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Fibrosis of the skin and of internal organs, autoimmunity, and vascular inflammation are hallmarks of Systemic Sclerosis (SSc).
The injury and activation of endothelial cells, with hyperplasia of the intima and eventual obliteration of the vascular lumen,
are early features of SSc. Reduced capillary blood flow coupled with deficient angiogenesis leads to chronic hypoxia and tissue
ischemia, enforcing a positive feed-forward loop sustaining vascular remodelling, further exacerbated by extracellular matrix
accumulation due to fibrosis. Despite numerous developments and a growing number of controlled clinical trials no treatment
has been shown so far to alter SSc natural history, outlining the need of further investigation in the molecular pathways involved in
the pathogenesis of the disease. We review some processes potentially involved in SSc vasculopathy, with attention to the possible
effect of sustained vascular inflammation on the plasticity of vascular cells. Specifically we focus on mesenchymal transition, a key
phenomenon in the cardiac and vascular development as well as in the remodelling of injured vessels. Recent work supports the role
of transforming growth factor-beta,Wnt, and Notch signaling in these processes. Importantly, endothelial-mesenchymal transition
may be reversible, possibly offering novel cues for treatment.

1. The Scenario: Damage and Remodelling of
the Microvasculature in Systemic Sclerosis

Systemic Sclerosis (SSc) is a multisystem disease, charac-
terized by autoimmunity, a broad microvasculopathy, and
fibrosis of the skin and of visceral organs. Events still poorly
characterized support the activation of myofibroblasts and
self-amplifying circles lead to aberrant and sustained fibro-
genesis [1]. Injury and activation of endothelial cell linings
are early events in the natural history of SSc [2, 3] and
excessive/deregulated innate immune responses in response
to vessel and tissue injuries are hallmarks of SSc [4–8].
Vascular inflammation and remodelling characterize diverse
districts, including the lung, the heart, the skin, and the
kidney. Small- andmedium-size arteries are usually involved,
with the frequent intimal hyperplasia, medial thickening,
obliteration of the lumen, perivascular inflammation, and

occasionally microthrombi [9, 10] (see also below). SSc also
affects capillaries. Nailfold capillaroscopy, which is routinely
used in the clinical settings, often reveals dilatation of
capillaries in early stages and loss in later phases, an event that
possibly represents the counterpart of the lumen obliteration
of small arteries in other tissues [11], a process that involves
the proliferation of the intimal layer, with accumulation of
constituents of the extracellular matrix [3, 12].

Of importance, the occlusion of the microvasculature
results in persistent hypoxia of peripheral tissues, which in
turn is not repaired by the physiologic mechanisms of vascu-
logenesis or angiogenesis [13]. Hypoxia represents a massive
stimulus for the generation of various growth factors that
influence the fate of vascular cells, prompting mesenchymal
transition and fibrosis [14, 15]. On the other hand hypoxia is a
key element prompting oxidative stress, another hallmark of
SSc [12].
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Figure 1: Vascular remodelling and capillaroscopic pattern in Systemic Sclerosis (SSc). (a) Stenoocclusive remodelling in SSc microvas-
culature (bottom right) is believed to result from an abnormal reparative attempt triggered by chronic endothelial damage, which drives
intima-media hyperplasia and increased ECM production within the vessel wall. Mesenchymal cells, specifically myofibroblasts with
a highly secretory phenotype, are the main final effectors responsible for these structural changes. Myofibroblasts in SSc vessels can
originate from multiple cellular sources (upper left), either of mesenchymal origin, such as pericytes or fibroblast, or of nonmesenchymal
origin, such as endothelial cells. (b)–(d) Capillaroscopic pattern in normal subjects (b) and scleroderma patients at magnification 200x
((c): “active” SSc pattern; (d): “late” SSc pattern). Note the heterogeneity in the architecture and morphology of SSc capillaries with
frequent ectasias (black arrowheads). In the “active” scleroderma pattern there are plenty of giant capillaries (i.e., more than 50𝜇m of
diameter) and microhaemorrhages (white arrowheads), with mild loss of capillaries. In the “late” scleroderma pattern giant capillaries and
microhaemorrhages are less frequent, but a severe loss of capillaries is evident, with extensive avascular areas (white arrows).

Soluble moieties present in the blood of SSc patients
activate and induce in the presence of neutrophils the
programmed death via apoptosis of endothelial cells [16],
suggesting that inflammatory leukocytes directly contribute
to the endothelial injury [17]. The apoptosis of endothelial
cells [3], the aberrant expression of transcription factors [18–
20], of cytokines and of growth factors, specifically including
the production of the antiangiogenic VEGF165b isoform of
the vascular endothelial growth factor (VEGF) [21], alter-
ations of pathways activated by the interaction of components
of the class III semaphorin family and of their receptors,
Plexin-D1 and Neuropilin-1 [22, 23], and the defects of

sprouting angiogenesis and vasculogenesis participate in the
remodelling of the vasculature [24]. The events occurring at
the cellular levels are poorly characterized.The recent insight
on the relative plasticity of vascular cells, including ECs
and pericytes, raises the possibility that transdifferentiation
programs are activated and contribute to the maladaptive
remodelling characteristic of the SSc vasculature (Figure 1).

Platelets are critical players in vascular remodelling. As
guardians of the integrity of the vessels platelets respond to
the early changes of the endothelial lining undergoing a burst
of activation, which become persistent and sustained activa-
tion [25–27]. They represent a source of VEGF, which acts
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on endothelial cells [28]. Moreover they generate and release
an array of profibrotic signals, including transforming growth
factor-𝛽 (TGF-𝛽), platelet-derived growth factor (PDGF),
and serotonin [15]. Thrombosis of microvessels is frequent
in SSc and could be facilitated by the release from damaged
and activated endothelial cells of extralarge multimers of
von Willebrand Factor (vWF) [29]. Platelets also contain
a substantial amount of the High Mobility Group Box-
1 (HMGB1) protein [30], a prototypic Damage Associated
Molecular Pattern (DAMP) [31].

HMGB1 is a key signal shaping the characteristics of
the inflammatory response elicited in response to sterile
and microbial insults [32, 33]. It mediates the homeo-
static response to injury [34–37], prompting fibrogenesis
in response to endothelial damage [38–41] and playing a
nonredundant role in the remodelling of vessels that takes
place in injured tissues [42, 43]. Blood levels of HMGB1 are
elevated in patients with SSc [44]. Conversely platelets of SSc
patients undergo the depletion of the intracellular HMGB1
content [45]. The two events possibly reflect the generation
of HMGB1+ microparticles (𝜇Ps), an event that seems to
dominate the release of the molecule from activated platelets
[46, 47].

Platelets are an established source of 𝜇Ps and platelet-
derived 𝜇Ps in the plasma of patients with SSc are abundant
[48, 49]. 𝜇Ps have various actions that might be involved in
the natural history of the disease, including the regulation of
the survival and of the activation state of endothelial cells and,
importantly, of endothelial cell precursors [50, 51]. Moreover,
subpopulations of 𝜇Ps might be associated with specific
features of SSc, including lung involvement and the extent
of fibrosis [52]. HMGB1+ 𝜇Ps purified from SSc patients,
but not HMGB1− 𝜇Ps purified from control subjects, activate
human leukocyteswhileHMGB1 inhibitors reverse the effects
in vitro, suggesting that the moiety might be important in the
maintenance of the SSc vascular inflammation [46].

Of importance, HMGB1 is a redox-sensitive moiety [53].
HMGB1 contains cysteine residues in positions 23, 45, and
106 and resides in a predominantly reduced state in the
nucleus and the cytosol [53–55]. Reduced HMGB1 in the
extracellular environment forms bioactive complexes with
the CXCL12/SDF1 chemokine and effectively triggers in vitro
cell migration [53, 56–59]. An oxidizing environment in
contrast enhances the ability of the molecule to prompt
the secretion of inflammatory cytokines from macrophages
and to promote autoimmunity [59–65]. Oxidative stress is
a critical player in SSc, which contributes to the persis-
tent activation of fibroblasts and of vascular cells [12, 66].
Indeed oxidation is critical for HMGB1 ability to support
the activation of blood leukocytes in response to platelets-
or 𝜇Ps-derived signals [46] and possibly for their action on
vascular cells, including pericytes [67, 68]. Platelet-derived
HMGB1 is gaining increasing attention as a key moiety in
intravascular immunity and in the activation/regulation of
the coagulation cascade [45–47, 69, 70]. Further studies are
necessary to validate the involvement of this pathway in
SSc and specifically to reveal whether it might contribute
to the remodelling of the microcirculation in particular. Of
interest, HMGB1 has a well-characterized fibrogenic action

and is an established inducer of epithelial-to-mesenchymal
transition (EMT), a process that is associated with the origin
of myofibroblasts from various precursors, including those
associated with the vessel wall [40] (see below).

Other nonmural cells, such as fibrocytes and macropha-
ges, might play a role in the development of the fibroprolif-
erative vasculopathy in SSc. Circulating fibrocytes comprise
bone marrow-derived cells that have both hematopoietic and
mesenchymal features, endowedwith a physiologic role in the
physiologic wound healing [71]. Fibrocytes are increased in
autoimmune conditions, including SSc [72, 73], and might
play a part in tissue and vessel remodelling via multiple
mechanisms, including the differentiation into activated
myofibroblasts [71, 74].

Macrophages are attracting increasing attention for their
role in the SSc (for recent excellent reviews, see [75, 76]). A
detailed description of the role of macrophages in promoting
and sustaining SSc vasculopathy is outside the scope of this
work. However, several evidences support the contention
that the recognition of endogenous ligands in peripheral
tissues of SSc patients by macrophages might be involved in
feed-forward self-sustaining amplificatory circuits of vascular
inflammation and fibrosis [6, 37, 77].

2. Clinical Impact of SSc Vasculopathy

Although vasculopathy is present early and almost invariably
during the course of SSc, clinical complications are tradition-
ally classified mainly within either the fibrotic or the vascular
components of the disease (Table 1). This classification is
mainly based on histology and does not take into account the
possible role of vascular inflammation and of vasculopathy in
driving the fibrotic component of the disease.

Despite the fact that therapeutic improvements have
changed the relative impact of SSc complications on patients’
prognosis [78] SSc vasculopathy, in terms of pulmonary arte-
rial hypertension (PAH), heart involvement, and scleroderma
renal crisis (SRC), still represents the first cause of disease-
related mortality. Therapeutic targets are different in the vas-
cular complications of SSc, suggesting that the pathogenesis
of these conditions only partially overlaps. SRC prognosis has
fortunately much improved since the recognition of the ther-
apeutic role ofACE inhibitors [79]. SRC is typically character-
ized bymalignant hypertension and rapidly progressive renal
failure. Organ dysfunction (hearth failure, encephalopa-
thy, and microangiopathic haemolytic anaemia) frequently
coexist [80]. Histology shows onionskin-like lesions and
fibrotic intimal sclerosis, with possible adventitial fibrosis and
intravascular thrombosis [81]. Pathophysiology of SSc hearth
involvement is complex and heterogeneous, but vasculopathy
is believed to be the most frequent mechanism, resulting in
focal andpatchymyocardial ischemia and consequent fibrosis
with either systolic or diastolic dysfunction [82].

3. Pulmonary Arterial Hypertension

Pulmonary hypertension (PH) is defined as an elevated
mean pulmonary arterial pressure (mPAP) ≥ 25mmHg at
rest [83]. PH is frequent in SSc and can be associated with
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Table 1: Most prominent fibrotic and vascular complications of SSc.

Fibrotic
complications Vascular complications

Skin fibrosis Raynaud phenomenon
Lung fibrosis Ischemic ulcers

Gastrointestinal
involvement

Acral ischaemia/necrosis
Gastral antral vascular ectasia (GAVE)
and gastrointestinal telangiectasias
Scleroderma renal crisis
Heart involvement
Pulmonary arterial hypertension

lung and hearth involvement or thromboembolic disease.
Pulmonary arterial hypertension (PAH) is a disease charac-
terized by progressive obliterative vasculopathy involving the
distal pulmonary circulation, the distal pulmonary arteries
in particular [83]. Progressive precapillary PH (i.e., PH
with a pulmonary capillary wedge pressure ≤ 15mmHg and
pulmonary vascular resistance > 3WoodUnits) defines PAH.
This results in progressive right heart failure [84], with a
median survival without therapy of about 2.8 years from
diagnosis [85]. SSc is one of the main causes of PAH [83].
Currently, PAH and interstitial lung disease represent the
first causes of disease-related mortality in SSc patients. SSc-
associated PAH (SSc-PAH) has a prevalence between 10
and 12% of SSc patients and may occur even many years
after the diagnosis [86]. SSc-PAH is associated with limited
scleroderma, presence of anti-U3RNP autoantibodies, late-
onset disease, multiple telangiectasias, digital ulcers, and
worsening lung diffusion [86].

Mortality of SSc-PAH is worse than mortality of idio-
pathic PAH [87, 88]. Early detection is therefore funda-
mental but remains challenging. Symptoms are caused by
heart failure or worsening respiratory function and occur
late during disease course. The diagnosis is not based on
the direct identification of the lung vasculopathy but on
the indirect evaluation of its hemodynamic impact, which
can be definitively assessed with right heart catheterisation
only, when the lung vascular reserve is already substantially
compromised [89].

With the exception of a small group of patients with
hereditary or idiopathic PAH responding to calcium chan-
nel blocker vasodilators, structural remodelling of the lung
microcirculation is substantial. Currently available ther-
apies for PAH antagonise endothelin-1 (ET-1) receptors
increase concentrations of prostacyclin or its analogues or
increase cyclic GMP in the lung vasculature antagonising
phosphodiesterase-5. All these agents are believed to target
both the vasoconstriction and the remodelling observed in
the lung vasculature. However, patients with SSc-PAH have a
poorer response to therapies, in comparison with other PAH
subgroups [88], and up-front combination regimens of oral
agents antagonising ET-1 receptors and phosphodiesterase-5
may provide a more effective intervention [90, 91]. Autoim-
munity with unrelenting inflammatory responses and more
severe vessel and cardiac involvement might account for

the poorer response to therapy of patients with SSc-PAH as
compared to those with idiopathic PAH [88].

Histology of PAH is reminiscent of other small vessel vas-
culopathies, such as SSc. An obliterative and onionskin-like
intimal andmedial thickening is the pivotal finding. Intravas-
cular thrombosis is frequent, and perivascular inflammation
is observed. Muscularisation of small arteries as well as
perivascular inflammation is typical. Endothelial cells may
have a disorganised growth within the lumen of remodelled
vessels, to form the so-called plexiform lesions [92]. SSc-
PAH pathology is similar, with more abundant inflammatory
infiltrates andmore frequent concomitant involvement of the
venous compartment of the lung circulation [93].

Mechanisms underlying these changes are poorly under-
stood. Similar histologic features of remodelled arteries and
intimal hyperplasia are not exclusive of SSc but are believed
to be a stereotyped vascular response to many types of
injuries. Large-vessel vasculitides such as Takayasu arteritis
[94] and giant cell arteritis [95] are inflammatory conditions
in which arterial remodelling and intimal hyperplasia play
a central role. Similarly to SSc, in Takayasu arteritis the
progression in vascular stenoocclusions and the intensity
of systemic inflammation poorly correlate [96–98]. Further
studies are required to verify whether molecular events
regulating cell plasticity in the SSc vessel walls might have a
role in macrovascular diseases.

Increased numbers of cells expressing alpha-smooth
muscle actin (alpha-SMA) are a nearly universal finding in
the remodelled artery. Resident smooth muscle cells have
been traditionally regarded as the predominant source of
the newly appearing alpha-SMA-expressing cells. However,
rapidly emerging experimental evidence suggests that other
sources might play a role. We will briefly discuss below the
possible contribution of the Endothelial to Mesenchymal
Transition (EndoMT) and the evidence supporting a role of
transforming growth factor-beta, Wnt, and Notch signaling
in this process.

4. EndoMT and TGF-𝛽

EndoMT refers to a transdifferentiation process in which
endothelial cells downregulate the expression of endothelial
markers, such as CD31 and vascular endothelial cadherin
(VE-cadherin), acquiring amesenchymal/myofibroblast phe-
notype, which is characterized by the expression of SMA,
collagen type I (Col I), together with Twist 1, a specificmarker
of mesenchymal transition [74, 99].

EndoMT has emerged as a player in the pathogenesis
of tissue fibrosis in various diseases, including diabetic
nephropathy, cardiac fibrosis, intestinal fibrosis, portal hyper-
tension, and PAH [100]. Experimental evidence supports a
role of EndoMT in SSc as well [100–102]. Of importance,
lung tissues of patients with interstitial lung disease asso-
ciated with SSc have been elegantly shown to contain cells
that simultaneously express EC-specific and mesenchymal
proteins and transcripts, demonstrating that EndoMT actu-
ally occurs in target organs of the disease [103]. EndoMT
could contribute, under the action of signals generated by
inflammatory leukocytes recruited and activated into the
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perivascular tissues, to the conversion of endothelial cells
into activated myofibroblasts, that is, cells responsible for
the formation of scar tissue and for fibrosis [74, 99]. Thus,
EndoMT would causally connect two hallmarks of SSc, the
aberrant fibrogenesis and the persistent endothelial injury.
TGF-𝛽, a cytokine involved in embryogenesis, cellular dif-
ferentiation, development, and inflammatory response, plays
a role in fibrotic diseases by stimulating the production of
collagens and other ECM components and by inhibiting the
expression of various relevant metalloproteinases. TGF-𝛽 is
in particular a central cytokine in SSc [10]. TGF-𝛽-regulated
genes are expressed in the skin and the lung of patients with
SSc and the extent of the cytokine expression correlates with
the disease activity [10]. Moreover, mutations in the TGF-
𝛽-sensing ALK-1 signaling pathway cause familial PAH and
hereditary haemorrhagic telangiectasia, indicating a role of
TGF-𝛽 signaling in both SSc vasculopathy and fibrosis [10].

TGF-𝛽 is able to induce plasticity in endothelial cells,
committing them toward a fibrogenic fate. The process
involves the acquisition of a mesenchymal progenitor multi-
potent status and is characterized by the transient expression
of PDGFR𝛼 mRNA, by the increase of the mesenchymal
markers expression (such as 𝛼-SMA and Col I), and by the
reduction of endothelial markers expression, CD31 and Tie
1 [104]. Li and Jimenez in 2011 observed in primary mouse
pulmonary ECs the ability of TGF-𝛽 to induce 𝛼-SMA and
type I collagen expression together with an inhibition of VE-
cadherin. These effects were associated with an increased
Snail-1 expression, involving the c-Abl tyrosine kinase and
protein kinase C𝛿 (PKC𝛿) activity [105].

5. Wnt

TheWnt proteins comprise a family of glycoproteins that via
canonical and noncanonical intracellular signaling pathways
play crucial roles during embryonic development. Wnt pro-
teins and pathways have been also implicated in the patho-
genesis of fibrotic diseases, including SSc [106–108]. TGF-
𝛽 activates the canonical Wnt pathway, and multiple genes
involved in tissue repair and in fibrosis are transcriptional
targets of Wnt/𝛽-catenin [109]. Transcriptional analysis of
primary alveolar epithelial type II (ATII) cells from patients
with idiopathic pulmonary fibrosis (IPF) revealed an elevated
expression of genes coding forWnt ligands, receptors, regula-
tors, and targets [110, 111]. Other studies provided evidence of
an increased Wnt expression and activity in the skin and the
blood of patients with SSc [112]. Nuclear 𝛽-catenin, a marker
of active canonical Wnt signaling, was strongly upregulated
in the lung of patients with SSc-associated fibrosis [106].
Wnt3a could be implicated in the modulation of EndoMT
in human dermal microvascular endothelial cells via the
reduction of vascular endothelial cadherinmRNA expression
and induction of vimentin and slug mRNA expression [113].

6. Notch-Jagged

TheNotch signaling is also a fundamental pathway governing
development. Notch receptors and their ligands have been

located in the vascular system. Notch activation in endothe-
lial cells results in morphological, phenotypic, and functional
changes consistent with mesenchymal transformation.These
changes are correlated with EndoMT, including downreg-
ulation of endothelial markers, upregulation of mesenchy-
mal markers, and migration toward platelet-derived growth
factor-BB. Notch and TGF-𝛽 signaling synergistically induce
the Snail expression in endothelial cells. Notch activation
inhibits TGF-𝛽/Smad1 and TGF-𝛽/Smad2 signaling path-
ways by decreasing the expression of Smad1 and Smad2
and their target genes. In contrast, Notch increases Smad3
mRNA expression and protein half-life and regulates the
expression of TGF-𝛽/Smad3 target genes in a gene-specific
manner [114].

Notch signaling appears to be activated in the skin of
patients with SSc, with overexpression of the ligand, jagged-1.
This appears to be a nonredundant event in fibrogenesis, since
genetic or pharmacological interference with this pathway
inhibited the development of fibrosis in experimental ani-
mals, interferingwith the generation of autoantibodies as well
[115]. Thus, data in the literature suggest that the Notch path-
way is correlated with EndoMT and that the same pathway is
deregulated in SSc. However direct experimental evidence of
Notch involvement in the modulation of EndoMT in SSc is
so far missing.

7. Endothelin 1

Endothelin-1 (ET-1), a 21-residue peptide, is a potent vasocon-
strictor. ET-1 regulates the vascular tone through interaction
with endothelin receptors A (ETRA) and B (ETRB), prompts
fibrogenesis, and possibly contributes to the vessel’s instability
and capillary rarefaction during SSc. Some in vitro evidence
suggests that ET-1 might promote EndoMT on ECs isolated
from SSc patients and macitentan, a dual endothelin-1 recep-
tor antagonist, blocks the EndoMT induced in vitro by the
combination of TGF-𝛽 and ET-1 [116].The actual relevance of
these in vitro observations for the SSc vasculopathy remains
to be established. For example, in vitro studies supported an
antifibrotic effect of the ET-1 receptor antagonist, bosentan,
which however was not consistent upon treatment of SSc
patients with PAH (e.g., see [117]).

8. Interferon

Interferon has also been studied in the setting of EndoMT.
IFN-𝛼 appears to downregulate while IFN-𝛾 appears to
upregulate 𝛼-SMA, CTGF, ET-1, and TGF𝛽2 expression in
human dermal microvascular endothelial cells. In this in
vitro experimental setting, the blockade of TGF𝛽 signaling
normalized IFN-𝛾-mediated changes in Fli-1, VE-cadherin,
CTGF, and ET-1 levels, whereas the upregulation of 𝛼-
SMA and TGF𝛽2 was not affected. IFN-𝛾 also induced the
expression of selected genes related to EndoMT, including
Snail-1, FN1, PAI1, TWIST1, STAT3, RGS2, and components
of the Wnt pathway [118].
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9. MicroRNAs

MicroRNAs (miRNAs) consist of a class of small endogenous
noncoding RNAs, approximately 22 nucleotides long, able
to regulate posttranscriptionally gene expression. A single
miRNA can modulate hundreds of target genes by suppress-
ing translation, mediating mRNA segmentation, or causing
RNA destabilization. On the other hand, multiple miRNAs
can cooperate to regulate the expression of a single target
gene.miRNAsmight be involved in the natural history of SSc.
A downregulation of miRNAs involved in the suppression
of fibrosis (such as miR-29a, miR-196a, and miR-150) has
been reported in SSc patients [119]. Upregulation of miRNAs
able to induce the Col1A1 expression (such as miR-21b) or
other ECMmolecules (miR-92a) has also been reported [120].
Conversely, miR-7, a miRNAwith a role in the suppression of
fibrosis, is upregulated in SSc fibroblasts possibly because of
a negative feedback loop, associated with thrombospondin-2
upregulation [121].

TGF-𝛽 significantly increased miR-21 expression in
endothelial cells and inducedEndoMT.Mechanistically,miR-
21 acts on phosphatase and tensin homolog in endothelial
cells, favoring the activation of the Akt pathway [122].
A miRNA array on mouse cardiac endothelial cells and
EndoMT-derived fibroblast-like cells revealed that miR-
125b, Let-7c, Let-7g, miR-21, miR-30b, and miR-195 were
significantly elevated during EndoMT, while levels of several
miRNAs including miR-122a, miR-127, miR-196, and miR-
375 were significantly downregulated [123]. Some of these
signals, such as the miR-125b, might be directly implicated
in the fibroblast-to-myofibroblast transition [124]. Although
miRNA modulation appears to be an interesting field that
might shed light on biological events occurring in SSc, little
experimental evidence supports so far the contention that
miRNA modulation actually occurs in endothelial cells of
SSc patients. Moreover, like for other epigenetic regulations
that have been implicated in the pathogenesis of SSc, their
causal role in the various disease features remains elusive
[125]. Specifically, it remains to be seen whether miRNA
modulation reflects ongoing EndoMT, or it is a necessary
condition to begin or effectively conclude the process.

10. Oxidative Stress and EndoMT

Oxidative stress mediated by reactive oxygen species (ROS)
plays a role in various features of SSc [12, 66, 126, 127], possibly
including senescence-correlated changes of SSc fibroblasts
[128] and of bonemarrow-derivedmesenchymal stem cells of
SSc patients, which express markers of early senescence and
have an impaired ability to differentiate into endothelial cells
[129].Defective function of endothelial progenitor cellsmight
contribute to the defective angiogenesis typical of the disease
[13]. The NADPH oxidase (NOX) family of membrane-
associated enzymes catalyzes the reduction of oxygen to
form ROS. NOX4 in particular has a key role in the estab-
lishment and maintenance of tissue fibrosis. Several signals
involved in SSc pathogenesis, including TGF-𝛽, PDGF, and
ET-1, modulate the expression of NOX and of NOX4 in

particular [130]. Oxidative stress also induces the conversion
of ECs intomyofibroblasts via amechanism possibly depend-
ing on ALK5/Smad3/NF-𝜅B pathway [126].

11. Shear Stress

Uniform laminar shear stress (LSS) has anti-inflammatory
and anticoagulant effects on ECs [131]. Conversely, EndoMT
might be implicated in the fibroproliferative vascular disease
andmight bemodulated by shear stress in a ERK5-dependent
manner [131]. Prolonged exposure of EC to LSS results in
sustained activation of p53 and in growth arrest [132]. KLF4
physically interacts with p53 in synergistic activation of p21,
indicating interaction between p53 and ERK5 signaling path-
ways. Activation of ERK5 thus not only inhibitsmesenchymal
transition of EC, but also might be the key to reversal of the
transition [131].

12. EMT in SSc

EMT is a process in which adhesive properties and polarity
of epithelial cells are modified, with decreased expression of
epithelial markers, including E-cadherin and Zo-1. In con-
trast expression of mesenchymal markers, such as vimentin
and fibronectin, is upregulated [133] and matrix metallopro-
teinases (MMPs) are generated includingMMP-2 andMMP-
9, which degrade collagen IV, the main component of the
basementmembrane, and aid the development of amigratory
phenotype. The retained plasticity of pulmonary and renal
epithelial cells and their ability to contribute directly to
human fibrotic disease via EMT are well defined [134, 135].
In vitro data suggest the involvement of TGF-𝛽 and TNF-𝛼
synergic activity in driving EMT of primary keratinocytes,
in a Smad-dependent manner. The use of specific Smad
inhibitors could prevent EMT but more importantly can also
reverse established EMT open to a new potential therapeutic
intervention [133]. SSc keratinocytes exhibit a phenotype
normally associated with tissue repair, including phosphory-
lation profiles indicative of TGF-𝛽 signaling, with increased
phosphorylated Smad2/3 nuclear translocation [136].

An important role in the EMT during SSc is also played
by the lacking activity of Fli-1. The transcription factor Fli-
1, a member of the Ets transcription factor family, is epige-
netically suppressed in SSc skin and SSc dermal fibroblasts
and may represent such a predisposing factor for SSc [137].
Fli-1 expression is decreased in nonlesional SSc skin in
various cell types, including dermal fibroblasts, endothelial
cells, and perivascular inflammatory cells, suggesting that
downregulation of Fli-1 is an early event preceding the
development of fibrosis.The factors that might be involved in
the downregulation of Fli-1 include TGF-𝛽 and interferon-𝛾,
in addition to epigeneticmechanisms, and recent data suggest
a new in vivo model to study the SSc phenotype in various
cell types [138]. Indeed, bleomycin-induced skin fibrosis in
Fli-1+/− mice highlights alterations of dermal fibroblasts,
endothelial cells, andmacrophages reminiscent of the human
disease, suggesting a new promising tool for the in vivo study
of SSc [138].
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Figure 2: Pathways involved in the EndoMT.The scheme summarized the putative pathways involved in the EndoMT highlighting which are
already correlated or not with SSc. The activation of specific nuclear mediator leads to activation of target genes that are correlated with the
increase of mesenchymal markers (such as Col I, 𝛼-SMA, and Twist 1) and/or decrease of endothelial markers (such as CD31, VE-Cad, and
Fli-1). The activation of these pathways could lead endothelial cells to acquire initially mesenchymal characteristics and later on to acquire
myofibroblastic features.

13. Conclusions

A failure of various intermingled homeostatic programs
accounts for the complex phenotype of SSc patients.Defective
homeostatic processes are governed by interacting signaling
pathways, most of which are involved in the regulation
of the vascular cell plasticity (Figure 2). Although much
new information has been obtained on the mesenchymal
transition of endothelial and epithelial cells and on the
transition fromfibroblasts tomyofibroblasts over the past few
years, many issues still require characterization, including the
actual extent to which mesenchymal transition occurs in SSc
patients. The contention that cell plasticity causally links the
generalized vascular inflammation and remodelling with the
fibrosis associated with SSc has not been formally demon-
strated. In case it was, the molecular regulation underlying
the substantially variable fibrosis (generalized versus limited)
which characterizes each single patient would remain to be
established. Moreover the contribution of autoimmunity in
the process, which is felt to be important, remains elusive.
New targets for molecular treatments are being identified.
These discoveries may lead to profound advances in therapies
for SSc and possibly for other persistent fibrotic and inflam-
matory diseases.
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