplatin binding site showed that the 
histidine residues are optimally spaced within the homodimer 
interface to bind 2 cisplatin molecules to direct TLR4 activation 
via homodimerization (Supplemental Figure 4). Therefore, our 
results suggest that one potential mechanism whereby cisplatin 
activates TLR4 is by forming critical interactions with histidine 
residues (H456/H458) on the ectodomain of TLR4 that facilitate 
dimerization (Supplemental Figure 4). These results are consis-
tent with observations using nickel and cobalt (36, 39). In addition 
to direct TLR4 activation, cisplatin can increase TLR4 signaling 
by increasing TLR4 expression (40, 41). In mice that developed 
CRCI, we found a significant increase in TLR4 expression in the 
PFC and hippocampus (Figure 3, A and B). Importantly, cisplatin 
lost its ability to induce CRCI in global TLR4–knockout (Tlr4–/–) 
mice (Figure 3, C and D). Moreover, in contrast to WT mice (Fig-

proposed mechanisms thought to drive CRCI (14, 24), we tested 
potential links to S1PR1. Cisplatin led to nitration and inactivation 
of MnSOD (Figure 2, A and B), and NLRP3 activation (increased 
NLRP3 production and maturation of caspase-1 and IL-1β; Figure 
2, C and D). Cisplatin-induced NLRP3 activation was functionally 
linked to CRCI, as global NLRP3–knockout (Nlrp3–/–) mice or mice 
receiving intracerebroventricular (i.c.v.) infusion of the NLRP3 
inhibitor MCC950 (25) did not develop CRCI (Figure 2, F–I, and 
Supplemental Figure 5). We believe this is the first study document-
ing the roles of the NLRP3 inflammasome in cisplatin-induced 
cognitive impairment. These data, together with previous findings 
with doxorubicin (23), suggest NLRP3-driven inflammatory path-
ways are strongly implicated in cognitive changes following che-
motherapy. Coadministration of cisplatin with FTY720 attenuates 
MnSOD nitration and inactivation and NLRP3 activation (Figure 2, 
A–D). Interestingly, FTY720 increases the levels of IL-10, a potent 
antiinflammatory and neuroprotective cytokine (Figure 2E). These 
findings are noteworthy, since genetic ablation of IL-10 is associ-
ated with neurodegeneration and cognitive decline (26), whereas 
exogenous IL-10 administration or pharmacological strategies that 
increase hippocampal IL-10 have been linked to improved cogni-
tive function in different diseases (27–29).

The molecular mechanisms whereby cisplatin triggers S1P for-
mation are unknown. Sphingosine kinase, the enzyme involved in 
S1P metabolism, is activated in response to TLR4 activation (30), 
a membrane-bound pattern recognition receptor. TLR4 activa-
tion triggers nitroxidative stress and neuroinflammation (31, 32) 
and is implicated in learning and memory impairment in different 
pathological states (33, 34). It is now well documented that TLR4 

Figure 3. TLR4 activation in the CNS was required for cisplatin-induced S1P alterations and cognitive impairment. (A and B) In WT mice, cisplatin 
increased TLR4 expression in both the hippocampus (HC) (A) and PFC (B) (n = 6/group). (C and D) WT, but not Tlr4–/– mice, developed memory and learning 
deficits in the T-maze (C) and NOPRT (D) following cisplatin. (E and F) Cisplatin did not increase S1P levels in the hippocampus (E) and PFC (F) from Tlr4–/– 
mice, as determined by LC-ESI-MS/MS (n = 6/group). (G and H) WT mice receiving i.c.v. infusion of the TLR4 antagonist TAK-242 during cisplatin treatment 
did not develop cognitive deficit in the T-maze (G) and NOPRT (H), confirming the relevance of TLR4 activation in the CNS for the development of cispla-
tin-induced cognitive impairment (n = 7–8/group). Data are presented as mean ± SEM. *P < 0.05 vs. Veh; †P < 0.05 vs. Cis; by 2-tailed, unpaired Student’s t 
test (A and B), 2-tailed, 2-way ANOVA with Bonferroni’s test (C–F), or 2-tailed, 1-way ANOVA with Dunnett’s test (G and H).
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Laboratory Animals (National Academies Press, 2011) and approved 
by the Saint Louis University Institutional Animal Care and Use Com-
mittee and by the University of Messina Review Board for the care of 
animals, in compliance with Italian regulations on protection of ani-
mals (no. 368/2019-PR- released on May 4, 2019).
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ure 1, E and F), cisplatin did not increase S1P levels in the PFC and 
hippocampus from Tlr4–/– mice, as determined by sphingolipid-
omic profiling (Figure 3, E and F, and Supplemental Figure 3). To 
further test whether TLR4 activation in the CNS directly contrib-
utes to CRCI, mice received i.c.v. infusions of the TLR4 inhibitor 
TAK-242 (42) during cisplatin treatment and then were tested for 
CRCI. These mice did not develop CRCI (Figure 3, G and H, and 
Supplemental Figure 5). We believe this is the first study implicat-
ing TLR4 activation as a causal mechanism for CRCI.

Our studies provide evidence that TLR4 activation in the brain 
is the linchpin in cisplatin-induced S1P formation, S1P-mediated 
S1PR1 activation, and cognitive deficits. Although our studies 
support key roles for S1P/S1PR1 in mitochondrial dysfunction and 
inflammasome activation, we cannot exclude contributions of S1P 
signaling in other mechanisms implicated in CRCI such as altered 
calcium homeostasis (43). Our findings establish S1PR1 as a thera-
peutic target and could expedite proof-of-concept clinical studies 
with FTY720 and/or ozanimod as adjunct to chemotherapy.

Methods
Detailed experimental methods are included with the Supplemental 
Material.
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